局部搜索
WPSOffice快速搜索技巧迅速定位文档内容
WPSOffice快速搜索技巧迅速定位文档内容WPSOffice是一款功能强大的办公软件,拥有丰富的功能和工具,让用户能够高效地处理各种文档任务。
在处理大量文档时,我们经常需要快速定位文档中的某个内容,这时候掌握一些快速搜索技巧将会大大提高工作效率。
本文将介绍几种使用WPSOffice进行快速搜索并定位文档内容的技巧。
一、全局搜索WPSOffice提供了全局搜索功能,可以在所有打开的文档中搜索特定的关键词。
要使用全局搜索,只需在WPSOffice的工具栏上点击搜索图标,或者使用快捷键Ctrl + F。
在弹出的搜索框中输入关键词,即可搜索到匹配的内容。
全局搜索不仅可以搜索文本内容,还可以搜索批注、表格和图表等其他元素,非常方便。
二、局部搜索有时候我们只需要在当前文档中搜索某个关键词,而不是所有的文档。
WPSOffice也提供了局部搜索功能。
在打开的文档中,只需按下快捷键Ctrl + F,即可在当前文档中搜索关键词。
这种方式是专注于当前文档的搜索,减少了其他文档的干扰,更加高效。
三、使用通配符WPSOffice的搜索功能还支持通配符的使用,可以更灵活地搜索文档内容。
在搜索框中输入关键词时,可以使用"*"代表任意长度的字符,"?"代表任意一个字符。
这样的使用方式可以帮助我们更准确地定位特定的内容。
四、搜索选项设置WPSOffice还支持搜索选项的设置,可以根据不同的需求进行搜索。
在搜索框中点击右侧的下拉箭头,可以打开搜索选项窗口。
在搜索选项窗口中,可以设置搜索范围、区分大小写、全字匹配等选项。
根据实际情况进行设置,可以更加精准地进行搜索。
五、搜索结果导航当搜索到匹配的结果后,WPSOffice会将搜索结果高亮显示,方便我们快速定位。
此外,WPSOffice还提供了搜索结果导航功能。
在搜索框中点击搜索结果数目,即可打开导航栏。
导航栏会显示搜索结果的缩略图和位置信息,方便我们快速跳转到需要的位置。
TSP问题的近似算法
TSP问题的近似算法近似算法是解决优化问题的一种有效方法,它可以在较短时间内得到一个接近最优解的解,而不是花费大量时间去寻找最优解。
TSP问题(Traveling Salesman Problem)是一个经典的优化问题,它的目标是找到一条经过所有城市的最短路径。
这个问题是一个经典的NP难题,意味着在合理的时间内找到准确的最优解是不可能的,最多只能得到近似解。
因此,近似算法在TSP问题中具有重要的应用价值。
常见的近似算法包括贪心算法、局部搜索算法、动态规划算法等。
下面我们将介绍其中几种经典的算法。
1. 贪心算法贪心算法是一种基于贪心策略的近似算法。
它的基本思想是每次选择当前最优解,直到得到一个接近最优解的解。
在TSP问题中,贪心算法的思路是从起点出发,每次选择距离当前城市最近的城市,直到遍历所有城市。
但是这种贪心策略往往不能得到最优解,因为它可能陷入局部最优解。
2. 局部搜索算法局部搜索算法是一种基于局部优化的近似算法。
它的基本思想是从一个随机的解出发,不断地进行局部搜索,直到得到一个接近最优解的解。
在TSP问题中,局部搜索算法的思路是从一个随机的解出发,通过交换城市的顺序来不断优化当前解,直到达到一定的迭代次数或无法继续优化为止。
这种算法的优点是效率高,缺点是易陷入局部最优解。
3. 动态规划算法动态规划算法是一种基于状态转移的近似算法。
它的基本思想是将一个复杂问题分解成若干个子问题,通过按顺序解决子问题来求解原问题。
在TSP问题中,动态规划算法通过定义状态、状态转移方程和初始状态来求解最短路径。
其时间复杂度为O(n^2*2^n),因此不适用于大规模的问题。
总结以上是常见的几种近似算法,在实际运用中可以根据问题的特点选择合适的算法。
虽然这些算法不能得到准确的最优解,但它们可以在短时间内得到一个接近最优解的解,具有重要的实际应用价值。
人工智能导论 第5讲 超越经典的搜索
➢竞争比越小越好
➢竞争比可以是无穷大,比如达到某些状态后 无法达到目标状态(活动不可逆)
➢可安全探索的状态空间:每个可达到的状态 出发都有达到目标状态的行动,如迷宫问题, 八数码问题
➢ 局部搜索算法 ➢ 不确定动作的搜索 ➢ 使用部分可观察信息的搜索 ➢ 联机搜索
QA?
32752411
24748552
突变点
3 2 7 4 8 51 5 2
交叉点
父代 交叉点
子代
样本被选择繁衍后 代的概率正比于它 的适应度函数值
发生交叉操作的概 率需要预先设定, 交叉位置随机产生
发生突变操作的概 率需要预先设定, 通常远小于交叉概 率
➢环境是完全可观察的和确定的
➢可以知道任何动作序列之后达到的状态
➢环境是部分可观察或者是不确定的
➢无法准确预知未来状态 ➢需根据未来感知信息制定相应的行为
➢例子:真空洗尘器世界的不稳定行为
➢在一块脏区域吸尘可以使该区域干净,有时也 会清洁邻近区域
➢在干净区域吸尘可能是该区பைடு நூலகம்弄脏
➢Suck when state=1
➢If state=5 then [right,suck] ➢Else do nonthing
➢ 随机束搜索:不是找到k个最佳,而是随机找 到k个后继状态,随机概率与状态值成正比。
➢ 遗传算法是模仿生物遗传学和自然选择机理, 通过人工方式所构造的一类优化搜索算法,是 对生物进化过程进行的一种数学仿真。
➢ 遗传算法为那些难以找到传统数学模型的难题 指出了一个解决方法。
➢ 遗传算法借鉴了生物科学的知识,体现了人工 智能这一交叉学科的特点。
➢遗传算法的编码方法有二进制编码、浮点数 编码方法、格雷码、符号编码方法、多参数 编码方法等。
局部搜索算法
全局搜索和局部搜索.目前使用较普遍的、有影响的全局搜索算法主要包括主从面算法、单曲面算法、级域算法、位码算法及NBS 算法;局部接触搜索算法主要有基于"点面算法"、基于"小球算法"、基于光滑曲面(曲线)算法三大类.接触界面算法目前主要有拉格朗日乘子法和罚函数法,以及扰动拉氏法和增广拉氏法.此外,接触问题的并行计算也是不可忽视的研究内容模拟退火算法和遗传算法等是较新发展起来的算法,算法引入了随机因素,不一定能找到最优解,但一般能快速找到满意的解。
局部搜索算法是从爬山法改进而来的。
爬山法:在没有任何有关山顶的其他信息的情况下,沿着最陡的山坡向上爬。
局部搜索算法的基本思想:在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。
现实问题中,f在D上往往有多个局部的极值点。
一般的局部搜索算法一旦陷入局部极值点,算法就在该点处结束,这时得到的可能是一个糟糕的结果。
解决的方法就是每次并不一定选择邻域内最优的点,而是依据一定的概率,从邻域内选择一个点。
指标函数优的点,被选中的概率大,指标函数差的点,被选中的概率小。
考虑归一化问题,使得邻域内所有点被选中的概率和为1。
一般的局部搜索算法是否能找到全局最优解,与初始点的位置有很大的依赖关系。
解决的方法就是随机生成一些初始点,从每个初始点出发进行搜索,找到各自的最优解。
再从这些最优解中选择一个最好的结果作为最终的结果。
起始点位置影响搜索结果示意图爬山算法1, n := s;2, LOOP: IF GOAL(n) THEN EXIT(SUCCESS);3, EXPAND(n) →{mi},计算h(mi), nextn=min{h(mi)}4, IF h(n)<h(nextn) THEN EXIT(Fail);5, n:=nextn;6, GO LOOP;该算法在单峰的条件下,必能达到山顶。
局部搜索算法(1)随机选择一个初始的可能解x0 ∈D,xb=x0,P=N(xb);//D是问题的定义域,xb用于记录到目标位置的最优解,P为xb的邻域。
优化算法的分类
优化算法的分类
以下是优化算法的分类:
优化算法主要可以分为以下几类:
1. 暴力搜索算法:暴力搜索是指通过枚举所有可能的解,然后选取最优的解来求解问题。
这种方法适用于小规模问题,但随着问题规模增大会变得非常低效。
2. 基于梯度的优化算法:这类算法基于目标函数的导数,以步长为自变量,沿着负梯度方向进行迭代求解目标函数的最小值。
常见的基于梯度的算法包括梯度下降、共轭梯度、牛顿法等。
3. 进化算法:进化算法是一类基于生物演化原理的优化算法,包括遗传算法、粒子群算法、人工蜂群算法等。
这类算法通过对多个候选解不断进行重组变异来探索问题空间,并通过适应性函数来评价解的好坏程度。
4. 局部搜索算法:局部搜索算法在寻找局部最优解方面效果较好,并且相比全局搜索更加高效。
常见的局部搜索算法包括模拟退火、禁忌搜索、局部优化、贪心算法等。
5. 其他优化算法:其他优化算法包括线性规划、整数规划、动态规划等,这些算法更多应用于特定的优化问题上。
需要根据具体问题的求解需求选择合适的优化算法。
不同的算法有各自的适用场景和优劣点,如基于梯度的算法适用于连续可导函数的优化问题,而进化算法则适用于复杂的、非线性的、多模态目标函数的优化问题。
k-opt算法
k-opt算法
k-opt算法是一种局部搜索算法,用于寻找组合优化问题的最优解。
该算法通过不断地调整当前路径来寻找更优的解,通过将路径分割成多个片段并对这些片段进行重新组合来寻找更优的解。
k-opt算法中的k表示对路径进行优化时考虑的片段数量,通常情况下k的取值为2或3。
k-opt算法首先随机选择一条初始路径,然后对路径进行局部的调整。
在每一次迭代中,算法会尝试移除k条边,并用不同的方式重新连接这些边,然后计算新路径的长度。
如果新路径比原路径更短,则接受这个调整,否则保持原路径不变。
这样不断地进行局部调整,直到达到一定的迭代次数或者无法再找到更优的路径为止。
k-opt算法的优点是可以在较短的时间内找到较好的解,并且易于实现。
然而,由于其是一种局部搜索算法,存在陷入局部最优解的风险,因此在实际应用中需要结合其他方法进行改进,如多次运行算法取最优解或者与全局优化算法结合等。
总的来说,k-opt算法是一种常用于解决TSP等组合优化问题的启发式算法,通过局部搜索和路径调整来寻找最优解。
确定时间序列自回归阶数的方法
确定时间序列自回归阶数的方法时间序列自回归(Autoregressive,AR)模型是应用范围最广泛的时间序列分析方法之一。
它利用历史观察值来预测未来的观察值,由此构成了一个有关时间序列的自回归模型。
确定模型的阶数是构建有效自回归模型的重要步骤,也是关键性的步骤。
确定时间序列自回归模型阶数的方法可以分为全局搜索方法和局部搜索方法。
一、全局搜索方法全局搜索方法是对时间序列模型的阶数进行全局搜索,以确定最优的自回归模型阶数,即使用全体的观察值,搜索各种可能的阶数而不受限制,从而形成最优的模型参数和模型阶数。
常用的全局搜索方法有Akaike信息准则(AIC)、Schwarz准则(SC)和Hannan-Quinn 准则(HQ)等,它们都是采用不同的统计原则来寻求最优阶数。
Akaike信息准则(AIC)是基于统计学理论确定模型参数和阶数的方法,它计算出模型阶数使模型的平均方差最小的阶数,即使模型的拟合度最高的阶数。
Schwarz准则(SC)是一种以模型误差的准则值来衡量模型效果的方法,它以模型拟合误差的平方和来衡量模型效果,计算出模型拟合误差最小的模型参数和模型阶数。
Hannan-Quinn 准则(HQ)是一种标准化的统计指标,它引入了Akaike信息准则和Schwarz准则的综合考虑,以联合优化的方式求取最优阶数,从而构建出最优的模型参数和模型阶数。
二、局部搜索方法局部搜索方法是基于多步搜索的策略,在搜索的过程中,它把当前的最佳模型参数和模型阶数作为起始值,逐步搜索,每一步都会比较当前明显更优的值,然后把它作为下一步搜索的起始值,这样一步步累积,最终会达到最佳的模型参数和模型阶数。
常用的局部搜索方法有方差比检验(FP)和回归偏差检验(BP),它们都是基于多步搜索的策略,每一步都判断当前是否优化,进而搜索最优的模型参数和模型阶数。
方差比检验(FP)是基于比较动态模型和静态模型的方差比,利用数据的所有信息,逐步搜索自回归模型的最优阶数,如果动态模型方差比静态模型更小,则更新自回归模型的阶数,一步步搜索,最终找到最优的模型参数和模型阶数。
2-6局部搜索法
以上节的无向图为例。选择可能解为闭合回路 以上节的无向图为例。选择可能解为闭合回路abcdea, , 如左下图所示, 回路长度为25. 如左下图所示, 回路长度为 . 使用变换,删除边 和 ,加入边AD和 , 使用变换,删除边AE和CD,加入边 和CE, 得到闭合回路如右下图所示,回路长度为 . 得到闭合回路如右下图所示,回路长度为23.
§2.6 局部搜索法
• 局部搜索法是一种近似算法,在人工智 局部搜索法是一种近似算法, 能中经常使用。 能中经常使用。 • 虽然一般而论这种方法不能给出最佳解, 虽然一般而论这种方法不能给出最佳解, 但能给出一个可以接受的比较好的解。 但能给出一个可以接受的比较好的解
1
引入变换的概念, 引入变换的概念,变换是映射 f: S → S : 其中S是问题可能解的集合,换言之, 其中 是问题可能解的集合,换言之,变换 是问题可能解的集合 将一个可能解变成另一个可能解。 将一个可能解变成另一个可能解
考虑左下的无向图。 选取支撑树如右下图所示。 考虑左下的无向图。 选取支撑树如右下图所示。权 之和为20. 之和为 .
a 3 7 3 e 6 2 d 4 8 5 b 4 c 6 e 注意: 注意 这个问 题无需搜索. 题无需搜索 d
5
a
b
c
现作如下变换,将边 加入 同时删除边AE, 加入, 现作如下变换,将边DE加入,同时删除边 ,得 到新的树如图,权的和为19. 到新的树如图,权的和为
6
将边AD加入,删除边 ,得到的树之权的和为16。 将边 加入,删除边CD,得到的树之权的和为 。 加入 加入边AB,删去边BC,得到的树之权之和为15. 加入边 ,删去边 ,得到的树之权之和为 . 加入边BE,删去边 ,得到的树之权之和为12. 加入边 ,删去边ED,得到的树之权之和为 .
局部搜索算法
局部搜索算法文章目录前言目标函数:用来判断解的优劣。
邻域的定义:根据不同问题,有着不同的邻域定义。
初始解的产生规则新解的产生和接受规则算法终止准则(常见的三个准则:求解时间;迭代次数;和解质量提高比例)二、爬山法(HILL-CLIMBING)我们可以类比成一个兔子爬山的例子,为了找出地球上最高的山,一群有志气的兔子们开始想办法。
爬山算法可以类比成一个有失忆的兔子在浓雾中爬山。
这里就揭示了爬山算法的两个问题:失忆:就是说这只兔子不记得他去过什么地方,它只记得他现在所处的位置,以及周边的情况(因为有浓雾,所以它只能看到最近的周边的情况)。
浓雾:当他走到一个局部最值点时,因为他看见远处是否还有更大的最值点,所以就把当前这个局部最值点返回给你(爬山算法的返回是返回一个状态而不是一个路径,这个状态就是一个局部最值点)。
模拟退火(SIMULATEDANNEALING)为了防止陷入局部最优,模拟退火算法以一定概率接受比当前解差的解,接受差解的概率随着迭代次数的增加而下降,或者说是随着温度T的下降而下降。
该算法从一个初始解开始,这个初始解可以是随机选择的,也可以是启发式方式得到的,并初始化一个温度。
在每次迭代过程中,从当前解的邻居解中随机的选择一个解,若随机选择的一个邻居解比当前解的质量好,则替换当前解,若质量比当前解差,则以一定的概率接受这个差解,来替换当前解。
最后更新温度T,进行下一次迭代。
同样类比成兔子爬山,模拟退火方法是一群喝醉的兔子。
兔子喝醉了。
他随机地跳了很长时间。
这期间,它可能走向高处,也可能踏入平地。
但是,他渐渐清醒了并朝最高方向跳去。
这就是模拟退火。
1.简介2.流程3.应用遗传算法(Genetic algorithm)种群:种群中的每个个体都是潜在解个体表示:染色体,实际就是状态的表示适应度函数:表示解的好坏程度选择(利用):根据适应度选取比较好的解优先进行两两繁殖交叉(利用为主+探索):选取一个杂交点,两边染色体互相交换变异(探索):每个位置都会小概率发生变异类比成兔子,遗传算法是一群吃了失忆药片随机分布在地球上的某些地方的兔子们。
4.局部搜索算法
模拟退火的解决思路(2)
• 温度T是时间的函数,按照模拟退火的思 想,数值应该逐渐减小(降温) • 因为接受概率=eΔE/T且ΔE <0,所以当温 度高时,接受概率较大(接近1) / 而T越来 越低时,ΔE/T变大,因而接受概率降低 • 可以证明,如果T下降得足够慢,则算法 找到全局最优解的概率接近1
17
遗传算法的操作
• 选择(或者称繁殖)—按照一定概率随机地 选择两对个体进行繁殖(即生成后继状态) • 杂交(或者称交叉)—杂交点是在表示状态 的字符串中随机选择的一个位置,以此 形成新状态—后代是父串在杂交点上进 行杂交(各取一部分)得来的 • 变异—在新生成的串中各个位置都会按 照一个独立的小概率随机变异
12
模拟退火的解决思路(1)
• 思路—开始使劲晃动(先高温加热)然后慢 慢降低摇晃的强度(逐渐降温)[退火过程] • 算法的核心—移动选择
–选择随机移动,如果评价值改善,则移动被 接受,否则以某个小于1的概率接受 –概率按照移动评价值变坏的梯度ΔE而呈指 数级下降 / 同时也会随着作为控制的参数 —“温度”T的降低(数值减小)而降低 –接受概率=eΔE/T(注意此时ΔE <0)
3. 交叉操作:单点交叉等 4. 变异操作:在一个解中随机的选择两个城市, 然后交换它们
23
遗传算法的特点
• 遗传算法也结合了“上山”趋势和随机 搜索,并在并行搜索线程之间交换信息 • 遗传算法的主要优势来自于杂交
–数学上可以证明,如果基因编码的位置在初 始时就随机转换的话,杂交就没有优势 –杂交的优势在于它能够将独立发展的若干个 相对固定的字符(能够执行有用的功能—“ 砖块”)组合起来,提高了搜索的粒度 –所谓有用的砖块,就是几个结合起来可以构 造问题的解—参见书中的八皇后问题举例
gambit中cooper方法
gambit中cooper方法
在Gambit中,Cooper方法是一种基于逐步搜索和局部优化的启发式算法,用于求解连续或离散组合优化问题。
它使用局部搜索来迭代地改进当前解,并在每一步中通过搜索相邻解空间来找到更好的解。
Cooper方法的基本步骤如下:
1. 初始化:选择一个初始解,通常是一个随机解或使用某种启发式方法得到的解。
2. 局部搜索:对当前解进行局部搜索,即在其邻域内寻找更好的解。
局部搜索可以使用不同的搜索策略,如贪婪算法、模拟退火、遗传算法等。
3. 更新解:用局部搜索得到的更好解替换当前解。
4. 终止条件:如果满足终止条件(如达到最大迭代次数、解的质量达到预设阈值等),则停止算法并返回当前解作为最优解;否则,返回步骤2继续进行迭代。
Cooper方法适用于求解各种组合优化问题,如背包问题、旅行商问题、排班问题等。
它的优点在于能够快速找到近似最优解,尤其在问题规模较大时。
然而,Cooper方法的性能依赖于初始解的选择、局部搜索策略以及问题的特性,有时可能无法找到全局最优解。
爬山法:局部寻优搜索算法
爬山法:局部寻优搜索算法遗传算法是优秀的全局优化算法,爬山法是一种局部寻优效果较好的搜索算法。
简单的来说,就在在一个初始目标位置附近,随机搜索看是否存在符合最终期望目标的位置。
有的话就替换原初始目标位置,然后在重复搜索,直到随机搜索一定次数后,都没有更好的目标位置为止。
专业一点的说法是这样:首先在搜索空间随机选取一点作为进行迭代的初始点,然后在其邻域内随机产生一点,计算其函数值,若该点函数值优于当前点,则用当前点替换初始点作为新的初始点继续在邻域内搜索,否则继续在邻域随机产生另一个点与初始点进行比较,直到找到比其优秀一点或连续几次都找不到比其优秀的点则终止搜索过程。
举个例子:A国部队进行战事训练,你作为其中一名优秀的狙击手,黑夜中,你被空降到一个山地中,现在你需要占据制高点,我们设定制高点是峰顶位置。
现在你手上唯一的武器就是一把狙击枪和一个海拔仪。
那么怎么在短时间内快速找到最近的制高点呢?你灵机一动一动动,想到了“爬山法”,于是你在距离当前降落位置A点的20米的东(A1)南(A2)西(A3)北(A4)四个方向上分别测试了海拔高度,选择其中海拔最大的位置(假设是东边的位置A1),这个时候,你在达到东边这个位置A1后,又测量了东南北三个方向相距A1点20米(这个20米称为步长)的位置(西边不用测量,因为你是从上一个A是在A1的西边),在进行确定往那个方向前进,在不断重复之后,当你发现其他方向的海拔都低于你这个位置的海拔的时候,你就可以认为,你当前处于至少在局部范围内是最好的制高点了。
这个时候,你看了一下表,用时3分钟,然后便开始伏地探测搜寻Target准备狙击了。
爬山法在处理单峰问题时可以快速收敛到局部最优点,但是多峰值问题有多个峰值点,用爬山法只能找到多个局部最优点之中的一个,不一定是全局最优点,因此将无法确定全局最优点。
尽管爬山法不能进行全局寻优,但是爬山法有传统的优化算法不具有的优势,就是爬山法可以处理不可微的单峰函数,因为爬山法通过在邻域内随机产生个体进行优化,不需要利用梯度,所以爬山法可以在遗传算法处理复杂问题时发挥局部寻优作用。
局部搜索和模拟退火
不同规模下皇后问题的 平均求解时间
皇 后 数 100
500 1000 2000 5000 10000 30000
平均时间 (秒)
5
5
12
28
170
900 10000
模拟退火算法
是局部搜索算法的一种扩展 最早由Metropolis在1953年提出,
Kirkpatrick等人在1983年成功地将模拟退 火算法用于求解组合优化问题。 基本思想是借用金属的退化过程改进局 部搜索算法
(2, 1, 4, 3), (2, 3, 1, 4), (2, 4, 3, 1)}
例:旅行商问题
用一个城市的序列表示一个可能的解。 通过交换两个城市的位置获取S的邻居 例:简单交换方法
设S = (x1, x2, …xi-1, xi, xi+1, …, xj-1, xj, xj+1, …, xn) 则通过交换xi和xj两个城市的位置可以得到S的一
第三次循环
从P中选择一个元素, 假设xn = (a, e, c, d, b), f(xn) = 44, f(xn) > f(xb), P = P – {xn}
= {(a, b, d, c, e), (a, b, e, d, c), (a, b, c, e, d)}
第四次循环
从P中选择一个元素, 假设xn = (a, b, d, c, e), f(xn) = 44, f(xn) > f(xb), P = P – {xn} = {(a, b, e, d, c), (a, b, c, e, d)}
O(log n), O(n), O(n log n), O(n2 ), O(2n ), O(nlog n ), O(n!), O(nn )
机器翻译中的局部和全局搜索算法研究
机器翻译中的局部和全局搜索算法研究机器翻译(Machine Translation, MT)是指使用计算机技术实现一种语言向另一种语言的自动翻译过程。
在机器翻译的研究和实践中,局部搜索算法和全局搜索算法是两种常见的翻译算法。
下面将分别对这两种算法进行介绍和研究。
一、局部搜索算法局部搜索算法是一种基于贪心的翻译算法,它从源语言的局部信息出发,逐步生成目标语言的翻译结果。
常见的局部搜索算法有基于短语的翻译方法和基于词语的翻译方法。
基于短语的翻译方法基于短语的翻译方法是一种常见的局部搜索算法,它将源语言和目标语言分别表示为短语,并通过对源语言短语进行组合,生成目标语言的翻译结果。
该算法的主要思路是通过构建短语对(Phrase Pair)的方式实现翻译,其中短语对包括源语言短语和目标语言短语。
翻译过程中,通过对源语言句子进行分析和解码,选择与源语言短语对应的目标语言短语,得到最终的翻译结果。
基于词语的翻译方法基于词语的翻译方法是另一种常见的局部搜索算法,它将源语言和目标语言分别表示为词语,并通过对源语言词语进行组合,生成目标语言的翻译结果。
该算法的主要思路是通过词语的对齐(Word Alignment)实现翻译,其中词语对齐是指将源语言词语和目标语言词语进行对应关联。
翻译过程中,通过对源语言句子进行词语对齐和解码,选择与源语言词语对应的目标语言词语,得到最终的翻译结果。
局部搜索算法的优势在于其简单、高效,能够在较短的时间内完成翻译任务。
然而,局部搜索算法也存在一些问题。
首先,由于其贪心策略,容易陷入局部最优解,导致在某些情况下翻译结果不够准确。
其次,局部搜索算法只考虑了源语言的局部信息,缺乏对全局语义的理解,导致翻译的准确性和流畅性有待提高。
二、全局搜索算法全局搜索算法是一种基于动态规划的翻译算法,它从源语言的全局信息出发,通过对源语言和目标语言之间的整体关系进行建模,实现目标语言的翻译结果。
全局搜索算法常见的应用包括统计机器翻译和神经机器翻译。
一种基于区域局部搜索的NSGA Ⅱ算法
一种基于区域局部搜索的NSGA II 算法栗三一 1王延峰 1乔俊飞 2黄金花3摘 要 针对局部搜索类非支配排序遗传算法 (Nondominated sorting genetic algorithms, NSGA II)计算量大的问题,提出一种基于区域局部搜索的NSGA II 算法(NSGA II based on regional local search, NSGA II-RLS). 首先对当前所有种群进行非支配排序, 根据排序结果获得交界点和稀疏点, 将其定义为交界区域和稀疏区域中心; 其次, 围绕交界点和稀疏点进行局部搜索. 在局部搜索过程中, 同时采用极限优化策略和随机搜索策略以提高解的质量和收敛速度, 并设计自适应参数动态调节局部搜索范围. 通过ZDT 和DTLZ 系列基准函数对NSGA II-RLS 算法进行验证, 并将结果与其他局部搜索类算法进行对比, 实验结果表明NSGA II-RLS 算法在较短时间内收敛速度和解的质量方面均优于所对比算法.关键词 非支配排序遗传算法, 分区搜索, 局部搜索, 多目标优化引用格式 栗三一, 王延峰, 乔俊飞, 黄金花. 一种基于区域局部搜索的NSGA II 算法. 自动化学报, 2020, 46(12): 2617−2627DOI 10.16383/j.aas.c180583A Regional Local Search Strategy for NSGA II AlgorithmLI San-Yi 1 WANG Yan-Feng 1 QIAO Jun-Fei 2 HUANG Jin-Hua 3Abstract In order to reduce the amount of calculation and keep the advantage of local search strategy simultan-eously, this paper proposed a kind of nondominated sorting genetic algorithms (NSGA II) algorithm based on re-gional local search (NSGA II-RLS). Firstly, get corner points and sparse point according to the results of non-dom-inated sorting of current populations, define those points as the centers of border areas and sparse area respectively;secondly, search around the corner points and sparse point locally during every genetic process; NSGA II-RLS ad-opts extreme optimization strategy and random search strategy simultaneously to improve the quality of solutions and convergence rate; adaptive parameter is designed to adjust local search scope dynamically. ZDT and DTLZ functions are used to test the effectiveness of NSGA II-RLS, the performance is compared with four other reported local search algorithms. Results show that: the solution quality of NSGA II-RLS is better than the other methods within limited time; the time complexity of NSGA II-RLS needed to achieve the set IGD value is less than the oth-er methods.Key words Nondominated sorting genetic algorithms (NSGA II), regional search, local search, multi-objective op-timizationCitation Li San-Yi, Wang Yan-Feng, Qiao Jun-Fei, Huang Jin-Hua. A regional local search strategy for NSGA II algorithm. Acta Automatica Sinica , 2020, 46(12): 2617−2627带精英策略的非支配排序遗传算法(Nondom-inated sorting genetic algorithms, NSGA II)作为一种启发式算法, 通过模拟进化论的自然选择和遗传学机理, 可以在不考虑实际工程内部工作方式的情况下求解高度复杂的非线性最优值问题, 被广泛应用于经济结构优化[1]、路径规划[2]、生产调度[3]等实际工程中. 然而作为一种类随机搜索算法, NSGA II 存在收敛速度慢的问题[4].针对NSGA II 收敛速度慢的问题, 已有的研究表明局部搜索策略可以有效提高种群收敛速度, 并且在靠近Pareto 前沿时避免陷入局部极优[5]. 目前已经提出的局部搜索算法可以分为两类: 随机搜索算法和定向搜索算法.X )Y )Y X Y X,Y 随机搜索算法将指定解(设为 周围区域作为搜索区间, 对该解增加一较小的随机值形成新的解(设为 , 若 支配 则 取代 之后以 为中心继续进行搜索. 一些研究者认为初始种群对局部搜索算法的效果有重要影响[6−7], 初始种群分布范收稿日期 2018-09-01 录用日期 2019-01-18Manuscript received September 1, 2018; accepted January 18,2019全国教育科学规划一般课题(BJA170096), 湖北省教育科学规划课题 (2018GB148), 教育部新一代信息技术创新项目(2019ITA04002),河南省科技攻关项目基金 (202102310284)资助Supported by General Project of National Education Science (BJA170096), Education Science Project of Hubei Province (2018GB148), Innovation Project in Information Technology of Education Ministry (2019ITA04002), and Key Projects of Sci-ence and Technology of Henan Province (202102310284)本文责任编委 魏庆来Recommended by Associate Editor WEI Qing-Lai1. 郑州轻工业学院 郑州 4500022. 北京工业大学信息学部 北京 1001243. 武汉船舶职业技术学院 武汉 4300001. Zhengzhou University of Light Industry, Zhengzhou 4500022. Faculty of Information Technology, Beijing University of Technology, Beijing 1001243. Wuhan Institute of Shipbuild-ing Technology, Wuhan 430000第 46 卷 第 12 期自 动 化 学 报Vol. 46, No. 122020 年 12 月ACTA AUTOMATICA SINICADecember, 2020围越大、分布越均匀, 随机搜索的效果越好, 从这一方面出发设计了基于任务分解的种群初始化方法,产生初始解之后使用随机搜索尝试从不同的初始解逼近Pareto前沿. 部分研究者尝试将单目标局部搜索算法扩展应用于解决多目标优化问题[8]. 还有一些专家尝试调整搜索区域和搜索范围以提高局部搜索的效率[9−10]. 在专家学者的努力下, 已有的随机搜索类算法可以有效提高种群的收敛速度, 避免种群陷入局部极优, 然而在每一次迭代过程中都需要对每个解进行局部搜索, 普遍存在计算复杂度高的问题.定向搜索算法通过梯度或任务分解等方法指定搜索方向, 使初始种群朝着指定方向收敛. 一些专家使用梯度求导等方法获得搜索方向[11−12], 可以有效指导种群向Pareto前沿逼近, 但是求导计算量太大. 为了避免求导, 研究者利用目标空间几何信息[13]、解的邻域信息[14]和父代与子代之间差别信息[15]等获得搜索方向. 定向搜索算法通过指定搜索方向,搜索效率高, 但由于搜索方向固定, 对初始种群的分布特性要求很高, 且方向函数的计算也增加了计算复杂度, 与随机算法相同的是随机算法在每一次迭代过程中对每个解进行局部搜索, 计算成本高.随机搜索算法和定向搜索算法在搜索过程中对每个解均进行局部搜索, 计算复杂度很高[9, 16], 限制了局部搜索算法在对优化速度要求较高场合的应用. 针对这一问题本文提出基于区域局部搜索的NSGA II算法(NSGA II based on regional local search, NSGA II-RLS). NSGA II-RLS以NSGA II 为框架, 在交叉变异操作过程后进行局部搜索, 首先根据非支配排序结果获得交界点(目标空间中单个目标向量方向上值最大的解)和稀疏点(除了交界点以外拥挤距离最大的点), 将其定义为交界区域和稀疏区域中心, 然后围绕交界点和稀疏点进行局部搜索. 局部解由极限优化变异策略[17]和随机搜索策略产生, 在局部搜索过程中设计自适应参数动态调整局部搜索范围, 提高了局部搜索的效率. NSGA II-RLS主要有以下优势:1)交界点和稀疏点可以直接根据非支配排序结果获得, 不需要计算密度和梯度, 计算量小.2)在交界区域和稀疏区域进行局部搜索可以同时提高收敛速度和增加种群分布的均匀性.3)只在交界区域和稀疏区域进行局部搜索可以避免计算资源浪费, 有效降低计算复杂度.4)自适应参数的设定可以使算法在初期具有较大的搜索范围, 靠近Pareto前沿时具有较小的搜索范围, 提高了局部搜索的搜索效率.通过基准多目标优化实验验证算法的有效性.实验结果证明NSGA II-RLS可以有效提高NSGA II 算法的收敛速度. NSGA II-RLS在有限时间内得到的解的质量明显优于其他算法; 评价指标达到设定值所消耗的计算量明显少于其他算法; 优化效果优于固定搜索范围的局部搜索方法.1 非支配、拥挤距离排序P,N,X i iS i C i,S i X i C iX i C i=0P1,C i C i=0P2,NSGA II算法结合非支配关系与拥挤距离对非支配解进行排序. 假设当前种群为 种群规模为 对每个个体(第个个个体), 设两个参数和 为被支配的个体的集合, 为支配的个体的数量. 将所有的个体组成集合 其为第1级非支配解, 也是当前的非支配解集.然后将剩下的所有个体的减1, 此时的个体组成集合 其为第2级非支配解, 重复上述过程直到所有解完成分级.iD i,i然后对每一级的解进行拥挤距离排序, 设第个解的拥挤距离为 定义为在个体周围包含个体本身但不包含其他个体的最小的长方形(周长最小的长方形), 如图1所示. 将同一级别的解按照拥挤距离从大到小排列, 最边界的解的拥挤度为无穷大, 同一级别的解拥挤距离越大越好.i图 1 个体的拥挤距离iFig. 1 Crowded distance of individual2 NSGA II-RLS算法为了解决目前局部搜索多目标优化算法计算复杂度高的问题, 本文提出基于一种基于分区局部搜索的多目标优化算法NSGA II-RLS. NSGA II-RLS根据NSGA II算法的非支配排序结果直接获2618自 动 化 学 报46 卷得交界点和稀疏点, 将其设为交界区域和稀疏区域中心, 不需要额外的计算量; 在交界点和稀疏点周围进行局部搜索, 在提高种群收敛速度的同时保证了进化过程中种群的多样性和均匀性; 分区搜索较以往的局部搜索算法计算复杂度明显降低; 为了提高局部搜索的效率, 对局部搜索范围进行自适应动态调整.2.1 获取区域中心局部搜索可以有效提高收敛速度[8−12], 然而对每一个解都进行局部搜索计算量很大, 而且对远离Pareto 前沿的被支配解进行局部搜索对种群逼近Pareto 前沿贡献不大. 因此人们尝试分区域进行搜索, 区域搜索的中心思想是在重点区域进行局部搜索, 有侧重点的搜索以增加搜索效率, 如在目标空间进行聚类得到聚类中心、通过拐点确定中心等,然后围绕中心点进行局部搜索.然而通过聚类、密度计算等确定中心, 任意两个解之间的欧氏距离都需要计算, 增加了算法的计算量. 因此本文直接利用非支配排序和拥挤距离排序获得搜索区域中心, 非支配排序和拥挤距离排序是NSGA II 算法的固有步骤, 因此利用其获得搜索区域中心不会增加计算复杂度.t P,m,P P 1P 1m m +1m +1P 1m m +1m 获取区域中心具体方法如下: 设第 代种群为 目标函数个数为 根据第1节对种群 进行非支配排序和拥挤距离排序, 则第1级非支配解 为当前种群的非支配解. 由拥挤距离排序机理可知,交界点的个数等于目标函数个数, 在种群 中前 个个体的拥挤距离为无穷大, 第 个个体的拥挤距离为除了边界点之外最大的点, 意味着第 个个体周围解的密度最低. 由此可知非支配解集 中前 个个体为交界点, 第 个个体为稀疏点, 对应着 个交界区域的中心和稀疏区域的中心.本文以交界点和稀疏点为中心进行局部搜索,交界点是至少在一个目标向量方向上的极大值或极小值, 以交界点为中心进行搜索是确保种群分布范围的一个措施. 拥挤距离最低的点周围是解最稀疏的区域, 围绕稀疏点进行局部搜索可以增加种群分布的均匀性. 因此本文以交界点和拥挤距离最小的点为中心进行局部搜索是有意义的.以两目标优化问题为例, 图2显示了NSGA II-RLS 算法的种群进化过程. 从图中可以看到以下三点: 局部搜索可以提高种群收敛速度; 围绕稀疏点进行局部搜索可以增加种群的分布均匀性; 围绕交界点进行局部搜索可以保持种群的分布范围.2.2 局部搜索搜索区域中心确定之后需要围绕区域中心进行局部搜索, 局部搜索的方法对局部搜索效果有重要影响. 本文采用文献[18]提出的局部搜索方法, 同时采用极限优化策略和随机优化策略产生局部解,可以平衡局部搜索算法的全局搜索能力和局部搜索能力.X =(x 1,x 2,···,x n ),n n,极限优化的具体方法如下[17]: 设被搜索区域的中心解为 为决策变量个数,种群规模为N , 则产生局部解个数为 变异公式为X i =(x 1,···,x ′i ,···,x n ),0<i ≤n(1)x ′i =x i +α×βmax (x i ),0<i ≤n(2)图 2 NSGA II-RLS 算法的种群进化过程Fig. 2 The evolution process of NSGA II-RLS algorithm12 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2619βmax (x i )=max [x i −l i ,u i −x i ],0<i ≤n(4)x i h q q l i u i i βmax (x i )x i 其中, 为决策变量; 为0到1之间的随机数; 为正实数, 称为形状参数, 根据文献[17]将 设为11; 和 分别为第 个决策变量的下界和上界; 为当前决策变量 可变动的最大值.X =(x 1,x 2,···,x n ),n,n N,随机局部搜索策略为: 设当前搜索中心解为 为决策变量个数, 种群总数为 随机搜索产生局部解个数为种群总数的20%[19] (如不能整除则取整), 随机搜索变异公式为γrand (γ)(−γ,γ)0.1N (m +1)(n +⌈0.3N ⌉)m 其中, 为搜索范围参数, 用于确定搜索范围的大小; 表示取值在 之间的随机数. 同时还产生 个随机解以保证种群的多样性[17]. 以上变异策略共产生 个局部解, 为目标函数个数.2.3 自适应参数设定T max 对于随机局部搜索策略, 在算法运行初期较大的搜索范围可以提高全局搜索能力, 使种群快速靠近Pareto 前沿. 在靠近Pareto 前沿后, 较小的搜索范围可以提高种群逼近Pareto 前沿的能力. 本文根据最大优化时间( )设计参数动态调整方法.T max ,根据经验与已有的研究成果[9−10, 19]设定的取值范围为(0.05,0.2), 设最大优化时间为 搜索范围调整公式为t T max T max t T max T max γT max 其中, 为从优化开始到当前时刻的时间, 使用式(9)时需 的值大于5, 若小于5则单位量级可以降低一个等级, 如当 为3 s, 则可设其为3 000 ms, 与 统一单位. 图2和图3分别显示了 为5 s 和1 000 s 时 的变化曲线, 从图中可以看出, 其变化轨迹完全相同, 且其变化规律符合预期的搜索范围变化规律, 因此本文提出的自适应公式针对不同的 设定值具有很好的自适应性.γ注1. 的取值范围本文根据经验与相关文献[9–10, 19]进行设定, 并没有通过实验验证, 后期研究可以通过实验找到最佳的搜索范围.注2. 多数实际优化问题的Pareto 前沿是未知的, 本文提出的搜索范围调整方法并不需要知道Pareto 前沿, 而且需要设定的参数很少, 适用于解决实际问题.2.4 NSGA II -RLS 算法流程N ;T max ;n ;u =(u 1,u 2,···,u n )l =(l 1,l 2,···,l n );m ;q ;p c pm ;ηc ηm .根据实际MOP 问题设定算法参数: 初始种群数量为 最大优化时间 决策向量维数 决策变量取值上界 和下界 目标函数个数 形状参数 交叉概率和变异概率 交叉参数 和变异参数 NSGA II-RLS 的具体算法流程如下:P I ={X 1,X 2,···,X N }X i =(x ′1,x ′2,···,x ′n )i =1,2,···,n 步骤1. 在取值范围内随机初始化种群 , 其中, , .P I P C ,步骤2. 对 进行非支配、拥挤距离排序, 当前种群中所有非支配解记为 根据排序结果确定交界区域中心和稀疏区域中心.P I P M .步骤3. 按照标准NSGA II 算法对 中的种群进行交叉变异, 形成子代T max γ图 3 为5 s 时 的变化曲线γT max Fig. 3 the change curve of when is set to be 5 sT max γ图 4 为1 000 s 时 的变化曲线γT max Fig. 4 the change curve of when isset to be 1 000 s2620自 动 化 学 报46 卷(m +1)(n +⌈0.3N ⌉)P N .步骤4. 围绕交界中心和稀疏区域中心进行局部搜索, 共产生 个局部解, 将其集合设为种群 P I P M P N N P O ,P I =P O .步骤5. 将 、 和 合并, 并对所有解进行非支配、拥挤距离排序, 从中选取最优的 个解形成下一代种群 并设 T max 步骤6. 重复步骤2~5, 当达到最大优化时间 或目标精度时进行步骤7.P I 步骤7. 当前 中的非支配解即为得到的最优解.与其他局部搜索NSGA II 算法相比, NSGA II-RLS 算法只在边界和稀疏区域进行局部搜索, 计算量明显降低, 并且能够保证算法的收敛速度和种群的分布性; 采用两种局部搜索策略, 使算法在搜索前期和后期都有较好的搜索效率; 搜索范围的自适应调整平衡了全局搜索与局部搜索的比重; 本文提出的搜索范围调整方法不需要提前获知Pareto 前沿, 需要设定的参数也较少, 符合实际工程应用要求.下面分析NSGA II-RLS 算法运行一代的时间复杂度(函数计算次数, 每一次公式的计算都增加计算复杂度1). NSGA II-RLS 的时间开销主要集中在子代目标函数值求解部分.0.5N +(m +1)(n +⌈0.3N ⌉)n m N,O (mN )O (0.8N +0.3mN )子代目标函数值求解: 交叉变异和局部搜索共产生 个解, 因决策变量个数 和目标个数 一般远小于 因此该步骤计算复杂度为 , 一代函数计算次数为 .O (mN )O (N 2)O (N )N 综合以上分析, NSGA II-RLS 的计算复杂度为 . 当单个解的局部搜索解数量与本文相同时, 全部解都进行局部搜索的随机搜索算法的计算复杂度为 . 对于定向搜索算法, 由于需要通过梯度等方法计算方向, 计算复杂度一般高于随机搜索算法. 标准NSGA II 的一代计算复杂度为 ,由此可以看出, 本文提出算法的计算复杂度与标准NSGA II 都为 的一次方级别, 且其系数也不大,因此NSGA II-RLS 的计算复杂度远远低于其他局部搜索算法, 而且其搜索范围也可以自适应调整.注3. NSGA II-RLS 算法采用分区搜索机制,重点在交界区和解稀疏区域局部搜索, 因此, 对于Pareto 非连续的问题, 在优化过程中可能出现某些片段无解的情况, 所以NSGA II-RLS 适用于解决Pareto 前沿连续的问题.3 仿真实验本文通过双目标ZDT 系列函数和三目标DTLZ系列函数对算法NSGA II-RLS 进行验证, 测试函数的特征及参数如表1所示. 实验结果与基于密度O (0.8N +0.1N 2)O (0.5N +C 2nN )O (0.5N +15(n −3)N )O (2.5N +C 2n N )O (N 2)O (n 2N )O (nN )O (n 2N )O (0.8N +0.3mN )O (mN )的局部搜索算法NSGA II-DLS [18]、随机局部搜索算法ED-LS [9]、变深度随机局部搜索算法MOILS [10]和定向搜索算法DirLS [15]进行对比, 一代函数计算次数分别为 、 、 和 , 计算复杂度分别为 、 、 和 . 本文提出的NS-GA II-RLS 的一代函数计算次数为 ,计算复杂度为 . 采用MATLAB10.0b 软件进行仿真实验, 处理器为3.60 GHz, 8.00 GB 内存,Microsoft 实验环境.N n ηc ηm 1/n ;q 双目标实验初始种群规模 为100, 三目标实验初始种群规模为200; 决策变量个数 如表1所示; 所有实验均采用模拟二进制交叉变异方法, 交叉参数 和变异参数 均设为20, 交叉和变异概率分别为0.9和 形状参数 设为11.I 采用综合评价指标 IGD (Inverted generation-al distance) 和种群多样性指标 进行评价. IGD 的计算公式为P ∗P d (v,P )v P |P ∗|其中, 为帕累托解集; 为近似解; 为向量 与解集 中的向量的欧氏距离最小值; 为帕累托解集中解的个数.I 指标 的计算公式为d f d l d i ,i =1,2,···,N −1d m d i 其中, 和 为帕累托末端解和所得解集边界解之间的欧氏距离, 为所获得的连续非支配解之间的欧氏距离, 为所有 的平均值.实验结果使用秩和检验(Wilcoxon ranksum test), 在0.05显著性水平上说明不同结果之间的差异显著性.注4. 在使用优化算法做基准实验时, 大部分文表 1 测试函数参数Table 1 Paramter setting of the test functions函数Pareto 前沿特征决策变量维度目标维度种群规模ZDT1凸3021 000ZDT2凹3021 000ZDT4凸1021 000ZDT6凹1021 000DTLZ1非凸非凹732 500DTLZ2凹734 096DTLZ3凹734 096DTLZ4凹1234 09612 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2621章将种群规模设定为100或200[3−7], ZDT 系列问题是双目标问题, 相对比较简单, 因此我们对ZDT 实验设定种群规模为100, DTLZ 系列为三目标问题,比较复杂, 我们设定种群规模为200. Deb 等[20]在提出NSGA II 算法时设定交叉变异参数为20, 交叉概率为0.9, 变异概率为1/n , 之后人们在使用和改进NSGA II 算法时, 有一些保持了该参数设定[21−23],而这一部分不是本文研究的重点, 因此本文也按照文献[20]对交叉变异参数进行设定. 文献[17]提出了极限优化算法, 本文根据文献[17]将形状参数q 设为11.3.1 实验1T max 本实验设定当ZDT 系列函数IGD 值达到0.01、三目标函数IGD 值达到0.1 (所对比算法双目标函数IGD 最优值在0.01以下但接近0.01, 三目标函数IGD 最优值在0.1以下并接近0.1)时停止优化, 对双目标和三目标函数最大优化时间 分别设为50 s 和200 s (各对比算法达到目标精度的时间多数情况下小于此设定值, 为了防止未达到目标精度而因达到最大优化时间停止优化, 将最大优化时间设定为较大的值比较合理), 计算停止时的总函数计算次数. 本实验用于验证算法在达到目标精度时函数计算总次数, 可以反映算法的收敛速度,实验结果如表2和表3所示.从表2和表3可以看出, 本文提出的NSGA II-RLS 在所有实验中达到目标精度时总函数计算次数远远低于其他对比算法. 在双目标ZDT 系列实验中, NSGA II-RLS 的总进化代数是最低的. 对于ZDT1和ZDT2, MOILS 的函数计算次数均低于ED-LS, 说明当n 较大时对搜索范围的调整可以有效提高搜索效率. NSGA II-RLS 的实验结果优于ED-LS, 说明极限优化策略的引入可以有效提高种群的收敛效果. DirLS 的函数计算次数低于ED-LS,且该两种算法的局部解生成机制同为2-opt (2-op-timization)方法, 说明在双目标实验中指向性参数的加入对收敛性有较大提升. 同时从表2中可以看到, NSGA II-RLS 结果的波动范围最小, 说明NSGA II-RLS 有较好的稳定性.在三目标DTLZ 系列实验中, MOILS 在DTLZ1、DTLZ3和DTLZ4中的进化代数最低, 除NSGA II-DLS 之外的算法总进化代数差异不超过30%, 因此总函数计算次数的差异主要由单步函数计算次数产生. 从总函数计算次数可以反映出NSGA II-RLS 单步计算复杂度低的优势. MOILS 在三目标实验中总函数计算次数是最高的, 结合双目标实验结果表 2 ZDT 系列函数IGD 值达到0.01时对比算法的总时间复杂度与进化代数 (连续10次实验求平均)Table 2 For ZDT series function the comparison of total time complexity and the evolution algebra of differentalgorithms when IGD value reaches 0.01 (mean value of ten consecutive experimental results)算法ZDT1ZDT2ZDT3ZDT4复杂度代数复杂度代数复杂度代数复杂度代数NSGA II-RLS 2 10015 2 38017 1 96014 1 40010NSGA II-DLS [17]46 440 (+)4334 560 (+)3231 320 (+)2932 400 (+)30ED-LS [9]2 569 450 (+)591 698 450 (+)39168 350 (+)37163 800 (+)36MOILS [10]1 419 250 (+)351 135 400 (+)28327 050 (+)31232 100 (+)22DirLS [15]1 312 500 (+)301 137 500 (+)26156 750 (+)33114 000 (+)24注: (+) 表示NSGA II-RLS 的结果明显优于相应的算法表 3 DTLZ 系列函数IGD 值达到0.1时对比算法的总时间复杂度与进化代数 (连续10次实验求平均)Table 3 For DTLZ series function the comparison of total time complexity and the evolution algebra of differentalgorithms when IGD value reaches 0.1 (mean value of ten consecutive experimental results)算法DTLZ1DTLZ2DTLZ3DTLZ4复杂度代数复杂度代数复杂度代数复杂度代数NSGA II-RLS 29 9208817 3401933 6609927 54041NSGA II-DLS [17]378 000 (+)17599 360 (+)46416 880 (+)193192 240 (+)89ED-LS [9]369 800 (+)86116 100 (+)27460 100(+)107545 300 (+)41MOILS [10]883 300 (+)73254 100 (+)211 028 500 (+)851 084 000 (+)40DirLS [15]385 400 (+)82159 800 (+)34451 200 (+)96671 300 (+)49注: (+) 表示NSGA II-RLS 的结果明显优于相应的算法2622自 动 化 学 报46 卷n n 可知, 当决策变量维数较高时, 变深度局部搜索的总函数计算次数优于2-opt 方法, 当决策变量维数低时2-opt 方法的总函数计算次数优于变深度搜索. NSGA II-DLS 在所有实验中消耗的进化代数最大, 原因是其只在稀疏解周围进行局部搜索, 导致算法先收敛到前沿附近的某一区域, 之后还需要继续对周边区域进行探索. 由以上分析可知, NSGA II-RLS 产生局部解时使用极限优化策略和随机搜索策略可以有效提高种群收敛速度, 其单步函数计算次数远远低于所对比算法. 从局部解生成公式(1)~(6)可知, 其生成解数量仅与种群规模N 相关,而目前大部分局部搜索方法产生局部解时采用2-opt 及其衍生方法, 产生局部解的个数不仅与N 相关, 而且与决策变量维数 成正相关, 实际问题中, 的维数一般较高, 这也是导致一般局部搜索计算复杂度高的原因之一.从以上实验结果分析可知, 达到目标精度时NSGA II-RLS 的总函数计算次数最低, 说明NSGA II-RLS 具有快速收敛的优点, 并且优化效果比较稳定.注5. 文献[14, 18, 24]以优化函数计算次数作为评价标准, 但对于局部搜索类算法而言, 遗传过程中梯度计算、密度计算等消耗的计算资源也不容忽视. 为了更公平地比较算法效果, 本文以总时间复杂度为评价标准.3.2 实验2T max T max T max T max T max 实际工程中经常以时间作为停止标准, 本实验设定当达到最大优化时间 时停止实验. 本文提出的NSGA II-RLS 优势在于计算复杂度低、收敛速度快, 因此为了体现算法的优势, 本实验对ZDT 系列实验设 为20 s, DTLZ1和DTLZ3实验设 为200 s, DTLZ2实验设 为40 s, DTLZ4实验设 为80 s, 比较实验停止时的IGD 值、GD 值和I 值. 所有实验除局部搜索步骤不同, 其他部分完全相同, 以保证实验对比的公平性. 本实验的目的是检验在有限的时间内各算法的优化效果.实验结果如表4和表5所示.T max 从表4可以看出, 除DTLZ2实验外NSGA II-RLS 的IGD 均值与标准差均为最小. DTLZ2实验各算法实验结果相差不超过30%, 说明对于DT-LZ2函数将 设为40 s 各算法有相对充足时间收敛到Pareto 前沿, 也说明当时间足够长时NSGA II-RLS 的效果反而不如已有的局部搜索算法, 但其优化效果与对比算法中最优的结果差距在5% 以内,从实验1的结果可以看出, 在达到目标精度时NSGA II-RLS 的总计算量不超过对比算法总计算量的10%,也就是说用10%的计算资源达到了95%的优化效果. 在其他实验中NSGA II-RLS 的IGD 均值与方差均最小, 对应实验1的结果可知, 在优化时间有限且较短时, 计算复杂度低、收敛速度快的NSGA II-RLS 算法具有明显优势.ED-LS 与DirLS 算法类似, DirLS 比ED-LS 多加了方向性指标指导种群进化, 在ZDT 函数实验中DirLS 的结果优于ED-LS, 而在三目标实验中ED-LS 的结果反而优于DirLS, 这是由于DirLS 随着种群进化, 根据进化前后两代种群更新方向指标, 在目标个数较少时方向指标可以加快收敛到Pareto 前沿的速度, 但当目标空间维数较高时, 虽然其也能加快收敛速度, 但解的分布性反而不如ED-LS,从而导致其综合评价指标IGD 值不理想. NSGA II-RLS 的实验结果均优于NSGA II-DLS, 说明本文提出的分区域搜索比只在稀疏区域搜索有更好的效果, 计算复杂度更低.从表5可以看出, 对于DTLZ1、DTLZ3和DT-LZ4, NSGA II-RLS 的I 值均值与标准差最低, 说明在较短时间内NSGA II-RLS 获得的种群有较好的分布特性. 对于优化时间充足的DTLZ2, NSGA II-RLS 的I 值较最优的ED-LS 的I 值降低了2.4%,说明当优化时间充足时NSGA II-RLS 的解的分布特性虽不如最优的算法, 但差距不大. 这与从表4得到的结论相一致.从表4和表5的实验结果可以看出, 对于ZDT 系列实验、DTLZ1、DTLZ3和DTLZ4, NSGA II-RLS 的实验结果优于对比算法且具有显著差异性,说明其结果具有统计学意义.由以上分析可知, 对于多目标优化问题, 在有限的较短时间内NSGA II-RLS 获得种群的IGD 值与I 值优于所对比算法, 说明在较短时间内NSGA II-RLS 具有较好的逼近性和分布特性. 从DTLZ2的实验结果可知, 当优化时间充足时NSGA II-RLS 算法效果与最优算法相比虽有所降低, 但差距在5%以内.注6. NSGA II-RLS 的提出主要为了解决局部搜索算法计算量大的问题, 因此将停止时间设定较低可以反映算法的优势. 当算法运行时间足够长时NSGA II-RLS 失去其优势, 但从DTLZ2的实验结果可以看出, 优化时间充足时NSGA II-RLS 的优化效果与其他优秀算法的优化结果差距在5%以内,效果相差不大. 本文提出的算法更适用于对优化快速性要求较高的场合, 时间充足的场合也可以应用.12 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2623。
多参数优化算法总结
多参数优化算法总结在进行多参数优化时,需要先估计待求参数的类型及其分布。
例如,一个汽车发动机零件的磨损是不可避免的,而且会对设备造成损害,但从经济性和生产率上考虑,仍然希望使用这种设备。
现代优化技术可以预测大量几何形状的磨损规律,因此许多设计者都有这样一种期望:根据几何形状,他们能够推断出磨损率、表面质量和总寿命。
另外,采用计算机辅助设计( CAD)也需要先对产品模型进行描述,它要反映物理特征和产品的几何形状。
有些问题并没有给定一个精确的解析解,或所得到的数值解与实际情况很接近了,那么为什么还要作计算呢?目前,国内外学者提出了一系列不同的方法来处理实际工程中遇到的复杂非线性优化问题。
大致包括:局部搜索方法、混合整数规划方法、多项式函数优化方法、多项式函数与梯度的联合方法等,下面将主要介绍几种比较流行的算法。
一、局部搜索方法局部搜索方法是指在初始点附近区域内逐步搜索初始方案,直至搜索完全部待解空间,选择最佳的参数解。
它通常被称之为穷举搜索。
目前已经提出了若干局部搜索算法,它们大体分两类:一类是广义最小元素算法,另一类是有限最小化算法。
(一)广义最小元素算法广义最小元素算法是对每一层未知的顶点附近范围内搜索,直至找到满足条件的最优参数。
例如,设函数 F1, F2,…, Fn (i=1,2,…, n)的变化规律如图1-3所示。
为了简便起见,只研究变化到底为止的情况,忽略过渡到f( x)处和从 x=0向右移动(即变化到 f(0)的各点)的情况,如果 f(0)∈[0,1],那么可认为广义最小元素算法就是对函数 F1,F2……, Fn,按照先搜索变换到某一邻域的第一点,再沿着邻域搜索最优点的顺序进行,直到找到满足要求的最优参数为止。
(二)有限最小化算法有限最小化算法的基本思想是:如果一个方案是优化的,则该方案的参数解的集合是优化的;否则就是不优化的。
设优化问题是非凸的,有 xA≤xB≤yC≤yD≤zD,令 xA≤xB≤yC≤yD≤zD 则称 A 是参数方案;称 B 是解决该优化问题的最小参数的最大似然解,或称解是一个参数优化问题,记为 MAP。
混合变异策略
混合变异策略混合变异策略概述混合变异策略是一种优化算法,它结合了两种不同的变异策略,即局部搜索和全局搜索。
局部搜索通常用于解决具有多个局部最优解的问题,而全局搜索则用于找到全局最优解。
通过将这两种策略结合起来,混合变异策略可以在保持收敛速度的同时避免陷入局部最优解。
基本原理混合变异策略基于进化算法的基本原理。
进化算法是一类基于自然选择和遗传机制的优化算法,其中包括遗传算法、粒子群优化、蚁群算法等。
在进化算法中,每个个体都表示为一个向量或一个字符串,并且该向量或字符串代表了问题的一个解。
通过对这些个体进行选择、交叉和变异等操作,可以产生新的个体,并逐步逼近最优解。
混合变异策略在进化过程中采用两种不同类型的变异操作:全局搜索和局部搜索。
全局搜索通常使用随机扰动方法来生成新的可行解,并尝试跳出当前区域以发现更好的区域。
而局部搜索则使用邻域搜索方法来改善当前解,以更好地利用已知信息。
具体实现混合变异策略的具体实现通常包括以下步骤:1. 初始化种群:根据问题的特点,初始化一组随机解作为初始种群。
2. 选择操作:根据适应度函数,选择一部分个体用于下一步的交叉和变异操作。
3. 交叉操作:从选定的个体中随机选择两个进行交叉操作,生成新的个体,并将其加入到新一代种群中。
4. 变异操作:对新一代种群中的每个个体进行变异操作。
对于某些个体,采用全局搜索方法进行变异;对于其他个体,则采用局部搜索方法进行变异。
这样可以保证算法不仅能够快速收敛,还能够避免陷入局部最优解。
5. 更新种群:将新一代种群替换为当前种群,并重复上述步骤直到满足终止条件。
优缺点混合变异策略具有以下优点:1. 可以同时利用全局搜索和局部搜索方法来寻找最优解,从而避免陷入局部最优解。
2. 可以在保持收敛速度的同时提高算法的精度和稳定性。
3. 可以应用于多种不同类型的问题,包括连续优化、离散优化和组合优化等。
但是,混合变异策略也存在以下缺点:1. 算法的性能高度依赖于问题的特性和参数设置。
人工智能之搜索策略介绍课件
游戏AI:启发式搜 索策略在游戏中用
3 于寻找最优策略, 如国际象棋、围棋 等棋类游戏的AI算 法。
任务调度:启发式 搜索策略在任务调
2 度中用于优化任务 分配,如最小化任 务完成时间和资源 消耗。
机器人控制:启发 式搜索策略在机器
4 人控制中用于规划 机器人运动路径, 如自主导航和避障。
务调度、资源分配等。
启发式搜索策略的分类
局部搜索策略:只考虑当前状态
01
附近的解空间 全局搜索策略:考虑整个解空间
02
的所有状态 启发式搜索策略:根据问题特点, 03 选择合适的搜索策略 自适应搜索策略:根据搜索过程
04
中的信息,动态调整搜索策略
启发式搜索策略的应用实例
路径规划:启发式 搜索策略在路径规
强化学习搜索 策略:将强化 学习和搜索策 略相结合,以 实现更优的决 策和行动
强化学习搜索策略的分类
01 基于模型的搜索策略:使
用模型来预测状态和动作 的价值,如Q-learning 和Deep Q-Networks。
02 基于策略的搜索策略:直
接优化策略,如Policy Gradients和ActorCritic方法。
游戏AI:游戏策略、游戏 角色行为等
机器人控制:机器人路径 规划、机器人行为控制等
启发式搜索策略的定义
1
启发式搜索策略是一种基于 启发式信息的搜索策略。
2
它通过使用启发式信息来指 导搜索过程,以减少搜索空
间,提高搜索效率。
3
启发式信息可以是问题领域 的知识、经验或启发式函数。
4
启发式搜索策略广泛应用于 各种问题,如路径规划、任
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般认为,NP完全问题的算法复杂性是指数级的。
当问题规模达到一定程度时,这些算法显得无能为力。
局部搜索算法、模拟退火算法和遗传算法等是较新发展起来的算法,算法引入了随机因素,不一定能找到最优解,但一般能快速找到满意的解。
组合优化问题举例
TSP问题
从某个城市出发,经过n个指定的城市,每个城市只能且必须经过一次,最后回到出发城市,如何安排旅行商的行走路线以使总路程最短?
约束机器排序问题
n个加工量为di(i=1,2,… n)的产品在一台机器上加工,机器在第t个时段的工作能力为ct,完成所有产品加工的最少时段数。
指派问题
一家公司经理准备安排N名员工去完成N项任务,每人一项。
由于各员工的特点不同,不同的员工去完成同一项任务时获得的回报是不同的。
如何分配工作方案可以获得最大收益?
0-1背包问题
设有一个容积为b的背包,n个体积分别为ai(i=1,2,… n),价值分别为ci (i=1,2,… n)的物品,如何以最大的价值装包?
装箱问题
如何用个数最少的尺寸为1的箱子装进n个尺寸不超过1的物品?
SAT问题
称判定一个公式是否存在一个模型的问题为可满足性问题(以后简称为SAT 问题)。
如果一个公式存在模型,则称该公式是可满足的,否则称为不可满足的。
皇后问题
在n×n的国际象棋棋盘上,摆放n个皇后,使得n个皇后之间不能相互“捕捉”?局部搜索算法
局部搜索算法是从爬山法改进而来的。
爬山法:在没有任何有关山顶的其他信息的情况下,沿着最陡的山坡向上爬。
局部搜索算法的基本思想:在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。
爬山算法
1, n := s;
2, LOOP: IF GOAL(n) THEN EXIT(SUCCESS);
3, EXPAND(n) →{mi},计算h(mi), next n=min{h(mi)}
4, IF h(n)<h(next n) THEN EXIT(Fail);
5, n:=next n;
6, GO LOOP;
该算法在单峰的条件下,必能达到山顶。
局部搜索算法
(1)随机选择一个初始的可能解x0∈D,xb=x0,P=N(xb);
//D是问题的定义域,xb用于记录到目标位置的最优解,P为xb的邻域。
(2)如果不满足结束条件,则://结束条件为循环次数或P为空等
(3)Begin
(4)选择P的一个子集P‘,xn为P’的最优解
// P’可根据问题特点,选择适当大小的子集。
可按概率选择
(5)如果f(xn)<f(xb),则xb=xn,P=N(xb),转(2)
//重新计算P,f(x)为指标函数
(6)否则P=P-P‘,转(2)
(7)End
(8)输出计算结果
(9)结束
局部最优问题(或叫局部峰值\局部陷井)
现实问题中,f在D上往往有多个局部的极值点。
一般的局部搜索算法一旦陷入局部极值点,算法就在该点处结束,这时得到的可能是一个糟糕的结果。
解决的方法就是每次并不一定选择邻域内最优的点,而是依据一定的概率,从邻域内选择一个点。
指标函数优的点,被选中的概率大,指标函数差的点,被选中的概率小。
考虑归一化问题,使得邻域内所有点被选中的概率和为1。
局部搜索算法2——可变步长
(1)随机选择一个初始的可能解x0属于D,xb=x0,P=N(xb);
//D是问题的定义域,xb用于记录到目标位置的最优解,P为xb的邻域。
(2)如果不满足结束条件,则://结束条件为循环次数或P为空等
(3)Begin
(4)选择P的一个子集P…,xn为P‟的最优解
(5)如果f(xn)<f(xb),则xb=xn
(6)按某种策略改变步长,计算P=N(xb),转(2)继续
(7)否则P=P-P…,转(2)
(9)输出计算结果
(10)结束
起始点问题
一般的局部搜索算法是否能找到全局最优解,与初始点的位置有很大的依赖关系。
解决的方法就是随机生成一些初始点,从每个初始点出发进行搜索,找到各自的最优解。
再从这些最优解中选择一个最好的结果作为最终的结果。
起始点位置影响搜索结果示意图
局部搜索算法3——多次起始点
(1)k=0
(2)随机选择一个初始的可能解x0属于D,xb=x0,P=N(xb);
(3)如果不满足结束条件,则:
(4)Begin
(5)选择P的一个子集P…,xn为P‟的最优解
(6)如果f(xn)<f(xb),则xb=xn,P=N(xb),转(3)
(7)否则P=P-P…,转(3)
(8)End
(10)如果k达到了指定的次数,则从k个结果中选择一个最好的结果,否则转(2)
(11)输出结果
(12)结束。