一元一次方程解简单应用题的方法和步骤

合集下载

一元一次方程应用题-(含答案)

一元一次方程应用题-(含答案)

一元一次方程应用题-(含答案)一元一次方程应用题-(含答案)一元一次方程应用题列方程解应用题的一般步骤(解题思路)(1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设出未知数:根据提问,巧设未知数.(3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)一、相遇与追击问题1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时 3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

解一元一次方程应用题的方法与技巧

解一元一次方程应用题的方法与技巧

一元一次方程是初等数学中最基本的概念之一,解一元一次方程应用题则是数学中常见的问题类型之一。

本文将带领读者深入了解解一元一次方程应用题的方法与技巧,帮助读者更好地掌握这一知识点。

一、了解一元一次方程的概念在解一元一次方程应用题之前,我们首先需要了解一元一次方程的概念。

一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次数为一。

一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。

解一元一次方程就是要找到使得该方程成立的未知数的值。

二、掌握解一元一次方程的基本方法在解一元一次方程应用题时,我们可以通过以下基本方法来求解。

1. 移项当方程中含有未知数的项和已知数的项时,我们可以通过移项的方法将未知数的项移到一个侧,以便进行下一步计算。

对于方程2x+3=7,我们可以通过移项将3移到等号的右侧,得到2x=7-3。

2. 消元如果方程中包含多个未知数的项,我们可以通过消元的方法化简方程。

消元的方法通常是通过加减乘除的运算,将未知数的系数相消,从而得到一个简化的方程。

对于方程3x-2y=5和2x+y=7,我们可以通过消元的方法将y的系数相消,从而仅含有一个未知数x的方程。

3. 求解通过移项和消元的方法,我们最终可以得到一个只含有一个未知数的简单方程,然后可以通过解方程的方法求解未知数的值。

解方程的方法包括凑平方、分式法、代入法等。

通过这些方法,我们可以得出未知数的值,从而求解一元一次方程。

三、应用题解题技巧在解一元一次方程应用题时,我们常常面临各种实际问题,而这些问题往往可以用一元一次方程来进行建模和求解。

以下是一些解一元一次方程应用题的常用技巧。

1. 建立方程在解题时,我们首先需要根据实际问题建立方程。

这就需要我们理解问题,将问题中的已知条件和未知量用数学符号表示出来,建立起方程模型。

2. 明确未知数在建立方程时,我们需要明确未知数代表的是什么,只有明确了未知数,才能建立准确的方程模型。

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤
嘿,咱来说说列一元一次方程解应用题的一般步骤哈!
首先啊,那得仔细审题,就像警察破案一样,不放过任何一个小细节。

比如说,小明天天上学走路,突然有一天走路时间变长了,咱就要搞清楚为啥会这样啊。

然后呢,设未知数,这可太关键啦!就好比给这个问题找个主角一样。

像是上面小明的例子,咱可以设他原来的速度是 x 呀。

接着就是找等量关系啦,这就如同找到了解题的钥匙!好比说他平时走这段路用的时间和现在走这段路用的时间有个关联呀。

随后列出方程,哇塞,这就是把你的思路转化成数学语言啦!
再然后解方程呀,一步步算出答案,就像挖宝藏一样有成就感。

最后一定要检验答案是不是合理,别弄出个荒唐的结果来。

这就像做菜,做好了总得尝尝味道对不对嘛!
比如说商店卖东西,已知进价和利润,让你求售价,那咱就可以按这些步骤来啊!先审题,知道进价和利润的具体数值;设售价为 x;找等量关系就是进价加上利润等于售价呀;列出方程,求解方程,最后检验一下,看看这个售价合不合理。

怎么样,是不是挺有意思的?你也快去试试吧!。

一元一次方程应用题的解法

一元一次方程应用题的解法

一元一次方程应用题的解法一、直列法。

即由题中的“和”、“少”、“倍”等表示数量关系的字眼,直接列出相关的方程。

例1 在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?分析:显然,人员调动完成后,甲处人数=2×乙处人数。

解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解之得x=17∴20-x=20-17=3(人)答:应调往甲处17人,乙处3人。

二、公式法。

学生熟识的公式诸如“路程=速度×时间”、“工作总量=工作效率×工作时间”、“利润=售价-进价”、“利润率=利润/进价”等都是解答相关方程应用题的工具。

例2 商品进价1800元,原价2250元,要求以利润率不低于5%的售价打折出售,则此商品最低可打几折出售?分析:根据利润率公式,列出方程即可。

解:设最低可打x折。

据题意有:5%=(2250x-1800)/1800,解之得x=0.84答:最低可打8.4折。

三、总分法。

即根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。

例3 “过路的人!这儿埋葬着丢番图。

请计算下列题目,便可知他一生经过了多少寒暑。

他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。

再过去七分之一的年程,他建立了幸福的家庭。

五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。

晚年丧子老人真可怜,悲痛之中度过了风烛残年。

请你算一算,丢番图活到多大,才和死神见面?”分析:本题即是著名的丢番图的“墓志铭”,题中巧妙地把丢番图的总年龄划分为了几个部分,解题时只需运用其总年龄=各部分年龄的和即可得出解答。

解:设丢番图活了x年。

据题意可得:x=x/6+x/12+x/7+5+x/2+4解之得x=84答:丢番图共活了84岁。

由此题的解答,我们还可知道古希腊的这位大数学家丢番图33岁结婚,38岁得子,80岁死了儿子,儿子活了42岁等。

一元一次方程解题技巧计算题+应用题方法总结和练习

一元一次方程解题技巧计算题+应用题方法总结和练习

一元一次方程解题技巧计算题类【解方程基本步骤】⒈去分母方程两边同时乘各分母的最小公倍数。

⒉去括号一般先去小括号,再去中括号,最后去大括号。

但顺序有时可依据情况而定使计算简便。

可根据乘法分配律。

⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

⒋合并同类项将原方程化为ax=b(a≠0)的形式。

⒌系数化一方程两边同时除以未知数的系数。

⒍得出方程的解同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。

方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

应用题类【应用题基本步骤】⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

【11大类型及对应破题法】(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集含详细答案整理版本一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列-列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等.第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析.常用数据:① 时针的速度是0。

5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

一元一次方程运用题精讲

一元一次方程运用题精讲

一元一次方程应用题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数一元一次方程应用题分类专题练习列方程解应用题,是初中数学的重要内容之一。

如何解一元一次方程应用题

如何解一元一次方程应用题

如何解一元一次方程应用题一、如何根据实际问题列方程1、实际问题与数学知识的相互转换数学来源于实践,在实际问题中,我们应学会用数学的观点考察与分析问题,我们经常是这样。

列一元一次方程解题,就是根据已知条件,列出一个一元一次方程,通过求方程的解到达解决问题的目的,列方程的关键是抓住问题中有关数量的相等关系,即找到一个包含题目含义的数量关系,所以在列方程时,要把握三个重要环节:①整体地、系统地审题,弄清题意和其中的数量关系,用字母表示适当的未知数。

②找出能表示问题含义的一个主要的“等量关系”。

③根据等量关系中涉及的量,列出表达式及方程,正确求解。

2、利用一元一次方程解决实际问题的常见题型:题型基本量,基本数量关系寻找相等关系的思路方法等积形式问题常见几何图形的长、宽、高、面积、周长、体积的公式,及相互之间的关系。

〔1〕形变积不变〔2〕形变积也变,但重量不变利息问题本息和、本金、利息、利息和、利息税、期数的关系。

利息=本金×利率×期数本息和=本金+利息年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等数字问题多位数的表示方法:是一个多位数,它可表示为:1. 抓住数字间或新数、原数之间的关系,寻找相等关系。

2. 常需设间接未知数。

比例问题甲:乙:丙=a:b:c 各部分量之和=总量设其中一份为x,由已知各部分量在总量中所占的比例,可得各部分量的代数式。

追及问题路程、速度、时间的关系路程=速度×时间甲走的路程与乙走的路程之间关系等式。

相遇问题路程、速度、时间的关系甲走的路程+乙走的路程=A、B两地间的路程航行问题顺水速度、静水速度、水流速度、时间、路程、速度之间的关系。

两地间距离不变顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度三、设未知数的方法:根据具体问题作具体分析,设未知数通常有两种方法:①直接设未知数法:即题目里问什么,就设什么作为未知数,这样设之后,只要能求出所列方程的解,就可以直接求得题目的所问。

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

精心整理一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?分析:从符号与绝对值两方面观察,这列数有什么规律?符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗?后面两数分别是-3x,9x。

问题中的相等关系是什么?三个相邻数的和=-1701。

由此可得方程x-3x+9x=-1701解之,得x=-243。

所以这三个数是-243,729,-218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2根据下面的两种移动电话计费方式表,考虑下列问题。

方式一方式二月租费30元/月0元本地的通话费0.30元/分0.4元/分(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:30+200×0.3=90元;通话350分钟需要交费:30+350×0.3=135元.按方式二在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:200×0.4=80元;通话350分钟需要交费:350×0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程30+0.3t=0.4t解之,得t=300所以,当一个月内通话300分钟时,两种计费方式的收费一样多.引申:你知道怎样选择计费方式更省钱吗?当t=400时,30+0.3t=30+0.3×400=150元;0.4t=0.4×400=160元.当时间大于300分钟时,方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

(完整)一元一次方程应用题9大类型解析

(完整)一元一次方程应用题9大类型解析

一元一次方程应用题类型目录:一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程解决应用题的分类1、市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是x 元,标价是(45+x )元。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例題例1有一列数,按一定规律排列成1, 一3, 9, -27, 81, -243,…,其中某三个相邻数的和是一1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间:后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为X,那么后面与它相邻的两个数你能用X表示出来吗后面两数分别是-3x, 9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程X-3 x+9x=-170l解之,得x=-243,所以这三个数是-243, 729, -218,注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2 根据下面的两种移动电话计费方式表,考虑下列问题。

(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200X-90元;通话350分钟需要交费:30+350X二135元.按方戎二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200X =80元;通话350分钟需要交费:350X=140元.(2)设累计通话t分钟,那么按方式一要收费多少元按方式二收费多少元按方式一要收费(30+元;按方式二要收费元.问题中的等童关系是什么方式一的收费二方式二的收费.由此可列方程30+=解之,得t =300所以,当一个月内通话300分钟时,两种计费方式的收费一样多. 引申:你知道怎样选择计费方式更省钱吗当 t=400 时,30+=30+X400=150 元:=X 400-160 元.当时间大于300分钟时,方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑) (2)(word文档良心出品)

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑) (2)(word文档良心出品)

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天? (2)框出的4个数的和可能是26吗?为什么?【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.(1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量.【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2010年此项资金比2009年增加1.69亿元.(1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?(2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元? (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)1.91亿元;(2)省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;(3)6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例16】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: (1)若小船按水流速度由A 港漂流到B 港需多少小时? (2)救生圈是何时掉入水中的?【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元); 方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少?【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%, 设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-, 根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -=即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为7.5元.原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为7.5元, 则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:=100%⨯投资收益投资收益率实际投资额)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.(1)若绕道而行,要15分钟到达学校。

一元一次方程实际问题技巧与规律总结 1列一元一次方程解应用题的一般步骤 1审题弄清题意2找出等量关 - 副本

一元一次方程实际问题技巧与规律总结 1列一元一次方程解应用题的一般步骤 1审题弄清题意2找出等量关 - 副本

一元一次方程实际问题技巧与规律总结新华英语内部资料拒绝侵权1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出题中所有的等量关系,特别是隐含的等量关系.(3)设出未知数,一般是与所求问题有直接关系的量。

列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.列方程找等量关系技巧:表示同一个量的两个不同的式子相等。

2.和差倍分:1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率?”来体现。

注意关键词2.多少关系:通过关键词语“多、少、和、差、不足、剩余?”来体现。

增长量=原有量×增长率现在量=原有量+增长量=原有量×(1+增长率)减少量=原有量×减少率现在量=原有量-减少量=原有量×(1-减少率)3.多几分之几或百分之几就用1加几分之几或百分之几,少几分之几或百分之几就用1减几分之几或百分之几,求比较量用乘法,求标准量用除法3. 等积变形:物体形态发生变化,但体积不变.常用等量关系为:变形前体积=变形后体积。

4.数字:一般可设个位数字为a十位数字为b百位数字为c.十位数可表为10b+a,百位数可表为100c+10b+a.a,b,c为非负整数且1≤a≤9,0≤b≤9,0≤c≤9然后抓住数字间或新数,原数之间的关系找等量关系列方程.5.利润:标价=进价×(1+利润率) 实际售价=标价×折扣利润=售价-进价=标价×折扣率-进价=进价×利润率利润率=利润/进价×100%销售额=售价×销量总销售利润=(售价-成本)×销量打几折出售,就是按原标价的十分之几或百分之几十出售。

6.盈亏盈利:售价=进价×(1+利润率)亏损:售价=进价×(1-利润率)一件商品先涨价20%,再降价20%,最后价格比原价低,是原价的96%。

一元一次方程应用题(含答案)

一元一次方程应用题(含答案)

一元一次方程应用题列方程解应用题的一般步骤(解题思路)(1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设出未知数:根据提问,巧设未知数.(3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)一、相遇与追击问题1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米⑵这列火车的车长是多少米6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程解简单应用题的方法和步骤》教学设计
本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。

本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

学情分析
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:
学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:
学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

教学目标
(1)知识目标:
(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)
通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

教学重点和难点
1.教学重点:根据题意寻找和;差;倍;分问题的相等关系
2.教学难点:根据题意列出一元一次方程
教学过程。

相关文档
最新文档