结构设计原理辅导资料
结构设计原理复习资料
二.填空题:1.我国钢材按化学成分可以分为、普通低合金钢两大类。
2.在钢筋混凝土构件中钢筋的作用是替混凝土受拉和。
3.混凝土的强度指标有混凝土的立方体强度、和混凝土轴心抗压强度。
4.混凝土的变形可分为受力变形和。
5.钢筋被混凝土包住,可以保护钢筋免于生锈,保证结构的。
6.公路桥涵设计中所采用的荷载有永久荷载、可变荷载和。
7.当永久作用的效应对结构安全不利时,其作用分项系数取。
8.当结构的状态函数Z服从正态分布时,其可靠指标与Z的成正比。
9.容许应力是以平截面和的假定为基础。
10.近几十年来钢筋混凝土结构计算理论的发展,主要是由容许应力法向发展。
11.钢筋混凝土受弯构件常用的截面形式有矩形、和T形等。
12.钢筋混凝土板可分为整体现浇板和。
13.混凝土保护层是具有足够厚度的混凝土层,它是取钢筋边缘至构件截面表面之间的。
14.肋板式桥的桥面板可分为周边支承板和。
15.梁内的钢筋常常采用骨架形式,一般分为绑扎钢筋骨架和两种形式。
16.为了避免少筋梁破坏,必须确定钢筋混凝土受弯构件的。
17.受弯构件在荷载作用下,各截面上除产生弯矩外,一般同时还有。
18.把配有纵向受力钢筋和腹筋的梁称为。
19.在矩形截面梁中,主拉应力的数值是沿着某一条主拉应力轨迹线逐步增大的。
20.随着剪跨比的变化,无腹筋简支梁沿斜截面破坏的主要形态有斜拉破坏、斜压破坏和。
21.当主拉应力超过混凝土的抗拉强度时,构件便会。
22.钢筋混凝土构件抗扭性能有两个重要衡量指标,它们分别是构件的开裂扭矩和构件的。
23.根据抗扭配筋率的多少,钢筋混凝土矩形截面受扭构件的破坏形态一般可分为少筋破坏、、超筋破坏和部分超筋破坏。
24.在纯扭作用下,构件的裂缝总是与构件纵轴成方向发展。
25.扭矩和抗扭刚度的大小在很大程度上取决于的数量。
26.普通箍筋的作用是防止纵向钢筋,并与纵向钢筋形成钢筋骨架,便于施工。
27.轴压柱中,螺旋箍筋的作用是使截面中间部分混凝土成为,从而提高构件的承载力和延性。
结构设计原理教案
结构设计原理教案教案标题:结构设计原理教案教案目标:- 理解结构设计原理的基本概念和重要性。
- 掌握结构设计原理的基本原则和方法。
- 能够应用结构设计原理解决实际问题。
教案内容:一、引入(5分钟)1. 引发学生对结构设计原理的兴趣,例如通过展示一些著名建筑物的图片或视频,让学生猜测其结构设计原理。
2. 引导学生思考:为什么结构设计原理对建筑物的稳定性和安全性至关重要?二、讲解结构设计原理的基本概念(15分钟)1. 解释结构设计原理的定义和作用,强调其在建筑、桥梁等工程中的重要性。
2. 介绍结构设计原理的基本分类,如静力学、动力学等,并解释各分类的特点和应用领域。
三、介绍结构设计原理的基本原则(20分钟)1. 静力学原理:讲解平衡条件、受力分析等基本原理,以及如何应用这些原理进行结构设计。
2. 动力学原理:介绍结构的自振频率、阻尼等概念,以及如何考虑这些因素进行结构设计。
四、探讨结构设计原理的应用案例(15分钟)1. 分组讨论:学生分成小组,针对不同类型的建筑物或结构,讨论如何应用结构设计原理解决实际问题。
2. 小组展示:每个小组选择一个案例进行展示,并分享他们的设计思路和解决方案。
五、总结与评价(5分钟)1. 总结结构设计原理的重要性和应用方法。
2. 提供反馈和评价,鼓励学生对结构设计原理的进一步学习和探索。
教案扩展:- 针对高年级学生或对结构设计感兴趣的学生,可以引导他们进行更复杂的结构设计实践,如设计一个小型桥梁或塔楼,并要求他们考虑结构设计原理。
- 鼓励学生进行实地考察,参观一些著名建筑物或桥梁,观察并分析其结构设计原理的应用。
- 引导学生进行结构设计原理的研究项目,可以选择一个特定的结构问题,深入研究并提出创新的解决方案。
教案评估:- 学生参与度:观察学生在课堂讨论和小组活动中的积极参与程度。
- 小组展示:评估学生对结构设计原理的理解和应用能力。
- 反馈问答:提问学生关于结构设计原理的问题,评估他们对教学内容的掌握程度。
工程结构设计原理讲义(史上最全面)
第三讲:计算原则(3/28) 一、结构上的作用(2/5)
2、作用的分类 (1)按照随时间的变异性分类 永久作用:不随时间变化,或变化幅度可以忽略; 可变作用:随时间变化,且变化幅度不可以忽略; 偶然作用:可能,但不一定出现,一旦出现效应很大。 (2)按照随位置的变异性分类 固定作用:在结构空间位置上具有固定的分布; 可动作用:在结构空间位置一定范围内可以任意分布。 (3)按照结构的反应分类: 静态作用:对结构不产生动力效应,或小的可以忽略; 动态作用:对结构产生动力效应,且不可以忽略。
第四讲:计算原则(10/28) 三、结构功能和极限状态(2/2)
2、极限状态 (1)定义:极限状态是判别结构是否能够满足其功能要求的 标准,指结构或结构一部分处于失效边缘的状态。 (2)分类: 承载能力极限状态 是判别结构是否满足安全性要求的标准,指结构或结构 构件达到最大承载能力或不适于继续加载的变形。 正常使用极限状态: 是判别结构是否满足正常使用和耐久性要求的标准, 指结构或构件达到正常使用或耐久性的某些规定限值。
第二讲:绪论(11/12) 四、砌体结构 (1/1)
1、砌体结构的组成 砌体结构是用砖、石或砌块, 用砂浆等胶结材料砌筑的结构。 2、优缺点 优 点:耐久性好; 耐火性好; 就地取材; 施工技术要求低; 造价低廉。 缺 点: 强度低,砂浆与砖石之间的粘接力较弱; 自重大;砌筑工作量大,劳动强度高。 粘土用量大,不利于持续发展。 3、现状与发展
第三讲:计算原则(5/28) 一、结构上的作用(4/5)
4 荷载的代表值 (1)实质:以确定值(代表值)表达不确定的随机变量, 便于设计时,定量描述和运算。 (2) 取值原则:根据荷载概率分布特征, 控制保证率。
f(Q)
σ
结构设计原理复习资料
结构设计原理复习资料结构设计原理复习资料结构设计原理是建筑学习中的重要内容之一,它涉及到建筑物的稳定性、强度、刚度等方面的问题。
在建筑设计中,结构设计是至关重要的一环,它直接关系到建筑物的安全性和使用寿命。
本文将从结构设计原理的基本概念、材料力学、结构分析等方面进行复习。
一、结构设计原理的基本概念结构设计原理是指建筑物在承受外力作用下,通过合理的结构形式和材料选择,使建筑物能够保持稳定的力学平衡状态,并满足使用要求的一系列理论和方法。
在结构设计中,需要考虑建筑物的受力特点、荷载特点、材料特性等因素,以确定合理的结构形式和尺寸。
二、材料力学材料力学是结构设计的基础,它研究材料在受力作用下的力学性能。
常见的材料力学包括静力学、弹性力学和塑性力学等。
在结构设计中,需要根据材料的力学性能,选择合适的材料,并进行材料强度计算,以保证结构的安全性。
三、结构分析结构分析是结构设计的核心内容,它通过数学和力学的方法,对结构的受力、变形等进行计算和分析。
结构分析可以分为静力分析和动力分析两个方面。
静力分析主要研究结构在静力平衡状态下的受力情况,而动力分析则研究结构在动力荷载下的响应。
在结构分析中,常用的方法包括力法、位移法、能量法等。
力法是最常用的一种方法,它通过受力平衡方程和材料力学等基本原理,计算结构的受力情况。
位移法则是通过结构的变形情况,计算结构的受力分布。
能量法则是利用结构的势能和应变能等概念,计算结构的受力和变形。
四、结构设计的优化结构设计的优化是指在满足使用要求的前提下,通过合理的结构形式和材料选择,使结构的成本、重量等指标达到最优。
在结构设计中,需要考虑多种因素,如结构的受力特点、荷载特点、材料特性、施工工艺等,以确定最优的结构方案。
结构设计的优化可以通过数学模型和计算机仿真等方法来实现。
在数学模型中,可以建立结构的优化目标函数,并通过数学优化算法,求解最优解。
在计算机仿真中,可以利用有限元分析等方法,对结构的受力和变形进行计算和分析。
结构设计原理——复习资料
结构设计原理——复习资料1.钢筋混凝土结构有哪些特性?答:钢筋混凝土结构能合理地利用钢筋和混凝土两种材料的特性,具有耐久、耐火、可模性好及易于就地取材等优点。
其缺点是自重大、抗裂差、施工受气候条件影响大,修补或拆除较困难。
2.钢筋与混凝土这两种力学性能不同的材料为什么能有效地结合在一起共同工作?答:钢筋和混凝土这两种力学性能不同的材料之所以能有效地结合在一起而共同工作,主要有以下原因:(1)混凝土硬化后,在混凝上和钢筋之间产生了良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够共同变形,完成其结构功能。
(2)钢筋和混凝土的温度线膨胀系数较为接近(钢筋为1.2×10—5,混凝土为1.0×10—5~1.5×10—5),因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。
(3)混凝土包围在钢筋的外围,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。
3.计算钢筋混凝土结构时,对于有明显流幅的钢筋如何取其设计强度,为什么?对没有明显流幅或屈服点的钢筋如何取其设计强度?答:计算钢筋混凝土结构时,对于有明显流幅的钢筋,取它的屈服强度作为设计强度的依据。
这是因为构件中钢筋的应力到达屈服强度后,将产生很大的塑性变形,这时钢筋混凝土构件将出现很大的变形和不可闭合的裂缝,以致不能使用。
对没有明显流幅或屈服点的钢筋,其比例极限大约相当于极限强度的65%。
在实用上取残余应变为0.2%时的应力(相当于极限强度的80%)作为假定的屈服点,即条件屈服点(又称协定屈服点),以σ0.2表示。
4.钢筋的塑性通常用哪两个指标来衡量,其定义如何,如何表示,有何意义?答:钢筋的塑性通常用伸长率和冷弯性能两个指标来衡量。
钢筋拉断后的伸长值与原长的比值,称为伸长率。
用δ10或δ5表示(δ10和δ5分别表示标距l 1=10d 和l 1=5d 时的伸长率,d 为钢筋直径)。
用公式表示为:%100112⨯-=l l l δ 伸长率越大,则塑性越好。
结构设计原理复习资料
结构设计原理复习资料混凝土强度指标:立方体抗压强度、柱体轴心抗压强度、柱体轴心抗拉强度。
结构作用分:永久、可变、偶然作用。
效应组合:永久作用标准值、可变作用频遇值。
钢混工作阶段:整体工作、带裂缝工作、破坏阶段。
全梁承载能力校核:图解法弯矩包络图承载能力图结构设计三种状况:持久、短暂状况、偶然状况。
螺旋箍筋柱:纵向钢筋和螺旋箍筋。
钢混受弯构件ε>εb时需加大截面尺寸、提高混凝土标号、采用双筋截面。
预应力作用:不开裂、推迟开裂、减小裂缝宽度。
配筋混凝土构件根据预应力度分:钢筋混凝土结构、全预应力混凝土结构、部分预应力混凝土构件。
1..极限状态:整体结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态为该功能的极限状态。
2.徐变:在长期荷载作用下,混凝土的变形将随而增加,即在不变的应力长期持续作用下,混凝土的应变随时间持续增长这种现象被叫做混凝土的徐变。
3、可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。
4、换算截面:将整个截面换算为单一材料组成的混凝土截面,将这种换算后的截面称为换算截面。
5、界限破坏:当钢筋混凝土梁的受拉区钢筋达到屈服应变而开始屈服时,受压区混凝土边缘也同时达到其极限压应变而破坏,此时被称为界限破坏。
6消压弯矩:当构件加载至某一特定荷载,其下边缘混凝土的预压应力σpc恰好被抵消为零,此时控制截面上的弯矩为消压弯矩。
7张拉控制应力:预应力钢筋锚固前张拉钢筋的千斤顶所显示的总拉力除以预应力钢筋截面面积所求得的钢筋应力值。
8、预应力度:由预加应力大小确定的消压弯矩和外荷载产生的弯矩的比值。
9、预应力混凝土概念作用:事先人为的在混凝土或钢筋混凝土中引入内部的力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度配筋混凝土。
作用:提高了结构的抗裂性使构件在使用荷载作用下,不开裂或者推迟开裂或可以减小裂缝宽度。
10.预应力损失:预应力钢筋的预应力随张拉、锚固过程和时间推移而降低的现象。
结构设计原理复习指导
1排架结构的杆件连接方式是屋面横梁与柱顶铰接,柱脚与基础顶面固接。
2框架柱不属于水平构件。
3我国现行结构设计规范采用的设计理论是近似概率极限状态设计法。
4建筑结构必须满足的基本要求是:平衡、稳定、承载力和适用。
5容许应力法由纳维建立,最早出现在材料力学中。
6框架结构中,构件之间采取刚性连接。
7结构设计规范条文用词“必须”表该条要求严格遵守。
8结构设计规范中应该遵守的条文,表示在正常的情况下均应如此,正面用词“应”,反面用词“不应”和“不宜”。
9建筑结构设计基准期是50年。
10桥梁结构设计基准期是100年。
11革命纪念馆结构适用年限为100年。
12结构上的作用分为直接作用和间接作用时,其中前者也成为荷载。
13爆炸力不属于可变荷载的范畴。
14雪荷载属于静力荷载。
15基本风压是以当地比较空阔平坦的地面上离地10米高处统计所得的若干年一遇的10min平均最大风速为标准确定的。
该时间是50年。
16教学楼中的教室的钢筋混凝土梁、板、柱的环境类别为一类。
17钢筋的实际强度保证率是97.7%。
18设计适用年限为50年的房屋结构,其重要性系数不应小于1.0。
19构件因过度变形而不适于继续承载是构件超过极限承载力的极限状态。
20构件超过正常适用极限状态是构件因超过材料的强度而破坏。
21建筑结构设计中,混凝土、砌体的材料强度保证率为95%。
22随机变量X的任意一个取值落入区间[μ-3δ,μ+3δ]概率是99.7%。
23计算基本组合的效应荷载时,由可变荷载应控制的组合中,永久荷载分项系数γg取1.2的情况是在其效应对结构不利时。
24荷载效应的基本组合是指永久荷载效应与可变效应荷载组合。
25混凝土立方体抗压强度标注值是由混凝土试块测得的具有一定的保证率的统计值。
该保证率为95%。
26提高混凝土的密实度和养护湿度可以减小混凝土的徐变。
27评定混凝土强度采用标准试件尺寸,应为150mm*150mm*150mm。
28同一强度混凝土,各种力学指标的关系为fcu>fc>ft。
结构设计原理复习大纲
结构设计原理复习大纲结构设计原理第一章钢筋混凝土结构的概念以及材料的物理力学性能1、钢筋混凝土结构是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构。
2、混凝土的立方体抗压强度是按规定的标准试件试验方法得到的混凝土强度基本代表值(以边长150mm的立方体为标准试件,在20度加减2度的温度和湿度在95%以上的潮湿空气中养护28天进行的)3、混凝土的抗压强度还与试件尺寸有关。
4、混凝土的轴心抗压强度试验是以150*150*300mm的试件为标准试件。
5、混凝土的抗拉强度比抗压强度低的多,在十八分之一之八分之一之间。
6、混凝土的强度指标是抗压强度和抗拉强度。
7、混凝土徐变变形是在持久作用下混凝土随时间推移而增加的应变。
8、影响混凝土徐变的因素:(1)混凝土在长期荷载作用下的应力大小(2)加荷载时混凝土的龄期(3)混凝土的组成成分和配合比(4)养生以及使用条件下的温度与湿度9、混凝土收缩时一种随时间而增长的变形10、引起混凝土收缩的原因:(1)混凝土的组成和配合比是影响混凝土收缩的重要因素(2)干燥失水是引起收缩的重要原因11、混凝土结构中的钢筋采用的是普通钢筋和预应力钢筋12、热轧钢筋按照外形分为光圆钢筋和带肋钢筋13、公称直径是与钢筋的公称横截面面积相等的圆的直径14、HPB300表示是热轧光圆钢筋,屈服强度标准值为300MPa;HRB335表示是热轧带肋钢筋,屈服强度标准值为335MPa。
15、应力-应变曲线:弹性阶段、屈服阶段、强化阶段、破坏阶段。
16、伸长率是伸长值与原有长度的比值17、影响粘结强度的因素:(1)光圆钢筋及变形钢筋的粘结强度均随混凝土强度等级的提高而提高(2)粘结强度与浇筑混凝土时钢筋所处的位置有明显的关系(3)钢筋混凝土构件截面上有多根钢筋并列时,钢筋之间的净距对粘结强度有重要影响(4)混凝土保护层的厚度对粘结强度有着重要的影响(5)带肋钢筋与混凝土的粘结强度比光圆钢筋大第二章结构按极限状态法设计计算原则1、结构的功能要求:安全性、适用性、耐久性2、结构的可靠性是指结构在规定的时间内,在规定的条件下,完成预定功能的能力,把度量结构可靠性的数量指标成为可靠度3、设计使用年限是设计规定的结构或结构构件不需要进行大修即可按预定目的使用的年限4、一般将结构的极限状态分为以下三类:(1)承载力极限状态(2)正常使用年限极限状态(3)“破坏-安全”极限状态5、公路桥涵的设计状况:(1)持久状况;(2)短暂状况;(3)偶然状况;(4)地震状况第三章受弯构件正截面承载力计算1、钢筋混凝土受弯勾结常用的界面形式有矩形、T形、箱形等2、配筋率是指所配置的钢筋截面面积与规定的混凝土截面面积的比值3、设置保护层是为了保护钢筋不直接接受大气的侵蚀和其他环境因素作用,同时也是为了保证钢筋与混凝土有良好的粘结4、梁内的钢筋有斜筋、箍筋、架立钢筋、弯起钢筋、水平纵向钢筋5、箍筋、弯起钢筋、斜筋提供抗剪承载力6、当钢筋为三层或三层以下是钢筋净距应不小于30mm,并不小于纵向受拉钢筋直径d,当钢筋为三层以上是,不想与40mm,或纵向受拉钢筋直径d的1.25倍。
结构设计原理 知识点总复习
B
t
C(
Tc Vc ) Tc0 Vc0
G D 1.0
Tc/Tc0 AB段:当Tc0.5Tco,即Tc0.175ftwt,忽略扭矩对砼抗剪强度影响,按 受弯构件斜截面抗剪公式计算,由抗剪确定箍筋数量; GD段:当Vc0.5Vco 即Vc0.35fcbh0,忽略剪力对混凝土抗扭强度的影 响,按纯扭构件公式受扭承载力公式计算,由抗扭确定箍筋数量。
As'已知时,根据 x ' Nes f cd bx(h0 ) f sd As' (h0 as' ) 2 求解x
b < < h / h0
h / h0
b < < h / h0
h / h0
s cu Es ( h0
h 1)
s cu Es (
2a' x b h0
' ' fcd bx f sd As N As f sd
x < 2a '
Nes' As f sd (h0 a' )
(小偏心)
As、As' 均未知时 假定 AS minbh x ' Nes f cd bx( as' ) s As (h0 as' ) 2 s f sd b
可靠
yes
第五章 受扭构件承载力
构件受扭的四种破坏形态
纵筋与箍筋的强度比 素混凝土纯扭构件的开裂扭矩。 变角度空间桁架模型 弯剪扭作用下的构件承载力 弯扭,剪扭共同作用
T
2、模型的组成
Vb Cb Hb Vh F Ch Hh Vb s s F bco
结构设计原理_课件
结构设计原理_课件第一部分:引言在当今快速发展的社会中,结构设计作为工程领域的重要分支,扮演着至关重要的角色。
无论是高楼大厦、桥梁还是各种机械设备,它们都离不开结构设计的支持。
本课件将为您深入解析结构设计原理,帮助您更好地理解和应用这一领域的技术。
第二部分:结构设计的基本概念结构设计是指在满足功能和美观要求的前提下,通过合理的选择和组合材料、形状和尺寸,使结构具备足够的强度、稳定性和耐久性。
结构设计的目标是在保证安全可靠的基础上,实现经济效益的最大化。
第三部分:结构设计的基本原则1. 功能性原则:结构设计必须满足使用功能的要求,确保结构能够承受预期的荷载和作用。
2. 安全性原则:结构设计必须确保结构的安全性,防止结构发生破坏或失效。
3. 经济性原则:结构设计应考虑经济性,尽量降低成本,提高经济效益。
4. 可行性原则:结构设计应考虑施工的可行性,确保结构能够顺利建造。
第四部分:结构设计的基本方法2. 计算法:运用数学和力学原理,通过计算和分析进行结构设计。
3. 模型法:利用计算机辅助设计软件,建立结构模型,进行模拟和优化设计。
4. 实验法:通过实验和测试,验证结构设计的合理性和可行性。
第五部分:结构设计的关键要素1. 材料选择:根据结构的功能和性能要求,选择合适的材料,如钢材、混凝土、木材等。
2. 形状设计:合理设计结构的形状和尺寸,使其具备足够的承载能力和稳定性。
3. 连接设计:考虑结构的连接方式,确保连接部位的安全性和可靠性。
4. 荷载分析:对结构进行荷载分析,确定结构所需的承载能力和稳定性要求。
第六部分:结构设计的应用领域结构设计广泛应用于建筑、桥梁、机械、航空航天、船舶等领域。
无论是高层建筑、大型桥梁还是精密机械设备,都离不开结构设计的支持。
第七部分:结构设计的未来发展趋势通过本课件的学习,您将能够更好地理解和应用结构设计原理,为未来的工程实践提供有力的支持。
结构设计原理_课件第一部分:引言在当今快速发展的社会中,结构设计作为工程领域的重要分支,扮演着至关重要的角色。
(完整版)《结构设计原理》复习资料资料
《结构设计原理》复习资料第一篇钢筋混凝土结构第一章钢筋混凝土结构的基本概念及材料的物理力学性能在本章的学习中应注意以下几个方面的问题:(1)混凝土的强度指标有哪些,以及获得它们的方法;(2)混凝土的应力应变关系曲线,弹性模量的取值方法;(3)混凝土收缩、徐变的概念及特性;(4)两类钢材的变形及强度特征;(5)锚固长度的意义;(6)钢筋混凝土结构对混凝土与钢筋的基本要求。
三、复习题(一)填空题1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。
2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用。
7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。
其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
(二)判断题1、素混凝土的承载能力是由混凝土的抗压强度控制的。
………………………………【×】2、混凝土强度愈高,应力应变曲线下降愈剧烈,延性就愈好。
………………………【×】3、线性徐变在加荷初期增长很快,一般在两年左右趋以稳定,三年左右徐变即告基本终止。
………………………………………………………………………………………………【√】4、水泥的用量愈多,水灰比较大,收缩就越小。
………………………………………【×】5、钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。
…………【√】(三)名词解释1、混凝土的立方体强度────我国《公路桥规》规定以每边边长为150mm 的立方体试件,在20℃±2℃的温度和相对湿度在90%以上的潮湿空气中养护28天,依照标准制作方法和试验方法测得的抗压极限强度值(以MPa计)作为混凝f表示。
建筑工程行业结构设计原理资料
建筑工程行业结构设计原理资料在建筑工程行业中,结构设计是非常重要的一环。
它涉及到建筑物的强度、稳定性以及抗震性等方面。
在进行结构设计时,设计师需要考虑多个原理和因素。
本文将介绍建筑工程行业结构设计的原理与相关资料。
一、工程结构设计原理1.平衡原理平衡原理是结构设计中最基本的原理之一。
建筑物的结构要能够保持平衡,不会因为外界的力量而倒塌。
设计师需要通过合理的结构布局和材料选择来实现结构的平衡。
2.强度原理强度原理要求建筑物的结构能够承受设计范围内的荷载。
在设计过程中,需要计算和确定各个构件的尺寸和截面形状,以确保其能够满足力学强度的要求。
3.稳定性原理稳定性原理要求建筑物的结构能够保持稳定,不会因为外界的扰动而失去平衡。
设计师需要合理选择结构形式,增加建筑物的抵抗侧向力的能力,确保建筑物在各种力的作用下保持稳定。
4.抗震原理抗震原理是在地震影响下设计建筑物结构的重要原理。
设计师需要考虑地震引起的水平力和竖向力对建筑物的影响,并采取相应的措施来提高建筑物的抗震性能。
二、结构设计的资料要求1.建筑工程规范建筑工程规范是结构设计的重要参考资料之一。
不同国家和地区有各自的建筑工程规范,设计师需要根据当地的规范要求进行设计。
规范中包含了对建筑物结构设计的要求、参数计算方法等内容。
2.荷载规范及标准荷载规范及标准包括了建筑物所承受的各种荷载的计算方法和数值。
设计师需要根据建筑物的用途和地理环境,合理计算各种荷载,并在结构设计中予以考虑。
3.材料技术参数结构设计中使用的材料需要具备一定的技术参数,如抗拉强度、抗压强度等。
设计师需要对不同材料的性能进行了解,并根据需要进行合理选择。
4.结构设计图纸结构设计图纸是结构设计的重要输出资料。
图纸中包括了建筑物的结构布局、构件尺寸、截面形状等详细信息。
设计师需要绘制准确、清晰的结构设计图纸,以便建筑施工的进行。
5.结构计算书结构计算书是设计师在进行结构设计过程中的记录和总结。
结构设计原理(二)课程自学辅导材料
结构设计原理(二)课程自学辅导材料课程代码:06287 结构设计原理(二)课程自学辅导材料●配套教材:《结构设计原理》●主编:叶见曙●出版社:人民交通●版次:2012年7月第2版●适应层次:本科内部教学使用目录第一部分自学指导第一篇钢筋混凝土结构 (1)第二篇预应力混凝土结构 (2)第三篇圬工结构 (2)第四篇钢结构 (3)第五篇钢—混凝土组合构件 (3)第二部分复习思考题一.单选题 (5)二.填空题 (25)三.判断题 (30)四.名词解释题 (34)五.简答题 (36)六.计算题 (39)第三部分参考答案一.单选题 (42)二.填空题 (42)三.判断题 (43)四.名词解释题 (43)五.简答题 (46)六.计算题 (53)第一部分自学指导第一篇钢筋混凝工结构一.主要内容本篇主要介绍钢筋混凝土结构的基本概念;混凝土、钢筋的强度与变形性能;钢筋与混凝土间的粘结性能;结构可靠度概念;极限状态法设计计算原则;承载力极限状态、正常使用极限状态设计表达式;受弯构件正截面抗弯受力性能、承载力计算(单筋、双筋矩形截面梁、T形截面梁);受弯构件斜截面抗剪受力性能、抗剪承载力计算、斜截面抗弯承载力;受扭构件的受力性能、承载力计算;轴心受压构件的受力性能、承载力计算;偏心受压构件正截面受力性能、承载力计算;受拉构件正截面受力性能、承载力计算;钢筋混凝土受弯构件的应力、裂缝和变形性能、计算;混凝土结构耐久性;局部承压;深受弯构件。
二.重点混凝土的强度、变形性能和各项强度指标;钢筋的强度指标与变形指标;钢筋与混凝土间的粘结能力及其影响因素;材料强度的标准值和设计值;承载力极限状态、正常使用极限状态设计表达式;受弯构件正截面破坏形态、破坏过程;受弯构件正截面承载力计算(单筋、双筋矩形截面梁、T形截面梁);受弯构件斜截面破坏形态及斜截面承载力的主要影响因素;纯扭构件的破坏形态、破坏过程;轴心受压构件的破坏过程和正截面承载力计算;偏心受压构件正截面破坏形态、破坏过程和承载力计算;钢筋混凝土受弯构件的裂缝、变形的起因、影响及控制。
大一结构设计原理知识点
大一结构设计原理知识点1.结构设计原理的基础知识:大一结构设计原理的基础知识主要包括力的分析、静力平衡和材料力学等方面。
力的分析是结构设计的基础,通过力的合成、分解和平衡等方法对结构受力进行分析和计算,确定结构受力的大小和方向。
静力平衡是指结构在受力情况下保持平衡的原理,即结构受力的合力和合力矩都为零。
通过静力平衡原理,可以确定结构中力的作用点和力的大小分布情况。
材料力学是结构设计过程中必不可少的知识领域,它研究的是材料在受力情况下的应力和应变关系。
了解材料的强度、刚度和韧性等性质,对结构的设计和选择合适的材料非常重要。
2.结构设计的基本原则:大一结构设计原理的基本原则主要包括刚度、强度和稳定性等方面。
刚度是指结构在受力情况下保持不变形的能力。
结构设计时需要考虑结构的刚度,通常采用合适的截面形状、增加结构材料的截面积或增加结构的几何尺寸等方法提高结构的刚度。
强度是指结构在受力情况下能够承受的最大力或力矩。
结构设计时需要保证结构的强度,通常通过选用合适的材料、增加结构材料的数量或改变结构的形状等方法提高结构的强度。
稳定性是指结构在受力情况下保持平衡和不失稳定的能力。
结构设计时需要考虑结构的稳定性,通常通过合理配置结构的构件和增加结构的副结构等方法提高结构的稳定性。
3.结构设计的优化原则:大一结构设计原理的优化原则主要包括经济性、安全性和美观性等方面。
经济性是指在满足结构需求的前提下,尽量减少材料的使用量和成本的原则。
结构设计时需要考虑结构的经济性,通常通过合理配比材料、优化结构构件的尺寸和形状等方法实现经济性设计。
安全性是指结构在正常使用或受到额定荷载时不发生破坏或会产生危险的原则。
结构设计时需要保证结构的安全性,通常通过合理计算和选择结构的强度和稳定性等参数,确保结构在使用过程中不出现故障。
美观性是指结构的形式、尺寸和比例等方面与周围环境和其他建筑物相协调的原则。
结构设计时需要考虑结构的美观性,通常通过合理布局结构的构件和优化结构的外形等方法实现美观性设计。
结构设计原理复习
结构设计原理复习结构设计原理是建筑领域中至关重要的一部分,它关乎着建筑物的稳定性、安全性以及美观性。
在本文中,我们将对结构设计原理进行复习,并深入探讨其背后的原理和应用。
一、力的平衡和作用于结构的力结构设计的首要原理是力的平衡。
建筑物承受的各种力要达到平衡,才能保证结构的稳定性。
在结构设计中,我们常常遇到的力有:重力、惯性力、支持力、拉力和压力等。
这些力的平衡是设计师在进行结构设计时需要考虑的重要因素。
二、结构的稳定性和刚度结构的稳定性一直都是建筑设计的重点。
为了保证建筑物的稳定性,设计师需要考虑结构的刚度。
刚度是指结构在受到外力作用时不产生过大变形的能力。
刚度的提高可以通过选择合适的材料和加强结构的连接方式来实现。
三、材料的选择与强度在结构设计中,材料的选择对于结构的强度和稳定性至关重要。
常见的结构材料包括钢材、混凝土和木材等。
设计师需要根据建筑物的用途和预期负荷来选择合适的材料,并合理设计结构的尺寸和截面形状,以确保结构的强度和稳定性。
四、结构的荷载和应力分析荷载是指施在结构上的外力,包括静载和动载。
在结构设计中,需要对荷载进行合理的分析和计算,以确定结构的设计荷载。
同时,设计师还需要进行应力分析,了解结构在不同荷载作用下的应力分布情况,以避免结构产生不均匀的应力分布造成的失稳或破坏。
五、结构的抗震设计抗震设计是在地震作用下确保建筑物不倒塌、不破坏的一种设计方法。
在结构设计中,需要考虑地震荷载和地震响应,选择适当的抗震设计措施来提高建筑物的抗震能力。
常见的抗震设计方法包括添加剪力墙、设立钢筋混凝土框架等。
六、结构的美学设计除了稳定性和安全性之外,结构设计也需要考虑建筑物的美学设计。
结构设计可以通过合理的形状、比例和材料选择来实现艺术性和美观性。
在现代建筑中,越来越多的设计师将结构设计的原理与建筑的美学需求相结合,打造出独具特色的建筑作品。
综上所述,结构设计原理是建筑领域中十分重要的一部分。
通过力的平衡和结构的稳定性、刚度、材料选择与强度、荷载和应力分析、抗震设计以及美学设计等原理的应用,设计师能够创建出安全、稳定且美观的建筑物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构设计原理辅导资料砌体建筑的结构型式砌体房屋结构的静力设计内容包括:选择承重结构型式并进行结构布置,确定结构计算简图,墙、柱高厚比验算,结构内力分析,承载力验算,房屋整体及各部位的构造设计等。
砌体房屋的结构型式是指房屋的竖向荷载承重结构体系,通常分为砌体墙柱承重结构体系、混合承重结构体系两大类。
前者主要包括纵墙承重结构、横墙承重结构和纵横墙承重结构,后者包括底部框架砌体剪力墙承重结构和内框架砌体承重结构,两类结构体系的受力特点是有显著区别的。
1、砌体墙柱承重结构体系其特点是在结构整个高度上都由墙柱承重。
平行于房屋短向布置的墙体称横墙,平行于房屋长向布置的墙体称纵墙,房屋周边的墙体称外墙(长方向端部外墙又称山墙,)余其则称内墙。
在墙体承重结构房屋的设计中,确定承重墙、柱的布置方案十分重要,因为它不仅影响房屋平面、空间的划分,更涉及荷载的传递途径和房屋的空间刚度等结构设计的基本问题。
(1)纵墙承重体系纵墙承重结构是指由纵墙直接承受楼、屋面荷载的结构。
荷载分为两种方式传递到纵墙上。
一种是单向楼(屋)面板直接搁支在纵墙上,一种是搁支于进深梁上,进深梁又搁支于纵墙上。
(2)横墙承重结构横墙承重结构是单向楼(屋)面直接搁支于横墙上形成的结构布置方案。
(3)纵横墙承重结构2、混合承重结构体系(1)底部框架——剪力墙砌体结构(2)内框架砌体结构防止或减轻墙体开裂的主要措施1、裂缝的性质引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。
根据工程实践和统计资料这类裂缝几乎占全部可遇裂缝的80%以上。
而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,简称干缩裂缝,以及由温度和干缩共同产生的裂缝。
(1)温度裂缝温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。
最常见的裂缝是在混凝土平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。
导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而混凝土顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。
剪应力在墙体内的分布为两端附近较大,中间渐小,顶层大,下部小。
温度裂缝是造成墙体早期裂缝的主要原因。
这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。
(2)干缩裂缝烧结粘土砖,包括其它材料的烧结制品,其干缩变形很小,且变形完成比较快。
只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。
但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。
对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。
如混凝土砌块的干缩率为0.3〜0.45mm/m,它相当于25〜40C的温度变形, 可见干缩变形的影响很大。
轻骨料块体砌体的干缩变形更大。
干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。
但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。
这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。
如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在屋顶圈梁下出现的水平缝和水平包角裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。
另外不同材料和构件的差异变形也会导致墙体开裂。
如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝;空腔墙内外叶墙用不同材料或温度、湿度变化引起的墙体裂缝,这种情况一般外叶墙裂缝较内叶墙严重。
(3)温度、干缩及其它裂缝对于烧结类块材的砌体最常见的为温度裂缝,面对非烧结类块体,如砌块、灰砂砖、粉煤灰砖等砌体,也同时存在温度和干缩共同作用下的裂缝,其在建筑物墙体上的分布一般可为这两种裂缝的组合,或因具体条件不同而呈现出不同的裂缝现象,而其裂缝的后果往往较单一因素更严重。
另外设计上的疏忽、无针对性防裂措施、材料质量不合格、施工质量差、违反设计施工规程、砌体强度达不到设计要求,以及缺乏经验也是造成墙体裂缝的重要原因之一。
如对混凝土砌块、灰砂砖等新型墙体材料,没有针对材料的特殊性,采用适合的砌筑砂浆、注芯材料和相应的构造措施,仍沿用粘土砖使用的砂浆和相应的抗裂措施,必然造成墙体出现较严重的裂缝。
2、砌体裂缝的控制(1)裂缝的危害和防裂的迫切性砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。
特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要求更为严格。
由于建筑物的质量低劣,如墙体裂缝、渗漏等涉及的纠纷或官司也越来越多,建筑物的裂缝已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。
因此加强砌体结构,特别是新材料砌体结构的抗裂措施,已成为工程量、国家行政主管部门,以及房屋开发商共同关注的课题。
因为这涉及到新型墙体材料的顺利推广问题。
(2)裂缝宽度的标准问题实际上建筑物的裂缝是不可避免的。
此处提到的墙体裂缝宽度的标准(限值),是一个宏观的标准,即肉眼明显可见的裂缝,砌体结构尚无这种标准。
但对钢筋混凝土结构其最大裂缝宽度限值主要是考虑结构的耐久性,如裂缝宽度对钢筋腐蚀,以及外部构件在湿度和抗冻融方面的耐久性影响。
我国到现在为止对外部构件(墙体)最危险的裂缝宽度尚未作过调查和评定。
但根据德国资料,当裂缝宽度毛.2mm时,对外部构件(墙体)的耐久性是不危险的。
对砌体结构来说,墙体的裂缝宽度多大是无害呢?这是个比较复杂的问题。
因为它还涉及到可接受的美学方面的问题。
它直接取决于观察人的目的和观察的距离。
对钢筋混凝土结构,裂缝宽度〉0.3mm,通常在美学上是不能接受的,这个概念也可用于配筋砌体。
而对无筋砌体似乎应比配筋砌体的裂缝宽度标准放宽些。
但是对于客户来讲二者是完全一样的。
这实际上是直观判别裂缝宽度的安全标准。
3、现有控制裂缝的原则和措施长期以来人们一直在寻求控制砌体结构裂缝的实用方法,并根据裂缝的性质及影响因素有针对性的提出一些预防和控制裂缝的措施。
从防止裂缝的概念上,形象地引出“防”、“放”、“抗”相结合的构想,这些构想、措施有的已运用到工程实践中,一些措施也引入到《砌体规范》中,也收到了一定的效果,但总的来说,我国砌体结构裂缝仍较严重,纠其原因有以下几种。
(1)设计者重视强度设计而忽略抗裂构造措施长期以来住房公有制,人们对砌体结构的各种裂缝习以为常,设计者一般认为多层砌体房屋比较简单,在强度方面作必要的计算后,针对构造措施,绝大部分引用国家标准或标准图集,很少单独提出有关防裂要求和措施,更没有对这些措施的可行性进行调查或总结。
因为裂缝的危险仅为潜在的,尚无结构安问题,不涉及到责任问题。
(2)我国《砌体规范》抗裂措施的局限性我认为这是最为重要的原因。
〈体规范》GBJ3-88的抗裂措施主要有两条,一是第5.3.1 条:对钢混凝土屋盖的温度变化和砌体的干缩变形引起的墙体开裂,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;控制硅酸盐砖和砌块出厂到砌筑的时间和防止雨淋。
未考虑我国幅原辽阔、不同地区的气候、温度、湿度的巨大差异和相同措施的适应性。
二是第5.3.2 条:防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。
从规范的温度伸缩缝的最大间距可见,它主要取决于屋盖或楼盖的类别和有无保温层,而与砌体的种类、材料和收缩性能等无直接关系。
可见我国的伸缩缝的作用主要是防止因建筑过长在结构中出现竖向裂缝,它一般不能防止由于钢混凝土屋盖的温度变形和砌体的干缩变形引起的墙体裂缝。
由此可见,〈体砌规范》的抗裂措施,如温度区段限值,主要是针对干缩小、块体小的粘土砖砌体结构的,而对干缩大、块体尺寸比粘土砖大得多的混凝土砌块和硅酸盐砌体房屋,基本是不适用的。
因为如果按照混凝土砌块、硅酸盐块体砌体的干缩率0.2〜0.4mm/m,无筋砌体的温度区段不能越过10m;对配筋砌体也不能大于30m。
在这方面,国外已有比较成熟的预防和控制墙体开裂的经验,值得借鉴:一是在较长的墙上设置控制缝(变形缝),这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。
该缝的构造既能允许建筑物墙体的伸缩变形,又能隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。
这种控制缝的间距要比我国规范的伸缩缝区段小得多。
如英国规范对粘土砖为10- 15m,对混凝土砌块及硅酸盐砖一般不应大于6m;美国砼协会(ACI)规定,无筋砌体的最大控制缝间距为12-18m,配筋砌体控制缝间距不超过30m。
二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%〜0.2%,或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.07%,该配筋率又抗裂,又能保证砌体具有一定的延性。
关于在砌体内配置抗裂钢筋的数量(含钢率)和效果,是普遍比较关注的问题因为它涉及到用钢量和造价的增幅问题。
4、防止墙体开裂的具体构造措施建议本文在综合了国内外砌体结构抗裂研究成果的基础上,结合我国当前的具体情况,提出的更具体的抗裂构造措施。
它是对“防”、“放”、“抗”的具体体现。
笔者认为这些措施可根据具体条件选择或综合应用。
该措施已反映到我院为大庆油田砌块厂编制的《混凝土砌块建筑构造图集》中。
(1)防止混凝土屋盖的温度变化与砌体的干缩变形引起的墙体开裂,宜采取下列措施a屋盖上设置保温层或隔热层;b在屋盖的适当部位设置控制缝,控制缝的间距不大于30m;c、当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;d建筑物温度伸缩缝的间距除应满足《砌本结构设计规范》BGJ3-88第5.3.2 条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m。
(2)防止主要由墙体材料的干缩引起的裂缝可采用下列措施之一:a设置控制缝①控制缝的设置位置在墙的高度突然变化处设置竖向控制缝;在墙的厚度突然变化处设置竖向控制缝;在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;在门、窗洞口的一侧或两侧设置竖向控制缝;竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3 层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝;控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12m m,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。