局部搜索算法

局部搜索算法
局部搜索算法

全局搜索和局部搜索.

目前使用较普遍的、有影响的

全局搜索算法主要包括主从面算法、单曲面算法、级域算法、位码算法及NBS 算法;

局部接触搜索算法主要有基于"点面算法"、基于"小球算法"、基于光滑曲面(曲线)算法三大类.

接触界面算法目前主要有拉格朗日乘子法和罚函数法,以及扰动拉氏法和增广拉氏法.

此外,接触问题的并行计算也是不可忽视的研究内容

模拟退火算法和遗传算法等是较新发展起来的算法,算法引入了随机因素,不一定能找到最优解,但一般能快速找到满意的解。

局部搜索算法是从爬山法改进而来的。

爬山法:在没有任何有关山顶的其他信息的情况下,沿着最陡的山坡向上爬。

局部搜索算法的基本思想:在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。

现实问题中,f在D上往往有多个局部的极值点。一般的局部搜索算法一旦陷入局部极值点,算法就在该点处结束,这时得到的可能是一个糟糕的结果。解决的方法就是每次并不一定选择邻域内最优的点,而是依据一定的概率,从邻域内选择一个点。指标函数优的点,被选中的概率大,指标函数差的点,被选中的概率小。考虑归一化问题,使得邻域内所有点被选中的概率和为1。

一般的局部搜索算法是否能找到全局最优解,与初始点的位置有很大的依赖关系。解决的方法就是随机生成一些初始点,从每个初始点出发进行搜索,找到各自的最优解。再从这些最优解中选择一个最好的结果作为最终的结果。起始点位置影响搜索结果示意图

爬山算法

1, n := s;

2, LOOP: IF GOAL(n) THEN EXIT(SUCCESS);

3, EXPAND(n) →{mi},计算h(mi), nextn=min{h(mi)}

4, IF h(n)

5, n:=nextn;

6, GO LOOP;

该算法在单峰的条件下,必能达到山顶。

局部搜索算法

(1)随机选择一个初始的可能解x0 ∈D,xb=x0,P=N(xb);

//D是问题的定义域,xb用于记录到目标位置的最优解,P为xb的邻域。(2)如果不满足结束条件,则://结束条件为循环次数或P为空等

(3)Begin

(4)选择P的一个子集P‘,xn为P’的最优解

// P’可根据问题特点,选择适当大小的子集。可按概率选择

(5)如果f(xn)

// 重新计算P,f(x)为指标函数

(6)否则P=P-P‘,转(2)

(7)End

(8)输出计算结果

(9)结束

局部搜索算法2——可变步长

(1)随机选择一个初始的可能解x0属于D,xb=x0,P=N(xb);

//D是问题的定义域,xb用于记录到目标位置的最优解,P为xb的邻域。(2)如果不满足结束条件,则://结束条件为循环次数或P为空等

(3)Begin

(4)选择P的一个子集P‘,xn为P’的最优解

(5)如果f(xn)

(6)按某种策略改变步长,计算P=N(xb),转(2)继续

(7)否则P=P-P‘,转(2)

(8)End

(9)输出计算结果

(10)结束

局部搜索算法3——多次起始点

(1)k=0

(2)随机选择一个初始的可能解x0属于D,xb=x0,P=N(xb);

(3)如果不满足结束条件,则:

(4)Begin

(5)选择P的一个子集P‘,xn为P‘的最优解

(6)如果f(xn)

(7)否则P=P-P‘,转(3)

(8)End

(9)k=k+1

(10)如果k达到了指定的次数,则从k个结果中选择一个最好的结果,否则转(2)(11)输出结果

(12)结束

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

蚁群算法(C++版)

// AO.cpp : 定义控制台应用程序的入口点。 #pragma once #include #include #include const double ALPHA=1.0; //启发因子,信息素的重要程度 const double BETA=2.0; //期望因子,城市间距离的重要程度 const double ROU=0.5; //信息素残留参数 const int N_ANT_COUNT=34; //蚂蚁数量 const int N_IT_COUNT=1000; //迭代次数 const int N_CITY_COUNT=51; //城市数量 const double DBQ=100.0; //总的信息素 const double DB_MAX=10e9; //一个标志数,10的9次方 double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素 double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离 //eil51.tsp城市坐标数据 double x_Ary[N_CITY_COUNT]= { 37,49,52,20,40,21,17,31,52,51, 42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58, 37,38,46,61,62,63,32,45,59,5, 10,21,5,30,39,32,25,25,48,56, 30 }; double y_Ary[N_CITY_COUNT]= { 52,49,64,26,30,47,63,62,33,21, 41,32,25,42,16,41,23,33,13,58, 42,57,57,52,38,68,48,67,48,27, 69,46,10,33,63,69,22,35,15,6, 17,10,64,15,10,39,32,55,28,37, 40 }; //返回指定范围内的随机整数 int rnd(int nLow,int nUpper) { return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1); } //返回指定范围内的随机浮点数 double rnd(double dbLow,double dbUpper) { double dbTemp=rand()/((double)RAND_MAX+1.0); return dbLow+dbTemp*(dbUpper-dbLow); }

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

遗传算法求解函数最大值

人工智能 遗传算法函数优化

目录 1引言 (3) 1.1 摘要 (3) 1.2 背景 (3) 2 实验过程 (4) 2.1 程序目标 (4) 2.2 实验原理及步骤 (4) 2.3程序 (5) 2.3.1程序理解: (5) 2.3.3调试程序: (5) 2.4 实验总结 (18)

1引言 1.1 摘要 函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。本文将用一个详细的例子来说明用遗传算法解一个简单参数优化问题的过程。这里求解的是一个函数的最大值的问题。 1.2 背景 遗传算法采纳自然进化模型。通过保持一个潜在解的群体执行了多方向的搜索并支持这些方向上的信息构成和交换。群体经过一个模拟进化的过程:在每一代,相对“好”的解产生,相对“差”的解死亡。为区别不同解,我们使用了一个目标(评价)函数,它起着一个环境的作用。 选择是用来确定管理费用或交叉个体,以及被选个体将产生多少个代个体。 杂交组合了两个亲代染色体的特征,并通过交换父代相应的片断形成了两个相似的后代。杂交算子的意图是在不同潜在解之间进行信息交换。 变异是通过用一个等于变异率的概率随机地改变被选择染色体上的一个或多个基因。变异算子的意图是向群体引入一些额外的变化性。 运用遗传算法解题必经的五个步骤: 1.对问题潜在解的遗传表达。 2.产生潜在解初始群体的方法。 3.起环境作用的用“适应值”评价解的适应程度的评价函数。 4.改变后代组成的各种遗传算子。 5.遗传算法所使用的各种参数:群体规模、应用遗传算子的概率等。

2 实验过程 2.1 程序目标 在实验过程中,我们应用遗传算法来模拟一个函数优化的问题。程序所要解决的问题是求f(x1,x2)=21.5+x1*sin(4pi*x1)+x2*sin(20pi*x2)的最大值,其中-3.0≤x1≤12.1及4.1≤x2≤5.8。 2.2 实验原理及步骤 1 )首先确立变量x1的定义域长度为15.1;所要求的小数点以后第四位精度意味着区间[-3.0, 12.1]应该至少被分成15.1*10000个等距区间,即染色体的第一部分需要18位;自变量x2域长度为 1.7,精度要求区间[4.1, 5.8]应该至少被分成1.7*10000个等距区间,即染色体的第二部分需要15位。所以染色体总长度为33位。用遗传算法的优化函数f,产生了一个有pop_size = 20个染色体的群体。所有染色体的33位都是随机初始化。对每个染色体进行解码并计算解码后的(x1,x2)的适应函数值,eval(vi) (i=1,..,pop_size) = f(x1,x2)。 2)为选择过程建立一个轮盘。计算群体的总适应值F,并计算每个染色体vi (i=1,..,pop_size)的选择概率pi:pi = eval(vi) / F 和累积概率qi: qi = p1 + .. + pi. 3)转动轮盘20次,每次为新群体选择一单个染色体。生成一个区间[0,1]里的20个数的一个随机序列。如果一个随机数位于qi于q(i+1)之间,则q(i+1)被选择。4)对新群体中的个体应用杂交算子。杂交概率pc = 0.25,所以预计染色体中平均有25%将经历杂交。杂交按照下面的方法进行:对新群体中的每个染色体,产生在区间[0,1]里的随机数r,并从随机序列中选出r<0.25的染色体进行杂交。 5)对被选择的染色体随机进行配对。并从区间[1,32]里产生一个随机整数pos。数字pos表示杂交点的位置。 6)算子变异。在一位一位基础上执行。变异概率pm = 0.01,所以我们预计平均将有1%的位经历变异。整个群体共有m*pop_size = 660位,可以预计平均每代有6.6次变异。因为每一位都有均等的机会被变异,所以对群体中的每一位可以产生区间

4蚁群算法的基本思想

蚁群算法的基本思想 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优 化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感 来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且 最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达 所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当 一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这 里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物, 开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无 关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁 来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的 蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来, 从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短 的路径就找到了。 蚁群算法的基本思想如下图表示:

(二)算法描述 基本蚁群算法的算法简单描述如下: 1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素; 2.随着时间的推移,较短路径的信息素浓度升高; 3.蚂蚁再次遇到障碍物时,会选 择信息素浓度高的路径; 4.较短路径的信息素浓度继续升高,最终最优路径 被选择出来。 三、随机蚁群算法 在基本蚁群算法中,蚂蚁会在多条可选择的路径中,自动选择出最短的一 条路径。但是,一旦蚁群选择了一条比之前短的路径,就会认为这条路径是最 好的,在这条路径上一直走下去。这样的算法存在问题:蚂蚁可能只是找到了 局部的最短路径,而忽略了全局最优解。 因此,在基本蚁群算法的基础上,需要对蚂蚁选路的方案加以改善:有些 蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,也就是它会按 照一定的概率不往信息素高的地方。如果令开辟的道路比原来的其他道路更短,

基于正交方法求解连续优化问题的蚁群搜索算法

基于正交方法求解连续优化问题的蚁群搜索算法 【研究背景和意义】 目前,以蚁群算法为代表的群体智能算法得到越来越多的重视。原因是其以生物的群体行为为研究对象,通过系统仿真,设计出求解各种问题的优化算法。这些算法无论在速度和灵活性上都比传统的确定性算法更适合于求解大规模的优化问题。蚁群算法利用蚂蚁寻找食物时会释放一定量的信息素,而信息素又会随时间蒸发消失的特点,通过设计信息素的释放和蒸发模型,配合启发式信息的使用,使得蚁群算法中的人工蚂蚁通过协作搜索出问题的最优解。 蚁群算法最初由M. Dorigo提出,用于求解旅行商(TSP)问题,后来人们把算法进行扩充和改进,应用到诸如车辆调度、车间调度、路由问题等,并取得很好的计算效果。因此,蚁群算法一直都是用于解决离散组合优化问题的算法。然而,蚁群算法在求解连续优化问题上也具有很好的发展前景,本文就是对蚁群算法求解连续问题的研究成果。 【研究的内容,研究中采取的方法,手段和新的发现】 通过对蚁群算法的研究,本文作者发现,求解连续问题的最大困难在于如何让蚁群中的蚂蚁学到连续空间中的信息,由于不同于TSP问题已经给定有形的路径,连续空间的搜索是无定向的,因此蚂蚁需要高效的方法了解其所处位置周围的状况。 本文提出的正交蚁群搜索方法,首先基于正交试验的方法让蚂蚁快速测试周围正交位置上的优劣程度,根据测试的结果获取当前环境的信息,尝试移动到最优的邻近位置;其次自适应调整测试的邻域的范围,让蚂蚁的搜索更具鲁棒性;最后,通过设计新的信息素释放与蒸发的模式,让蚁群中的蚂蚁以更快的速度交换各自的搜索信息,吸引同伴朝最优的区域探索。 【研究的创新点和主要贡献】 本文与其他学者已经提出的求解连续空间优化问题的蚁群算法的不同之处,在于本文首次提出利用多因素试验中的正交试验法,加强蚂蚁的搜索能力,并提出动态区域的方法,让蚂蚁以更大的自由度试验连续空间中通过正交表产生的测试点。这些思想在同类型的群体智能优化方法中是首创,通过17个连续问题的测试,显示出本文提出的方法既发扬了蚁群的搜索优点,也大大提高了蚁群在连续空间中的搜索能力。 此外,本文提出的正交试验和区域的调整方法是一种基础模型,可以容易地扩充到其他类型优化算法中,为进一步的研究提供良好的借鉴。

局部搜索算法

全局搜索和局部搜索. 目前使用较普遍的、有影响的 全局搜索算法主要包括主从面算法、单曲面算法、级域算法、位码算法及NBS 算法; 局部接触搜索算法主要有基于"点面算法"、基于"小球算法"、基于光滑曲面(曲线)算法三大类. 接触界面算法目前主要有拉格朗日乘子法和罚函数法,以及扰动拉氏法和增广拉氏法. 此外,接触问题的并行计算也是不可忽视的研究内容 模拟退火算法和遗传算法等是较新发展起来的算法,算法引入了随机因素,不一定能找到最优解,但一般能快速找到满意的解。 局部搜索算法是从爬山法改进而来的。 爬山法:在没有任何有关山顶的其他信息的情况下,沿着最陡的山坡向上爬。 局部搜索算法的基本思想:在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。 现实问题中,f在D上往往有多个局部的极值点。一般的局部搜索算法一旦陷入局部极值点,算法就在该点处结束,这时得到的可能是一个糟糕的结果。解决的方法就是每次并不一定选择邻域内最优的点,而是依据一定的概率,从邻域内选择一个点。指标函数优的点,被选中的概率大,指标函数差的点,被选中的概率小。考虑归一化问题,使得邻域内所有点被选中的概率和为1。 一般的局部搜索算法是否能找到全局最优解,与初始点的位置有很大的依赖关系。解决的方法就是随机生成一些初始点,从每个初始点出发进行搜索,找到各自的最优解。再从这些最优解中选择一个最好的结果作为最终的结果。起始点位置影响搜索结果示意图 爬山算法

1, n := s; 2, LOOP: IF GOAL(n) THEN EXIT(SUCCESS); 3, EXPAND(n) →{mi},计算h(mi), nextn=min{h(mi)} 4, IF h(n)

局部搜索

一般认为,NP完全问题的算法复杂性是指数级的。当问题规模达到一定程度时,这些算法显得无能为力。 局部搜索算法、模拟退火算法和遗传算法等是较新发展起来的算法,算法引入了随机因素,不一定能找到最优解,但一般能快速找到满意的解。 组合优化问题举例 TSP问题 从某个城市出发,经过n个指定的城市,每个城市只能且必须经过一次,最后回到出发城市,如何安排旅行商的行走路线以使总路程最短? 约束机器排序问题 n个加工量为di(i=1,2,… n)的产品在一台机器上加工,机器在第t个时段的工作能力为ct,完成所有产品加工的最少时段数。 指派问题 一家公司经理准备安排N名员工去完成N项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时获得的回报是不同的。如何分配工作方案可以获得最大收益? 0-1背包问题 设有一个容积为b的背包,n个体积分别为ai(i=1,2,… n),价值分别为ci (i=1,2,… n)的物品,如何以最大的价值装包? 装箱问题

如何用个数最少的尺寸为1的箱子装进n个尺寸不超过1的物品? SAT问题 称判定一个公式是否存在一个模型的问题为可满足性问题(以后简称为SAT 问题)。如果一个公式存在模型,则称该公式是可满足的,否则称为不可满足的。 皇后问题 在n×n的国际象棋棋盘上,摆放n个皇后,使得n个皇后之间不能相互“捕捉”?局部搜索算法 局部搜索算法是从爬山法改进而来的。 爬山法:在没有任何有关山顶的其他信息的情况下,沿着最陡的山坡向上爬。 局部搜索算法的基本思想:在搜索过程中,始终选择当前点的邻居中与离目标最近者的方向搜索。 爬山算法 1, n := s; 2, LOOP: IF GOAL(n) THEN EXIT(SUCCESS); 3, EXPAND(n) →{mi},计算h(mi), next n=min{h(mi)}

局部搜索算法源代码

# include # include # include # include using namespace std; #define SAT 3 //每个子句所含变量的个数,即定义N-SAT问题的N int **arr; //描述SAT问题的二维数组 int Var_Num; //变元个数 int Clause_Num; //子句个数 ifstream fin; ofstream fout; void Random(int *v, int *s); int Proper_Num(int *s); void Reverse(int *v,int *s, int num); void Local_Search(double &duration); void Read_And_Save(int it); int main() { srand(time(NULL)); fout.open("result50-Local_Search_Algorithm.txt"); fout << "#姓名学号" << endl; double totaltime = 0.0; for (int i = 1; i <= 10; ++i) { double duration=0.0; Read_And_Save(i); Local_Search(duration); totaltime += duration; } fout.close(); cout<<"平均时间为: "<< totaltime / 10 <<" 秒 "<

遗传算法求解函数极值C语言代码

#include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) { int i,j; struct unit *p; for(i=0;i<=N-1;i++) //初始化种群里的100个个体 {

遗传算法代码

%求下列函数的最大值% %f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]% %将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% %将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。 %2.1初始化(编码) %initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), %长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name:initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵, %roud对矩阵的每个单元进行圆整。这样产生的初始种群。 %2.2计算目标函数值 %2.2.1将二进制数转化为十进制数(1) %遗传算法子程序 %Name:decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop);%求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2);%求pop1的每行之和 %2.2.2将二进制编码转化为十进制数(2) %decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 %(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), %参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name:decodechrom.m

遗传算法求函数极大值(matlab实现)

遗传算法求函数最大值(matlab实现) 一、题目: 寻找f(x)=x2,,当x在0~31区间的最大值。 二、源程序: %遗传算法求解函数最大值 %本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些 Close all; Clear all; figure(1); fplot('variable*variable',[0,31]); %画出函数曲线 %以下定义遗传算法参数 GTSM=40; %定义个体数目 ZDYCDS=20; %定义最大遗传代数 EJZWS=5; %定义变量的二进制位数 DG=0.9; %定义代沟 trace=zeros(2, ZDYCDS); %最优结果的初始值

FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异 Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定 规模的二进制种群和结构gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换 ObjV=variable*variable; %计算目标函数值f(x)=x2 while gen

遗传算法十进制编码求函数极大值程序

遗传算法十进制编码求函数极大值程序%Generic Algorithm for function f(x1,x2) optimum clear all; close all; Size=500; CodeL=2; MinX(1)=-2.048; MaxX(1)=2.048; MinX(2)=-2.048; MaxX(2)=2.048; E(:,1)=MinX(1)+(MaxX(1)-MinX(1))*rand(Size,1); E(:,2)=MinX(2)+(MaxX(2)-MinX(2))*rand(Size,1); G=200; BsJ=0; %*************** Start Running *************** for kg=1:1:G time(kg)=kg; %****** Step 1 : Evaluate BestJ ****** for i=1:1:Size xi=E(i,:); x1=xi(1); x2=xi(2); F(i)=100*(x1^2-x2)^2+(1-x1)^2; Ji=1./F; BsJi(i)=min(Ji); end [OderJi,IndexJi]=sort(BsJi); BestJ(kg)=OderJi(1); BJ=BestJ(kg); Ji=BsJi+1e-10; %Avoiding deviding zero fi=F; [Oderfi,Indexfi]=sort(fi); %Arranging fi small to bigger

Bestfi=Oderfi(Size); %Let Bestfi=max(fi) BestS=E(Indexfi(Size),:); %Let BestS=E(m), m is the Indexfi belong to max(fi) bfi(kg)=Bestfi; kg BestS %****** Step 2 : Select and Reproduct Operation****** fi_sum=sum(fi); fi_Size=(Oderfi/fi_sum)*Size; fi_S=floor(fi_Size); % Selecting Bigger fi value r=Size-sum(fi_S); Rest=fi_Size-fi_S; [RestValue,Index]=sort(Rest); for i=Size:-1:Size-r+1 fi_S(Index(i))=fi_S(Index(i))+1; % Adding rest to equal Size end k=1; for i=Size:-1:1 % Select the Sizeth and Reproduce firstly for j=1:1:fi_S(i) TempE(k,:)=E(Indexfi(i),:); % Select and Reproduce k=k+1; % k is used to reproduce end end %************ Step 3 : Crossover Operation ************ Pc=0.90; for i=1:2:(Size-1) temp=rand; if Pc>temp %Crossover Condition alfa=rand; TempE(i,:)=alfa*E(i+1,:)+(1-alfa)*E(i,:); TempE(i+1,:)=alfa*E(i,:)+(1-alfa)*E(i+1,:); end end TempE(Size,:)=BestS; E=TempE; %************ Step 4: Mutation Operation ************** Pm=0.10-[1:1:Size]*(0.01)/Size; %Bigger fi,smaller Pm

遗传算法求解函数极值

题目:生成两个整型,求在这两个整形之间cost=x1+x2-10*(cos(2*3.14*x1)+cos(2*3.14*x2))函数的最小值 源程序: #include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) {

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

2013年数学建模第一题方法总结禁忌搜索算法

禁忌搜索算法 又名“tabu搜索算法” 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。 伪码表达: procedure tabu search; begin initialize a string vc at random,clear up the tabu list; cur:=vc; repeat select a new string vn in the neighborhood of vc; if va>best_to_far then {va is a string in the tabu list} begin cur:=va; let va take place of the oldest string in the tabu list; best_to_far:=va; end else begin cur:=vn; let vn take place of the oldest string in the tabu list; end; until (termination-condition); end; 以上程序中有关键的几点:

遗传算法GA求解函数极值

主程序 %% GA clc % 清屏 clear all; % 删除workplace变量 close all; % 关掉显示图形窗口 warning off %% 参数初始化 popsize=100; %种群规模 lenchrom=7; %变量字串长度 pc=0.7; %设置交叉概率,本例中交叉概率是定值,若想设置变化的交叉概率可用表达式表示,或从写一个交叉概率函数,例如用神经网络训练得到的值作为交叉概率 pm=0.3; %设置变异概率,同理也可设置为变化的 maxgen=100; % 进化次数 %种群 popmax=50; popmin=0; bound=[popminpopmax;popminpopmax;popminpopmax;popminpopmax;popminpopmax;popminpopmax;popm inpopmax]; %变量范围 %% 产生初始粒子和速度 fori=1:popsize %随机产生一个种群 GApop(i,:)=Code(lenchrom,bound); %随机产生个体 %计算适应度 fitness(i)=fun(GApop(i,:)); %染色体的适应度 end %找最好的染色体 [bestfitnessbestindex]=min(fitness); zbest=GApop(bestindex,:); %全局最佳 gbest=GApop; %个体最佳 fitnessgbest=fitness; %个体最佳适应度值 fitnesszbest=bestfitness; %全局最佳适应度值 %% 迭代寻优 fori=1:maxgen i %种群更新GA选择更新 GApop=Select2(GApop,fitness,popsize); % 交叉操作GA GApop=Cross(pc,lenchrom,GApop,popsize,bound);

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

相关文档
最新文档