七年级数学(上册)动点问题
人教版七年级上册数学期末动点问题训练题(含简单答案)
人教版七年级上册数学期末动点问题训练题(1)求点C对应的数.(1)若点P为的中点,直接写出点PAB(1)M、N两点间的距离为,点P表示的数是 (用含(2)经过多少秒时点P与点N的距离为4个单位长度?(1)______,______,并在数轴上标出=a b =(1)写出数轴上点表示的数是__________,点(1)写出点B 表示的数;(2)如图1,当点A 、B 位于原点O 的同侧时,动点P 、Q 分别从点时相向而行,动点P 的速度是动点Q 的速度的2倍,4秒后两动点相遇,当动点达点5时,运动停止.在整个运动过程中,当时,求点(3)如图2,当点A 、B 位于原点O 的异侧时,动点P 、Q 分别从点A B 3PQ =(1)数轴上点对应的数是 ,点(1)化简:;(1)写出数轴上点B 表示的数 ;B 2a b a b a ++--MP=NP= (1)若点在线段上运动,当时,;P AB7(1)a的值为______,b的值为______c的值为(2)点P是数轴上A,C两点间的一个点,当数.同时出发,求:①当点P 运动多少秒时,点P与点Q 重合?②当点P 运动多少秒时,点P 与点Q 之间的距离为3个单位长度?16.如图,点A ,B 是数轴上两点,点A 表示的数为,A ,B 两点之间的距离为20,动点P 、Q 分别从A 、B 出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是_______;(2)若点P ,Q 同时出发,t 为何值时,这两点相遇?(3)若点P ,Q 同时出发,t 为何值时,点P 和点Q 刚好相距5个单位长度?17.如图,已知数轴上点表示的数为12,是数轴上位于点左侧一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点表示的数是______,点表示的数是______(用含的代数式表示);(2)若为线段的中点,为线段的中点,在点运动的过程中,线段的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点从点处出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时与点相距4个单位长度?18.如图,点,,在数轴上表示的数分别为,,,是最大的负整数,,.16-()0t t >A B A 32AB =P A t B P t M AP N BP P MN t Q B P Q P Q A B C a b c a 11AB =2AC =参考答案:。
七年级数学上册动点问题万能公式
七年级数学上册动点问题万能公式一、概述动点问题是数学中的一个重要概念,它在七年级数学上册中占据着重要的地位。
在学习动点问题时,学生需要掌握一些基本的公式和方法,以便能够正确地解决各种动点问题。
本文将介绍七年级数学上册动点问题中常用的万能公式,帮助学生更好地理解和应用这一知识点。
二、动点问题的基本概念动点问题是指在空间中移动的点的问题,它涉及到时间、速度、距离等概念。
在解决动点问题时,需要通过建立坐标系、列方程等方法来求解。
而在实际应用中,动点问题往往涉及到多个变量,需要进行复杂的计算和推导。
学生需要掌握一些基本的万能公式和方法,以便能够正确地解决各种动点问题。
三、动点问题万能公式1. 速度的定义在动点问题中,速度是一个非常重要的概念。
速度的定义为:速度=位移/时间。
在解决动点问题时,可以利用速度的定义来建立方程,求解未知数。
2. 平均速度公式平均速度的计算公式为:平均速度=总路程/总时间。
在动点问题中,当需要求解动点的平均速度时,可以利用平均速度公式进行计算。
3. 匀速直线运动的位移公式在匀速直线运动中,位移与速度、时间之间存在着一定的关系。
位移公式为:位移=速度×时间。
当动点进行匀速直线运动时,可以利用位移公式来求解未知数。
4. 加速度恒定的运动在加速度恒定的运动中,位移与初速度、末速度、加速度之间存在着一定的关系。
位移公式为:位移=初速度×时间+1/2×加速度×时间的平方。
在解决加速度恒定的动点问题时,可以利用位移公式进行计算。
5. 两点间距离公式在动点问题中,当需要求解两个动点之间的距离时,可以利用两点间距离公式进行计算。
两点间距离公式为:距离=√((x₂-x₁)²+(y₂-y₁)²)。
其中(x₁, y₁)和(x₂, y₂)分别表示两点的坐标,可以通过坐标求解两点之间的距离。
四、动点问题的解题方法在解决动点问题时,需要遵循一定的方法和步骤,以便能够正确地求解问题。
初一数学上册平面上的动点问题
初一数学上册平面上的动点问题引言在初一数学上册中,我们研究了许多关于平面上的动点问题的知识。
本文档总结了这些知识,并给出了一些例题和解答,帮助同学们更好地理解和运用这些概念。
动点及其运动方式动点是指在平面上随时间变化位置的点。
它的运动方式可以分为直线运动和曲线运动两种。
直线运动当动点在平面上的轨迹为直线时,我们称之为直线运动。
直线运动有以下几种形式:1. 匀速直线运动:动点在平面上以恒定速度直线运动。
2. 加速直线运动:动点在平面上以逐渐增加的速度直线运动。
3. 减速直线运动:动点在平面上以逐渐减小的速度直线运动。
曲线运动当动点在平面上的轨迹为曲线时,我们称之为曲线运动。
曲线运动有以下几种形式:1. 圆周运动:动点在平面上以一定的半径围绕一个圆心做运动。
2. 椭圆运动:动点在平面上以一定的焦点做椭圆形状的运动。
3. 抛物线运动:动点在平面上以一定的焦点和直线做抛物线形状的运动。
4. 螺旋运动:动点在平面上以一定的半径和一条直线同时做旋转和移动的运动。
动点问题的解决方法解决平面上的动点问题时,我们可以采用以下几种方法:1. 作图法:根据题目中给出的条件,使用几何图形进行作图,找到动点的轨迹形状和特点。
2. 坐标法:给定坐标系,根据题目中给出的条件,建立动点坐标的表达式,从而求解问题。
3. 方程法:根据题目中给出的条件,建立动点运动方程,利用方程的性质和解法求解问题。
示例题目及解答以下是几个关于平面上的动点问题的示例题目及解答,供同学们练和参考:示例题一动点A以每秒2厘米的速度匀速沿直线AB移动,B点位于直线CD上,且AB、BC垂直,已知AB长4厘米,CD长6厘米,求动点A到CD的距离。
解答:根据题目中给出的条件,我们可以得知此动点是在直线上匀速移动的,且AB与BC垂直,所以动点A在平面上的轨迹是直线AB和直线BC构成的直角。
使用坐标法,我们可以设定直线AB为x轴,直线BC为y轴,A点的坐标为(0, 0),B点的坐标为(4, 0),C点的坐标为(4, 6)。
完整版)七年级上册数学期末动点问题专题
完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。
1) 若点P到点A和点B的距离相等,求点P对应的数。
解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。
解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。
由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。
七年级数学上册线段上动点问题的四种常见类型专题讲解
线段MN的长度不发生变化,其值为5.
分下面两种情况:
①当点P在A,B两点之间运动时(如图甲),
MN=MP+NP= AP+ BP= AB=5;
1
1
1
2
2
2
②当点P在点A的左侧运动时(如图乙),
MN=NP-MP= 1 BP- 1 AP= 1 AB=5. 综上所述,线段M2N的长度2 不发生2变化,其值为5.
4.知识是用来为人类服务的,我们应该把它们用于 有意义的方面.下面就两个情景作出评判.
情景一:如图①,从教学楼到图书馆,总有少数 同学不走人行道而横穿草坪,这是为什么呢?试 用所学数学知识来说明这个问题.
两点之间,线段最短.
情景二:如图②,A,B是河流l两旁的两个村庄, 现要在河边修一个抽水站向两村供水,问抽水站 修在什么地方才能使所需的管道最短?请在图中 表示出抽水站点P的位置,并说明你的理由:
返回
类型 3 线段和差倍分关系中的动点问题
3.如图,线段AB=24,动点P从A出发,以2个单位 长度/s的速度沿射线AB运动,M为AP的中点.
(1)出发多少秒后,PB=2AM?
解:设出发t s后,PB=2AM, 则PA=2t,PB=24-2t,AM=t. 所以24-2t=2t,解得t=6. 即出发6 s后,PB=2AM.
设运动时间为y s. 因为PA=2y,AM=PM=y,
PB=2y-24,PN= 1 PB=y-12, 所以①MN=PM-PN2=y-(y-12)=12,
即MN的长度不变,为定值; ②MA+PN=y+y-12=2y-12, 所以MA+PN的值是变化的. 综上所述,①正确,且MN的长度为12.
返回
(完整版)初一上学期动点问题(含答案)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
数学七年级上册动点问题讲解
数学七年级上册动点问题讲解
动点问题在数学中是一个比较抽象和有趣的话题,特别是在平面几何中。
这种问题通常涉及到一个或多个点在某个特定图形上移动,并要求我们解决与这些移动点相关的问题。
下面我们将深入探讨七年级动点问题的概念、解题方法和技巧。
动点问题的基本概念:
动点问题是指涉及一个或多个点在平面或其他几何形状上移动的问题。
这些点根据某种规则或条件在给定的图形上移动,我们需要解决与这些移动点相关的问题,如距离、速度、加速度等。
解题方法与技巧:
1. 理解问题:首先,我们需要仔细阅读题目,理解问题的要求和条件。
明确哪些点在移动,移动的规则是什么,以及需要解决的具体问题是什么。
2. 设定变量和参数:根据问题的需要,我们可以设定一些变量和参数来表示动点的位置和移动轨迹。
这些变量和参数将帮助我们建立数学模型。
3. 建立数学模型:建立数学模型是解决动点问题的关键步骤。
我们需要使用几何和代数知识来描述动点的移动轨迹,并建立相应的方程或表达式。
4. 求解数学模型:一旦建立了数学模型,我们就可以使用代数、几何或微
积分的方法来求解。
这可能包括求解方程、绘制图形或进行积分运算等。
5. 检查结果:最后,我们需要检查结果是否符合题目的要求和条件。
如果
需要,可以进行调整和改进。
通过掌握以上解题方法与技巧,我们能够更好地理解和解决七年级动点问题。
动点问题不仅能帮助我们巩固平面几何和代数的基础知识,还能培养我们的逻辑思维和问题解决能力。
部编数学七年级上册专题08线段上册动点问题的三种考法(解析版)(人教版)含答案
专题08 线段上动点问题的三种考法类型一、求值问题例.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n ()m n <,点C 在B 的右侧,2AC AB -=.(1)如图1,若多项式()371231m n x x x +--+-是关于x 的二次三项式,请直接写出m ,n 的值:(2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m ,n 的式子表示);②若24AD BD +=,试求线段AB 的长.【答案】(1)5m =-,1n =;(2)不变化,理由见解析;(3)①12m n ++;②103【解析】(1)解:由题可知,n -1=0,7+m =2,∴1n =,5m =-故答案为:5m =-,1n =(2)解:MN 的长不发生变化,理由如下:由题意,得点C 表示的数为3,设点E 表示的数为x ,则点F 表示的数为1x +∴6AB = ,2BC = ,5AE x =+ ,6AF x =+ ,3EC x =- ,BF x =-,∵点M 是EC 的中点,N 是BF 的中点∴32x MC ME -==,2x NF -=,即311222x x MN ME EF FN --=--=--=(3)解:①∵A ,B 表示的数分别为m ,n ()m n <又点C 在B 的右侧,∴AB =n -m∵2AC AB -=,∴AC = n -m +2∵点D 是AC 的中点,∴AD =12AC = 12(n -m +2)∴D 表示的数为:m + 12(n -m +2)=12m n ++②依题意,点C 表示的数分别为2n +∴AB n m =-,1122m n n m AD m +-=+-=+∴1122m n m n BD n +-=+-=+,22122m n BD m n -=+=-+∵24AD BD +=,即1242n m m n -++-+=当20m n -+>时.()1242n m m n -++-+=,2m n -=∵m n <,∴2m n -=不符合题意,舍去当20m n -+<时.()1242n m m n -+--+=,103n m -=综上所述,线段AB 的长为103.【变式训练1】如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB =15cm .动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设移动的时间为t (s ),当t =__s 时,Q 为A ,P 的“巧点”.【答案】是 7.5或457【解析】(1)若线段中点为C点,AB=2AC,所以中点是这条线段“巧点”(2)设A点为数轴原点,作数轴,设运动时间为t秒;t最大=7.5,A:0,P:0+2t=2t,Q:15﹣t,①Q为AP中点,20152tt+-=,∴t=7.5;②AQ=2PQ,AQ=15﹣t﹣0=15﹣t,PQ=2t﹣(15﹣t)=3t﹣15,∵AQ=2PQ,∴15﹣t=2(3t﹣15),∴457t=;③PQ=2AQ,得3t﹣15=2(15﹣t),∴t=9>7.5(舍去).综上所述:t=7.5或45 7.故答案为:(1)是;(2)7.5或45 7.【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm ∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13 BM故答案为:13.(3)解:由(2)可得:∵BM =AB ﹣AM ∴AB ﹣AM =3AM ,∴AM =14AB ,①当点N 在线段AB 上时,如图∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =14AB ,∴MN =12AB ,即2MN 3AB =13.②当点N 在线段AB 的延长线上时,如图∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB ,∴MN AB=1,即2MN 3AB =23.综上所述2MN 3AB =13或23【变式训练3】如图,数轴上有两点,A B ,点C 从原点O 出发,以每秒1cm 的速度在线段OA 上运动,点D 从点B 出发,以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC =,若点M 为直线OA 上一点,且AM BM OM -=,则AB OM的值为_______.【答案】1或53【解析】设运动的时间为t 秒,点M 表示的数为m则OC=t ,BD=4t ,即点C 在数轴上表示的数为-t ,点D 在数轴上表示的数为b-4t ,∴AC=-t-a ,OD=b-4t ,由OD=4AC 得,b-4t=4(-t-a ),即:b=-4a ,①若点M 在点B 的右侧时,如图1所示:由AM-BM=OM 得,m-a-(m-b )=m ,即:m=b-a ;∴=1b a B O mA m M m -==②若点M 在线段BO 上时,如图2所示:由AM-BM=OM 得,m-a-(b-m )=m ,即:m=a+b ;∴=4543b a b a a a m a AB b a a OM ----===+-③若点M 在线段OA 上时,如图3所示:由AM-BM=OM 得,m-a-(b-m )=-m ,即:433a b a a m a +-===-∵此时m <0,a <0,∴此种情况不符合题意舍去;④若点M 在点A 的左侧时,如图4所示:由AM-BM=OM 得,a-m-(b-m )=-m ,即:m=b-a=-5a ;而m <0,b-a >0,因此,不符合题意舍去,综上所述,AB OM 的值为1或53.类型二、证明定值问题例.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=.(1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC -是定值,②PA PB PC+是定值,请选择你认为正确的一个并加以说明.【答案】(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC+=,见解析【解析】(1)由()21260m n -+-=,()212600m n ³--³,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =,所以()()1124118222AM AC AB BC ==+´+==,()()111645222DN BD CD BC ===++=,又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=,当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==,所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=.综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下:因为点D 与点B 重合,所以BC DC =,所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【变式训练1】已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 的左侧,C 在D 的左侧),且m ,n 满足|m -12|+(n -4)2=0.(1)m= ,n= ;(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.【解析】(1)∵|m-12|+(n-4)2=0,∴m-12=0,n-4=0,∴m=12,n=4;故答案为:12;4.(2)由题意,①∵AB=12,CD=4,∵M是线段AC的中点,N是线段BD的中点,∴AM=CM=12AC ,DN=BN=12BD∴MN=CM+CD+DN=12AC +CD+12BD=12AC +12CD+12BD+12CD=12(AC +CD+BD)+12CD=12(AB +CD)=8;②如图,设PA=a,则PC=8+a,PE=10+a,依题意有:81013231a a+++=++,解得:a=2,在整个运动的过程中:BD=2t,BC=4+2t,∵E是线段BC的中点,∴CE= BE=12BC=2+t;Ⅰ.如图1,F,C相遇,即t=2时F,C重合,D,E重合,则FC=0,DE=0,∴FC-5 DE =0;Ⅱ.如图2,F,C相遇前,即t<2时FC =10-5t,DE =BE-BD=2+t-2t=2-t,∴FC-5 DE =10-5t -5(2-t)=0;Ⅲ.如图3,F,C相遇后,即t>2时FC =5t-10,DE = BD - BE=2t –(2+t)= t-2,∴FC-5 DE =5t-10 -5(t-2)=0;综合上述:在整个运动的过程中,FC-5 DE的值为定值,且定值为0.【变式训练2】如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【答案】(1)6;6;(2)不发生改变,MN为定值6,过程见解析【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【变式训练3】(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.【答案】(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析;(2)见解析.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM=12PB .同理:PN= 12AP ..∴MN=PN+PM= 12(PB+AP )= 12AB= 12×4=2.∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a \==12PC PB BC a b \=+=+,2212PA PB a b PC a b ++\==+,所以PA PB PC+的值不变.类型三、数量关系例.数轴上A B 、两点对应的数分别是4,12-,线段CE 在数轴上运动,点C 在点E 的左边,且8,CE =点F是AE 的中点.(1)如图1,当线段CE 运动到点,C E 均在,A B 之间时,若1CF =,则AB =_________,点C 对应的数为________,BE =________;(2)如图2,当线段CE 运动到点A 在C E 、之间时,画出草图并求BE 与CF 的数量关系.【答案】(1)16;2;2;(2)2BE CF =,画图见解析.【解析】(1)Q 数轴上A B 、两点对应的数分别是4,12-,12(4)16AB \=--=8,1CE CF ==Q 7EF CE CF \=-=Q 点F 是AE 的中点,7AF EF \==,6AC AF CF \=-=6AC AO CO =+=Q ,2CO \=,C \对应的数是2,2BE AB AF EF \=--=故答案为:16;2;2;(2),BE AB AE CF CE EF =-=-Q ,Q 点F 是AE 的中点,2AE EF\=162,8BE AB AE EF CF CE EF EF \=-=-=-=-,2BE CF\=故答案为:(1)16;2;2;(2)2BE CF =,画图见解析.【变式训练1】如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______;(2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE 的值;②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.【答案】(1)13,(2)3,(3)12cm 或24cm .【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=,13AC AB =,故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒,(93)DA t =-cm ,(3)CE t =-cm ,93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【变式训练2】已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB= .【答案】(1)①AD=7;②AD=203或283;(2)1742或116【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴CE=13DE=83或CE=23DE=163,∴CD=163或CD=83,∴AD=AC﹣CD=12﹣163=203或12-83=283;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵32AD ECBE+=,∴0.532x y yx y++=-,∴y=27x,∴CD=1.5x﹣27x=1714x,∴171714342==xCDAB x;当点E在点A的左侧,如图,设BC =x ,则DE =1.5x ,设CE =y ,∴DC =EC +DE =y +1.5x ,∴AD =DC ﹣AC =y +1.5x ﹣2x =y ﹣0.5x ,∵32AD EC BE +=,BE =EC +BC =x +y ,∴0.532y x y x y -+=+,∴y =4x ,∴CD =y +1.5x =4x +1.5x =5.5x ,BD =DC +BC =y +1.5x +x =6.5x ,∴AB =BD ﹣AD =6.5x ﹣y +0.5x =6.5x ﹣4x +0.5x =3x ,∴ 5.51136==CD x AB x ,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.故答案为:1742或116.课后作业1.已知有理数a ,b ,c 在数轴上对应的点从左到右顺次为A ,B ,C ,其中b 是最小的正整数,a 在最大的负整数左侧1个单位长度,BC=2AB .(1)填空:a= ,b= ,c= (2)点D 从点A 开始,点E 从点B 开始, 点F 从点C 开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F 追上点D 时停止动,设运动时间为t 秒.试问:①当三点开始运动以后,t 为何值时,这三个点中恰好有一点为另外两点的中点?②F 在追上E 点前,是否存在常数k ,使得DF k EF +×的值与它们的运动时间无关,为定值.若存在,请求出k 和这个定值;若不存在,请说明理由.【答案】(1)-2,1,7;(2)①t=1或t=52;②k=-1【解析】(1)∵最小正数为1.最大的负整数为小-1,a 在最大的负整数左侧1个单位长度∴点A 表示的数a 为-1-1=-2,点B 表示的数b 为1,∴AB=1-(-2)=3∵223=6BC AB ==´,∴点C 表示的数为c=1+6=7,故答案为:-2,1,7;(2)①依题意,点F 的运动距离为4t ,点D 、E 运动的距离为t,∴点D 、E 、F 分别表示的数为-2-t ,1-t , 7-4t,当点F 追上点D 时,必将超过点B ,∴存在两种情况,即DE=EF 和DF=EF ,如图,当DE=EF ,即E 为DF 的中点时,()21=274t t t ----+,解得,t=1,如图,当EF=DF ,即F 为DE 中点时,()74=21t t t ---+-2,解得t=52,综上所述,当t=1秒和t=52时,满足题意.②存在,理由:点D 、E 、F 分别表示的数为-2-t ,1-t ,7-4t,如图,F 在追上E 点前, ()74-2=93DF t t t =----,()74-1=63EF t t t =---,()()93639633DF k EF t k t k k t +×=-+-=+-+,当DF k EF +×与t 无关时,需满足3+3k=0,即k=-1时,满足条件.故答案为:(1)-2,1,7;(2)①t=1或t=52;②k=-12.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.【答案】(1)7;(2)3或5【解析】(1)2AC BC =,18AB =,6BC \=,12AC =,如图1,E Q 为BC 中点,3CE BE \==,8DE =Q ,∴8311BD DE BE =+=+=,∴18117AD AB DB =-=-=,(2)Ⅰ、当点E 在点F 的左侧,如图2,或∵3CE EF +=,6BC =,\点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==,∵3CE EF +=,故图2(b )这种情况求不出;Ⅱ、如图3,当点E 在点F 的右侧,或12AC =Q ,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,3AD \=.∵3CE EF +=,故图3(b )这种情况求不出;综上所述:AD 的长为3或5.3.已知线段AB ,点C 在直线AB 上,D 为线段BC 的中点.(1)若8AB =,2AC =,求线段CD 的长.(2)若点E 是线段AC 的中点,请写出线段DE 和AB 的数量关系并说明理由.【答案】(1)3或5(2)2AB DE =,理由见解析【解析】(1)解:如图1,当C 在点A 右侧时,∵8AB =,2AC =,∴6C AB C B A =-=,∵D 是线段BC 的中点,:∴132CD BC ==;如图2,当C 在点A 左侧时,∵8AB =,2AC =,∴10BC AB AC =+=,∵D 是线段BC 的中点,∴152CD BC ==;综上所述,3CD =或5;(2)解:2AB DE =.理由是:如图3,当C 在点A 和点B 之间时,∵E 是AC 的中点,D 是BC 的中点,∴2AC EC =,2BC CD =,∴222AB AC BC EC CD DE =+=+=;如图4,当C 在点A 左侧时,同理可得:()2222AB BC AC CD CE CD CE DE =-=-=-=;如图5,当C 在点B 右侧时,同理可得:()2222AB AC BC EC CD EC CD DE =-=-=-=.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13BM,故答案为:13.(3)解:由(2)可得:∵BM=AB﹣AM,∴AB﹣AM=3AM,∴AM=14 AB,①当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=14AB,∴MN=12AB,即2MN3AB=13.②当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,,∴MNAB=1,即2MN3AB=23.综上所述2MN3AB=13或235.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ________,b =________,c =________.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13PA PB PC ++=,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.【答案】(1)3-,1-,9;(2)13x =或1x =或53x =或233x =;(3)167t =,1,2617,8,12【详解】解:(1)∵b 是最大的负整数,且a ,c 满足()2390a c ++-=,∴b=-1,a+3=0,c-9=0,∴a=-3,c=9.故答案为:-3;-1;9.(2)由题意知,此过程中,当点P 在AB 上时.∴PA+PB=AB=b-a=-1-(-3)=2.∴()13-=13-2=11PC PA PB =+.又∵BC=c-b=9-(-1)=10.∴PB=PC-BC=11-10=1.当P 从B 到A 时,如图所示:∵PB=1,可以列方程为:3x=1,解得:x=1;当P 从A 到C 时,分两种情况讨论:①当P 在线段AB 之间时,如图所示:可以列方程为:3x=3,解得:x=1,②当P 在线段BC 之间时,如图所示:∵PA+PB+PC=13,AB=2,BC=10,∵PB+PC=10∴PA=13-10=3,∴PB=PA-AB=3-2=1,可列方程为:3x=5,解得:53x =.当P 从C 到B 时,如图所示:可列方程为:3x=23,解得:233x =.综上所述,13x =或1x =或53x =或233x =.(3)当点从为PN 中点时,当0<t<23时,点P 向A 运动,.此时,P=-1-3t ,M=-3+4t ,N=9-5t .(-1-3t )+(9-5t )=2(-3+4t ),解得t=78(舍去).当23≤t≤43时,点P 从A 返回向B 运动.此时,P=-3+3(t-23)=3t-5.3t-5+9-5t=2(-3+4t ),解得t=1.当P 为MN 中点时,t>43.(9-5t )+(-3+4t )=2(3t-5),解得t=167 .当点N 为PM 中点时,t>43.(-3+4t )+(3t-5)=2(9-5t ),解得t=2617.综上所述,t 的值为1, 167或2617.6.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考. (1)发现:如图1,线段12AB =,点,,C E F 在线段AB 上,当点,E F 是线段AC 和线段BC 的中点时,线段EF 的长为_________;若点C 在线段AB 的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF 与线段AB 之间的数量关系为_________.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB ,其左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF . 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF ,请你尝试着“复原”他们的做法:①在图中标出点E 、点F 的位置,并简述画图方法;②请说明①题中所标示,E F 点的理由.【答案】(1)6;补图见解析,12EF AB (2)①见解析(答案不唯一)②见解析.【详解】解:(1)点,,C E F 在线段AB 上时,因为点E 是线段AC 的中点,所以CE=12AC ,因为点F 是线段BC 的中点,所以CF=12BC ,所以EF=CE+CF=12AC+12BC=12AB ,又AB=12,所以EF=6.当点C 在线段AB 的延长线上时,如图2,此时,EF=EC-FC ═12AC-12BC=12AB.答案为:6;EF=12AB.(2)①图3如图,在CD 上取一点M ,使CM CA =,F 为BM 的中点,点E 与点C 重合. (答案不唯一)②因为F 为BM 的中点,所以MF BF =.因为,AB AC CM MF BF CM CA =+++=,所以222()2AB CM MF CM MF EF =+=+=.因为40AB =米,所以20EF =米.因为20AC BD +<米,40AB AC BD CD =++=米,所以20CD >米.因为点E 与点C 重合,20EF =米,所以20CF =米,所以点F 落在线段CD 上.所以EF 满足条件.7.问题背景整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析,把握它们之间的关联,进行有目的、有意识的整体处理,整体思想在代数和几何中都有很广泛的应用.(1)如图1,A 、B 、O 三点在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,则∠DOE 的度数为 (直接写出答案).(2)当x =1时,代数式a 3x +bx +2021的值为2020,当x =﹣1时,求代数式a 3x +bx +2021的值.(3)①如图2,点C 是线段AB 上一定点,点D 从点A 、点E 从点B 同时出发分别沿直线AB 向左、向右匀速运动,若点E 的运动速度是点D 运动速度的3倍,且整个运动过程中始终满足CE =3CD ,求AC AB 的值;②如图3,在①的条件下,若点E 沿直线AB 向左运动,其它条件均不变.在点D 、E 运动过程中,点P 、Q 分别是AE 、CE 的中点,若运动到某一时刻,恰好CE =4PQ ,求此时AD AB的值.【答案】(1)90°;(2)2022;(3)①14;②112或512【解析】(1)解:如图1,∵射线OD 和射线OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠COE =12∠BOC ,∵∠DOE =∠DOC +∠COE ,∴∠DOE =12∠AOC +12∠BOC =12(∠AOC +∠BOC ),∵∠AOC +∠BOC =180°,∴∠DOE =12×180°=90°,故答案为:90°.(2)∵当x =1时,代数式a 3x +bx +2021的值为2020,∴a +b +2021=2020,∴a +b =-1,∴-a -b =1,当x =﹣1时,a 3x +bx +2021= -a -b +2021=1+2021=2022.(3)①如图2,设点D 运动的路程为x ,则点E 运动的路程为3x ,∴CE =BC +BE =BC +3x ,CD =CA +AD =CA +x ,∵CE =3CD ,∴BC +3x = 3CA +3x ,∴CB =3AC ,∴AB =CB +AC =4AC ,∴AC AB =14.②根据①,设AC =m ,则CB =3m ,AB =4m ,设点D 运动的路程为AD =x ,则点E 运动的路程为EB =3x ,当点E 在C 点的右侧时,如图3,∴CE =BC -BE =3m -3x ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE -QE =12AE -12CE =11()222m AE CE AC -==,∵CE =4PQ ,∴3m -3x =4×2m ,解得x =3m ,故AD =3m ,∴AD AB =13412m m =.当点E 在C 点的左侧,且在点A 的右侧时,如图4,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =53412m m =.当点E 在A 点的左侧时,如图5,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =553412m m =.综上所述,AD AB 的值为112或512.8.已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空)(4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MN AB的值.【答案】(1)2,4;(2)6 cm ;(3)4;(4)13MN AB =或1.【详解】(1)根据题意知,CM =2cm ,BD =4cm ,∵AB =12cm ,AM =4cm ,∴BM =8cm ,∴AC =AM ﹣CM =2cm ,DM =BM ﹣BD =4cm ,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2 s 时,CM =2 cm ,BD =4 cm∵AB =12 cm ,CM =2 cm ,BD =4 cm∴AC +MD =AM ﹣CM +BM ﹣BD =AB ﹣CM ﹣BD =12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD =2MC ,∵MD =2AC ,∴BD +MD =2(MC +AC ),即MB =2AM ,∵AM +BM =AB ,∴AM +2AM =AB ,∴AM =13AB =4,故答案为:4;(4)①当点N 在线段AB 上时,如图1,∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =4∴MN =AB ﹣AM ﹣BN =12﹣4﹣4=4,∴13MN AB =;②当点N 在线段AB 的延长线上时,如图2,∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB =12,∴1MN AB=;综上所述13MN AB =或1故答案为13MN AB =或1.9.如图,数轴正半轴上的A ,B 两点分别表示有理数a ,b ,O 为原点,若3a =,线段5OB OA =.(1)=a ______,b =______;(2)若点P 从点A 出发,以每秒2个单位长度向x 轴正半轴运动,求运动时间为多少时;点P 到点A 的距离是点P 到点B 距离的3倍;(3)数轴上还有一点C 表示的数为32,若点P 和点Q 同时从点A 和点B 出发,分别以每秒2个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4.【答案】(1)3a =,15b =;(2)9或92;(3)8或503【详解】解:(1)∵数轴正半轴上的A ,B 两点分别表示有理数a ,b ,|a|=3,线段OB=5OA ,∴a=3,b=15,故答案为:3,15;(2)设运动时间为t 秒时,点P 到点A 的距离是点P 到点B 距离的3倍.由题意得:AB=15-3=12,当点P 在A 、B 之间时,有2t=3(12-2t ),解得:t=92;当点P 在B 的右边时,有2t=3(2t-12),解得t=9;即运动时间为92或9秒时,点P 到点A 的距离是点P 到点B 的距离的3倍;(3)根据题意,由点C 为32,则AC=32-3=29,BC=32-15=17,∴点P 运动到点C 所需要的时间为:2914.52t ==秒,点Q 运动到点C 所需要的时间为:17171t ==秒,则可分为两种情况进行分析:①当点P 还没有追上点Q 时,有:1224t t +-=,解得:8t =;②当点P 运动到点C 返回时,与点Q 相遇后,与点Q 相距4,则有:2124292t t ++-=´,解得:503t =.10.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______;(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等.(直接写出答案)【答案】(1)1-;(2)x= 3.5-或1.5;(3)4t 3=分钟或t=2分钟时点P 到点M ,点N 的距离相等.【详解】解:(1)∵M ,O ,N 对应的数分别为-3,0,1,点P 到点M ,点N 的距离相等,∴x 的值是1-.故答案为1-;(2)存在符合题意的点P ;∵点M为-3,点N为1,则点P分为两种情况,①点P在N点右侧,则(1)(3)5x x-++=,解得: 1.5x=;②点P在M点左侧,则(3)(1)5x x--+-=,解得: 3.5x=-;∴ 3.5 1.5x=-或=.(3)设运动t分钟时,点P对应的数是-3t,点M对应的数是-3-t,点N对应的数是1-4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以:-3-t=1-4t,解得t=43,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=-3t-(-3-t)=3-2t.PN=(1-4t)-(-3t)=1-t.因为PM=PN,所以3-2t=1-t,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=3t-t-3=2t-3.PN=-3t-(1-4t)=t-1.因为PM=PN,所以2t-3=t-1,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,符合题意.综上所述,三点同时出发,43分钟或2分钟时点P到点M,点N的距离相等.11.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13AB,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112 AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.。
七年级上册数学动点问题压轴题
七年级上册数学动点问题压轴题一、数轴上的动点问题。
1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P到点A、点B的距离相等,求点P对应的数。
解析:因为点P到点A、点B的距离相等,所以PA = PB。
根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。
当x≥3时,x + 1=x 3,方程无解。
当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。
当x≤-1时,-(x + 1)=-(x 3),方程无解。
所以点P对应的数为1。
(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。
解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。
当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。
当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。
当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。
所以存在点P,x=(7)/(2)或x =-(3)/(2)。
2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。
(1)若点P到点A、点B的距离之和为5,求x的值。
解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。
当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。
当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。
当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。
初一数学上册数轴动点问题
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
七年级上册数学人教版动点问题讲解
七年级上册数学人教版动点问题讲解一、动点问题的定义在数学中,动点问题是指随着时间变化而变化的点的位置。
在七年级上册数学人教版中,动点问题是一个非常基础但重要的概念,它为我们理解和应用数学知识提供了重要的基础。
动点问题可以涉及到直线运动、曲线运动、加速度、速度、位移等概念,通过动点问题的学习可以帮助我们更好地理解数学知识,并且应用到日常生活和实际问题中去。
二、动点问题的分类在七年级上册数学人教版中,动点问题主要可以分为直线运动和曲线运动两大类。
直线运动是指点按直线运动的情况,可以包括匀速直线运动和变速直线运动。
而曲线运动则指的是点按曲线运动的情况,比如圆周运动、抛物线运动等。
这两类动点问题都有各自的特点和解题方法,我们需要根据具体的情况来进行分析和解题。
三、直线运动问题的讲解在数学教材中,我们经常会遇到直线运动的相关问题。
一个小车以20米/秒的速度匀速行驶,那么在5秒钟内它会走多远?又或者,一个物体以2米/秒^2的加速度做匀速直线运动,那么经过3秒钟它的速度是多少?这类问题都属于直线运动问题,我们可以通过公式和图像来解决这类问题。
四、曲线运动问题的讲解和直线运动类似,曲线运动问题也是数学教材中的重要内容。
一个物体以一定的初速度和加速度做抛物线运动,那么在t秒钟内它的位移是多少?对于这类问题,我们需要运用抛物线运动的公式来进行求解,同时也需要理解抛物线运动的特点和规律。
五、动点问题的实际应用除了在数学教材中学习动点问题的知识,动点问题在现实生活中也有着广泛的应用。
我们可以通过动点问题来分析汽车的行驶路线和速度、投放飞行物体的轨迹和速度、天体的运动规律等。
动点问题的学习不仅可以帮助我们提高数学解题的能力,也可以为我们理解和解释现实世界中的一系列现象提供重要的数学工具。
六、个人观点和理解在学习七年级上册数学人教版中的动点问题时,我深深感受到了动点问题的重要性和应用价值。
通过学习动点问题,我不仅提高了对数学知识的理解和掌握,也培养了解决实际问题的能力。
初一上册动点问题解题技巧和方法
初一上册动点问题解题技巧和方法一、认识动点问题1. 动点问题的定义:动点问题是指一个或多个移动的物体在一定时间内的位置或状态随时间的变化而变化的问题。
2. 动点问题的特点:动点问题是数学中常见的实际应用问题,如汽车追击、人员追赶、两船相遇等。
3. 动点问题的分类:动点问题可以分为直线运动、曲线运动等不同类型,需要根据具体情况进行分类分析。
二、动点问题解题技巧1. 建立坐标系:对于动点问题,通常需要建立适当的坐标系,以便于描述物体的位置或状态。
2. 表达运动关系:根据动点的运动特点,可以利用数学语言表达出动点之间的运动关系,如速度、加速度等。
3. 列方程解题:对于动点问题,可以根据物体的运动规律列出方程,并利用代数或几何方法解决问题。
4. 综合运用知识:在解决动点问题时,还需要综合运用数学知识,如直线方程、两点距离、速度、加速度等相关知识。
三、动点问题解题方法1. 变量法:采用变量表示动点的位置或状态,然后利用变量之间的关系式解决问题。
2. 几何法:利用几何图形描述动点的位置或路径,通过几何关系求解动点问题。
3. 代数法:通过列方程、解方程的方法来解决动点问题。
4. 几何与代数结合法:同时运用几何和代数的方法,综合利用数学知识解决问题。
在学习初一上册动点问题时,我们要牢固掌握动点问题的基本概念和特点,掌握解题的基本技巧和方法,通过大量的练习和实际应用,提高解决动点问题的能力,为今后更深入的数学学习打下坚实的基础。
对于初一上册的动点问题,我们需要深入理解并掌握相关的解题技巧和方法。
以下将结合具体实例,进一步探讨动点问题的解题过程以及常见的解题思路。
一、动点问题的实际应用动点问题是数学与实际生活密切相关的一个领域,例如:汽车行驶、人员追逐、飞机飞行等。
通过动点问题的学习,我们可以更好地理解和应用数学知识于实际场景中。
1. 汽车行驶问题:假设有两辆汽车分别以不同的速度出发,我们需要计算它们相遇的时间和地点,这就是一个常见的动点问题。
七年级上期末动点问题专题(附答案)
七年级上册期末数学动点问题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= _________ ;PB= _________ (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________ ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________ ,点P表示的数_________ 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________ ,点P表示的数_________ (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= |x+1| ;PB= |x﹣3| (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1 ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。
七年级上册数学数轴动点问题
七年级上册数学数轴动点问题一、数轴动点问题题目。
1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。
设运动时间为t秒。
- 当t = 2时,求PQ的长度。
- 当PQ = (1)/(2)AB时,求t的值。
- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。
解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。
- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。
- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。
- 若点P到点A、点B的距离相等,求x的值。
- 若PA + PB = PC,求x的值。
- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。
当点M与点N之间的距离为1个单位长度时,求t的值。
解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。
七年级上册动点问题题型
七年级上册动点问题题型动点问题是七年级上册数学的一个重要题型,主要涉及到距离、速度和时间的关系。
在这个问题中,需要根据已知的条件确定未知的量。
动点问题是培养学生逻辑推理能力和解决实际问题的能力的一种重要方法。
动点问题通常分为两种情况:静止动点和匀速直线运动的动点。
在解决动点问题时,需要考虑到初速度、加速度和时间等因素。
下面我将分别给出这两种情况的解题方法和例题。
一、静止动点问题静止动点问题是指一个物体在静止状态下移动,我们需要根据已知的条件求解未知的量。
静止动点问题首先要明确已知和未知的量,然后根据已知条件进行求解。
在求解过程中,我们可以使用一些代数方法来帮助我们解题。
例1:甲、乙两车从相距240公里的两地同时出发,甲车先行10小时到达乙车所在地,乙车行7小时后才到达甲车所在地。
求甲、乙两车的速度。
解:设甲车的速度为v1,乙车的速度为v2,甲车行驶的时间为t,乙车行驶的时间为t+10。
根据速度=距离/时间的公式,甲、乙车的速度可以表示为v1 = 240/tv2 = 240/(t+10)由于甲车先行10小时到达乙车所在地,所以甲车的总行驶时间为t+10小时。
乙车行驶了7小时才到达甲车所在地,所以乙车的总行驶时间为t+7小时。
根据速度=距离/时间的公式,甲、乙车的速度又可以表示为v1 = 240/(t+10)v2 = 240/(t+7)由于甲车、乙车的速度是相等的,所以有以下等式成立:240/t = 240/(t+10)240/(t+10) = 240/(t+7)解这个方程组,可以得到甲车的速度为v1=24 km/h,乙车的速度为v2=30 km/h。
二、匀速直线运动的动点问题匀速直线运动的动点问题是指一个物体在匀速直线运动的状态下移动,我们需要根据已知的条件求解未知的量。
匀速直线运动的动点问题中,我们主要关注的是物体的均速、距离和时间的关系。
在解决这种问题时,我们可以使用速度=距离/时间的公式。
例2:一辆汽车以每小时60公里的速度匀速直线行驶,行驶8小时后,汽车行驶的距离是多少?解:根据速度=距离/时间的公式,可以得到距离=速度×时间。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
七年级上册数学数轴上的动点问题
七年级上册数学数轴上的动点问题一、引言在七年级上册的数学课程中,数轴上的动点问题是一个非常基础但又非常重要的概念。
通过对动点问题的深入理解,我们不仅可以更好地掌握数轴的运用,还可以在日常生活中更加灵活地处理数值大小、方向和位置等概念。
本文将从简单到复杂,由浅入深地探讨数轴上的动点问题,帮助大家更好地理解这一概念。
二、数轴上的动点基础概念让我们回顾一下数轴的基本概念。
数轴是一条直线,上面标有零点和正负数,用于表示数的大小和方向。
在数轴上,动点通常用字母表示,比如点A、B等。
当动点在数轴上运动时,它的位置可以用具体的数值来表示,这个数值就是点的坐标。
点A的坐标为3,表示点A在数轴上的位置距离原点为3。
通过数轴上的动点问题,我们可以通过具体的数值来描述动点的位置和运动情况。
三、数轴上的动点运动方式在数轴上,动点可以以不同的方式进行运动。
最常见的是匀速直线运动,即动点以相同的速度朝着同一个方向匀速运动。
动点还可以进行非匀速直线运动,即其速度随着时间的变化而变化。
另外,在数轴上的动点问题中,我们还需要考虑到动点的加速度、减速度以及可能的反方向运动等情况。
通过对不同运动方式的理解,我们可以更好地把握动点在数轴上的位置和运动变化情况。
四、数轴上的动点问题实例分析接下来,我将通过一个实例来具体说明数轴上的动点问题。
假设点A在数轴上以匀速直线运动,初始位置为-2,速度为2单位/秒。
我们可以通过列出表格、画出图像等方式来描述点A在数轴上的运动情况。
通过这个实例,我们可以更好地理解动点在数轴上的运动规律,并通过计算和分析来掌握动点的位置随时间的变化。
五、数轴上的动点问题拓展应用除了基础的运动方式外,数轴上的动点问题还可以拓展到更多的实际应用中。
在物理学中,动点在数轴上的运动可以用来描述物体的位移、速度和加速度等概念。
在经济学中,动点在数轴上的运动可以用来表示货币的价值变化等情况。
通过对数轴上的动点问题的深入理解,我们不仅可以更好地掌握数学知识,还可以将其应用到更多的实际场景中。
七年级上册数学动点问题
七年级上册数学动点问题
动点问题是指在几何图形中,点的坐标发生变化时,研究图形的变化规律的问题。
在七年级上册数学中,动点问题主要包括以下几种类型:
1. 动点轨迹问题:当一个点在平面内按照一定的规律移动时,求这个点的轨迹。
例如,已知点A(x, y)在直线y = kx + b上移动,求点A的轨迹。
2. 动点距离问题:当一个点在平面内按照一定的规律移动时,求这个点到另一个固定点的距离。
例如,已知点A(x, y)在直线y = kx + b上移动,求点A到定点P(a, b)的距离。
3. 动点面积问题:当一个点在平面内按照一定的规律移动时,求这个点与另一个固定点围成的图形的面积。
例如,已知点A(x, y)在直线y = kx + b上移动,求点A与定点P(a, b)围成的三角形的面积。
4. 动点角度问题:当一个点在平面内按照一定的规律移动时,求这个点与另一个固定点连线与某个方向的夹角。
例如,已知点A(x, y)在直线y = kx + b上移动,求点A与定点P(a, b)连线与x轴的夹角。
5. 动点对称问题:当一个点在平面内按照一定的规律移动时,求这个点关于某个固定点的对称点的坐标。
例如,已知点A(x, y)在直线y = kx + b上移动,求点A关于定点P(a, b)的对称点的
坐标。
解决动点问题的关键是找出动点的坐标变化规律,然后根据题目要求求解相应的几何量。
在解题过程中,要注意运用所学的几何知识,如平行线、垂直线、相似三角形等性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上册)动点问题1、如图,有一数轴原点为O,点A所对应的数是-112,点A 沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B 所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P 到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A 与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n 处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
7、已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?8、如图1,已知数轴上有三点A、B、C,AB=12AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,32QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由.9、数轴上点A对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C 点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停在点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E 点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是xA、xE、xF、xB,当运动时间t不超过1秒时,则下列结论:①|xA-xE|+|xE-xF|-|xF-xB|不变;②|xA-xE|-|xE-xF|+|xF-xB|不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.10、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0、5个单位的速度向左运动,点B以每秒1、5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________ 秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.11、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.12、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P 从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 OB-AP/EF的值.13、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?14、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.15、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA 向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM 上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求 MNAB的值.16、如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB 上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求 PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有 CD=12AB,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;② MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.17、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B 左侧,C在D左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC是定值;② PA+PBPC是定值,请选择正确的一个并加以证明.18、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.19、在长方形ABCD中,AB=CD=10cm、BC=AD=8cm,动点P从A 点出发,沿A⇒B⇒C⇒D路线运动到D停止;动点Q从D出发,沿D⇒C⇒B⇒A路线运动到A停止;若P、Q同时出发,点P速度为1cm∕s,点Q速度为2cm∕s,6s后P、Q同时改变速度,点P速度变为2cm∕s,点Q速度变为1cm∕s.(1)问P点出发几秒后,P、Q两点相遇?(2)当Q点出发几秒时,点P点Q在运动路线上相距的路程为25cm?20、如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.(1)若线段AB=10cm,求线段AC和线段DE 的长度;(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.。