数值分析,考博必考课程,研一考试复习专用8-4

合集下载

数值分析,考博必考课程,研一考试复习专用8-1.

数值分析,考博必考课程,研一考试复习专用8-1.

若 f a f x0 0 , 则 x a, x0 , 令 a1 a , b1 x0 ;
若 f a f x0 0 , 则 x x0 , b, 令 a1 x0 , b1 b;
从而得到新的有根区间[a1, b1], 其长度[a, b]的一半.
+
2
2
2.25
2.125
+
3
2
2.125
2.0625

4
2.0625
2.125
2.09375

5
2.09375
2.125
2.109375
+
6
2.09375 2.109375 2.1015625
5
若取 x x6 2.1015625, 其误差为
x

x6

1 27
3 2
0.078125
第八章 非线性方程与方程组的数值解法
序 由实变量x 的非线性函数 f x形成的方程 f x 0
称为非线性方程。若有数 x,使 f x 0,则x称为 f x 0 的根,
或称为方程的零点。方程的根有实根和复根之分。 一般的,非线性方程的根很难求得,实际应用中,也无必要得

x xk

bk
ak 2

ba 2k 1

只要
ba 2k 1

就可确定得到满足精度要求的近似根,
同时也得到所需二分次数 k.
上述求非线性方程的实根的近似值的方法称为二分法。
4
例1 用二分法求方程 f x x3 2x 5 0 在区间 2,3内的实根
的近似值,并指出其误差。
解 这里 a 2 , b 3 f x x3 2x 5在2,3内连续,

《数值分析》完整版讲义

《数值分析》完整版讲义

2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

《数值分析》所有参考答案

《数值分析》所有参考答案
解:
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)

当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)

当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时


, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得

,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]

数值分析-复习及习题选讲

数值分析-复习及习题选讲

5、线性方程组的数值解法
1.了解Gauss消元法的基本思想,知道适用范围 顺序Gauss消元法:矩阵A的各阶顺序主子式都不为零. 主元Gauss消元法:矩阵A的行列式不为零. 2.掌握矩阵的直接三角分解法。
会对矩阵进行Doolittle分解(LU)、Crout分解及Cholesky分解。
熟练掌握用三角分解法求方程组的解。 了解平方根法和追赶法的思想。 3.了解向量和矩阵的范数的定义,会判定范数(三要素非负性、齐 次性、三角不等式);会计算几个常用的向量和矩阵的范数; 了解范数的等价性和向量矩阵极限的概念。 4.了解方程组的性态,会计算简单矩阵的条件数。
k n
f
( n 1)
(2)记(t)=(t-x)k,则yj=(xj)=(xj-x)k, j=0,1,…,n.于是
n ( t ) k (t x) k f (t ) y j l j (t ) n 1 (t ) ( x j x) l j (t ) j 0 j 0 (n 1)! 取t=x,则有 n ( x j x) k l j ( x) 0
收敛于(x)在I上的唯一不动点x*.
都收敛于方程的唯一根x*.
推论 若(x)在x*附近具有一阶连续导数,且|(x*)|<1, 则对充分接近 x*的初值x0,迭代法xk+1=(xk)收敛. 3. 了解迭代法收敛阶的概念,会求迭代法收敛的阶.了解Aitken加速 技巧.
xk 1 C (1) xkp阶收敛于x*是指: lim k x p k
7.设(x)=x4+2x3+5, 在区间[-3,2]上, 对节点x0= -3, x1=-1,求出(x)的
三次Hermite插值多项式在区间[x0,x1]上的表达式及误差公式.

博士研究生入学《数值分析》考试大纲 - 广东工业大学

博士研究生入学《数值分析》考试大纲 - 广东工业大学

博士研究生入学《矩阵分析》考试大纲第一章线性空间和线性映射1.1线性空间;1.2基变换与坐标变换;1.3线性子空间(概念,子空间的交,和,子空间的直和,补子空间);1.4线性映射(概念,线性映射的矩阵表示);1.5线性映射的值域,核;1.6线性变换的不变子空间;1.7特征值与特征向量;1.8 矩阵的相似对角形;第二章λ-矩阵与矩阵的Jordan标准形2.1λ-矩阵及标准形;2.2初等因子与相似条件;2.3矩阵的Jordan标准形;第三章内积空间,正规矩阵,Hermite矩阵3.1欧式空间,酉空间;3.2标准正交基,Schmidt方法;3.3酉变换和正交变换;3.4幂等矩阵,正交投影;3.5正规矩阵,Schur引理;3.6Hermite矩阵, Hermitee二次齐式;3.7正定二次齐式,正定Hermite矩阵;3.8Hermite矩阵偶在复相合下的标准形;3.9 Rayleigh商;第四章矩阵分解4.1矩阵的满秩分解;4.2矩阵的正交三角分解(UR,QR分解);4.3矩阵的奇异值分解;4.4矩阵的极分解;4.5矩阵的谱分解;第五章向量与矩阵范数5.1向量范数;5.2矩阵范数;5.3诱导范数;5.4矩阵序列与极限;5.5矩阵幂级数;第六章矩阵函数6.1矩阵多项式,最小多项式;6.2矩阵函数及计算;6.3矩阵函数的幂级数表示;6.4矩阵指数函数与矩阵三角函数;第七章函数矩阵与矩阵微分方程7.1函数矩阵;7.2函数矩阵对纯量的导数与积分;7.3函数向量的线性相关性;7.4矩阵微分方程()()() dX tA t X tdt=;7.5线性向量微分方程()()()() dX tA t X t f tdt=+;第八章矩阵的广义逆8.1广义逆矩阵;8.2自反广义逆;8.3伪逆矩阵;8.4广义逆与线性方程组参考书目:1 《矩阵分析》,史容昌,北京理工大学出版社2 《矩阵分析引论》,陈祖明,北京航空航天大学出版社。

数值分析ppt课件

数值分析ppt课件

数值积分与微分
数值积分
通过数值方法近似计算定积 分,如梯形法则、辛普森法 则等。
数值微分
通过数值方法近似计算函数 的导数,如差分法、中心差 分法等。
常微分方程的数值解法
通过数值方法求解常微分方 程,如欧拉方法、龙格-库塔 方法等。
03
数值分析的稳定性与误差分析
误差的来源与分类
模型误差
由于数学模型本身的近 似性和简化,与真实系
非线性代数方法
非线性方程组的求解
通过迭代法、直接法等求解非线性方程组,如牛顿法、拟牛顿法 等。
非线性最小二乘问题
通过迭代法、直接法等求解非线性最小二乘问题,如GaussNewton方法、Levenberg-Marquardt方法等。
多项式插值与逼近
通过多项式插值与逼近方法对函数进行近似,如拉格朗日插值、 样条插值等。
机器学习与数值分析的交叉研究
机器学习算法
利用数值分析方法优化和改进机器学 习模型的训练和预测过程,提高模型 的准确性和效率。
数据驱动的模型
通过数值分析方法处理大规模数据集 ,提取有用的特征和模式,为机器学 习模型提供更好的输入和输出。
大数据与数值分析的结合
大数据处理
利用数值分析方法处理和分析大规模数 据集,挖掘其中的规律、趋势和关联信 息。
数值分析PPT课件
contents
目录
• 引言 • 数值分析的基本方法 • 数值分析的稳定性与误差分析 • 数值分析的优化方法 • 数值分析的未来发展与挑战
01
引言
数值分析的定义
数值分析
数值分析是一门研究数值计算方法及 其应用的学科,旨在解决各种数学问 题,如微积分、线性代数、微分方程 等。

博士入学数学(高等数学、数值分析)课考试大纲

博士入学数学(高等数学、数值分析)课考试大纲

博士入学数学(高等数学、数值分析)课考试大纲
高等数学部分(50分)
1. 极限与连续
数列的极限,函数及函数的极限,极限的性质及运算法则,无穷小的比较,函数的连续性。

2. 导数与微分
导数的概念,导数的基本公式,导数的四则运算及求导法则,高阶导数,微分,函数的极值。

3. 微分中值定理
微分中值定理,洛必达法则,泰勒公式。

4. 积分
原函数与不定积分,定积分的概念与性质,换元积分法,分部积分法,微积分学基本定理,定积分的应用。

5. 微分方程
微分方程的基本概念,一阶微分方程,几种可积的高阶微分方程,线性微分方程及其通解的结构,常系数齐次(非齐次)线性微分方程。

6. 多元函数微积分
多元函数,偏导数与高阶偏导数,全微分,复合函数及隐函数的求导法,多元函数的极值,二重积分。

7. 无穷级数
无穷级数的敛散性,正项级数敛散性的判别,任意项级数,绝对收敛,幂级数及幂级数的收敛半径和收敛域,函数的幂级数展开。

数值分析部分(50分)
1.非线性方程求根
简单迭代法、牛顿法、割线法及其计算效率。

2.线性代数方程组的数值解法
向量与矩阵范数,高斯列主元消去法,误差分析;雅可比迭代法、高斯—赛德尔迭代法、超松弛迭代法及其收敛性讨论。

3.插值与拟合逼近
函数的拉格朗日插值、牛顿插值、埃尔米特插值、样条插值;曲线拟合的最小二乘逼近方法;误差分析。

4.数值积分
代数精度,低阶牛顿—柯特斯求积公式及其复化,龙贝格算法;高斯积分公式;数值积分公式的稳定性。

5.常微分方程初值问题的数值解法
常用单步法和多步法及其稳定性讨论;预测—校正格式。

博士研究生入学考试《数值分析(机电院)》考试大纲

博士研究生入学考试《数值分析(机电院)》考试大纲

博士研究生入学考试《数值分析(机电院)》考试大纲第一部分考试形式和试卷结构一、考试方式:考试采用闭卷笔试方式,试卷满分为100分。

二、考试时间:180分钟。

三、试卷内容结构:约占 60%,主观题约占 40%。

四、试卷题型结构:试卷由三部分组成:选择/判断、填空、分析/计算。

其中:1、选择/判断题,约占20%。

测试考生对本课程基本概念、基本知识和数值计算常用算法设计与分析方法的掌握程度。

2、填空题,约占40%。

测试考生运用数值计算相关基础知识和基本方法,开展计算、简要分析以及求解实际问题的能力。

3、分析、计算题,约占40%。

测试考生综合运用数值计算理论、典型方法解决综合问题,并开展相关计算方法收敛性以及误差分析等能力。

第二部分考察的知识及范围1.误差度量与数值算法设计误差基本概念:误差来源与分类,截断误差、舍入误差、绝对误差、相对误差,有效数字以及数值稳定性。

函数计算误差分析:一元函数误差估计,四则运算误差估计。

数值算法设计原则:简化计算步骤以节省计算量(秦九韶算法)、减少有效数字损失,选择数值稳定的算法。

2.函数的插值方法以及误差估计插值问题的基本概念:插值问题的描述,插值多项式的存在和唯一性,差商、差分的概念以及性质。

拉格朗日插值:线性插值与抛物插值,n次拉格朗日插值,插值余项公式。

牛顿插值:均差的概念与性质,牛顿插值公式及其余项,差分的概念与性质。

埃尔米特插值:两点三次埃尔米特插值及其余项,n点埃尔米特插值,非标准埃尔米特插值及其余项。

分段低次插值:分段线性插值,分段三次埃尔米特插值。

三次样条插值:三次样条函数建立,三次样条插值方法。

3.函数逼近与曲线拟合正交多项式:函数内积、欧几里德范数,正交函数序列,正交多项式,勒德让多项式,切比雪夫多项式。

最佳平方逼近:最佳平方逼近问题及解法,基于正交函数、勒德让多项式、切比雪夫多项式的最佳平方逼近。

最小二乘法:最小二乘曲线拟合问题的提出和解法,最小二乘计算,最小二乘法的应用(算术平均、超定方程组)。

数值分析讲义

数值分析讲义

由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。

《数值分析教程》课件

《数值分析教程》课件
总结词
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。

博士研究生招生考试矩阵与数值分析科目考试大纲

博士研究生招生考试矩阵与数值分析科目考试大纲

博士研究生招生考试矩阵与数值分析科目考试大纲一、考查目标矩阵与数值分析课程含数值分析和矩阵理论(部分)内容,是数学学科的一个分支。

它研究用计算机求解数学问题的数值计算方法及其理论与软件实现。

本考试为博士研究生生入学考试,考核内容是最基本、最常用的数值计算方法及其理论,包括1、了解误差和有效数字概念,理解数值运算的误差估计,掌握算法的数值稳定性概念、数值计算中的一些基本原则;2、了解二分法算法,理解迭代法的一般理论、迭代收敛的阶及加速技,掌握牛顿迭代法迭代格式及应用;3、了解高斯消元法算法思想,理解列主元消元法与三角分解算法,掌握矩阵的直接三角分解方法,掌握向量和矩阵范数范数概念和计算方法,了解方程组的条件数及计算;4、掌握雅可比迭代和高斯赛德尔迭代的计算格式,理解雅可比迭代和高斯赛德尔迭代的收敛性判断方法,了解超松驰迭代法的计算格式及收敛性判别方法;5、掌握拉格朗日插值公式,理解多项式插值的存在唯一性定理和插值误差估计公式,掌握均差与牛顿插值公式,了解分段线性插值与多元函数插值方法、埃尔米特插值方法、样条插值方法;6、了解数学拟合的概念,掌握曲线拟合的最小二乘法算法和原理,理解正交多项式和最佳平方逼近方法;7、理解插值型求积公式的概念和方法,了解插值中的代数精度概念,掌握复合求积公式及算法,理解外推原理与Romberg算法,理解高斯求积公式及其复合公式,掌握数值微分方法;8、掌握求解一阶常微分方程的简单数值方法,理解四阶龙格库塔方法,了解单步法的收敛性和稳定性,了解线性多步法,了解一阶常微分方程组和高阶方程求解方法。

9、了解向量范数与矩阵范数的概念,掌握一些常用的向量范数与矩阵范数,了解矩阵范数与向量范数的相容性。

10、了解收敛矩阵的概念,了解矩阵幂级数收敛的判定,掌握常用矩阵函数值的计算,掌握函数矩阵的导数的计算。

11、理解矩阵的奇异值分解。

12、了解广义逆矩阵,掌握利用广义逆矩阵求解线性方程组。

数值分析PPT课件

数值分析PPT课件

03
数值分析的方法和技巧广泛应用于科学计算、工程、经 济、金融等领域。
主题的重要性
随着计算机技术的不断发展, 数值计算已经成为解决实际问 题的重要手段。
数值分析为各种数学问题提供 了有效的数值计算方法和技巧, 使得许多问题可以通过计算机 得以解决。
掌握数值分析的知识和方法对 于数学建模、科学计算、数据 分析等领域具有重要意义。
意义。
未来数值分析的发展方向
随着计算机技术的不断发展,数值分析 将更加依赖于计算机实现,因此数值算 法的优化和并行化将是未来的重要研究
方向。
随着大数据时代的到来,数值分析将更 加注重对大规模数据的处理和分析,因 此数据科学和数值分析的交叉研究将成
为一个新的研究热点。
随着人工智能和机器学习的发展,数值 分析将更加注重对非线性、非平稳问题 的处理,因此新的数值算法和模型将不
数值积分和微分
矩形法
将积分区间划分为若干个小的矩形区域,求 和得到近似积分值。
辛普森法
梯形法
利用梯形公式近似计算定积分,适用于简单 的被积函数。
利用三个矩形区域和一个梯形区域的面积近 似计算定积分。
02
01
高斯积分法
利用高斯点将积分区间划分为若干个子区间, 通过求和得到近似积分值。
04
03
矩阵的特征值和特征向量
数值分析ppt课件
目录
• 引言 • 数值分析的基本概念 • 数值分析的主要算法 • 数值分析的误差分析 • 数值分析的实例和应用 • 结论
01
引言
主题简介
01
数值分析是数学的一个重要分支,主要研究如何利用数 值计算方法解决各种数学问题。
02
它涉及到线性代数、微积分、微分方程、最优化理论等 多个数学领域。

数值分析全套课件

数值分析全套课件

Ln n si n

ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)

为 x 的相对误差
6/16
如果存在一个适当小的正数ε

,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)

《数值分析》课程教学大纲

《数值分析》课程教学大纲

《数值分析》课程教学大纲课程编号:07054352课程名称:数值分析英文名称:Numerical Analysis课程类型:学科基础课程要求:必修学时/学分:48/3 (讲课学时:40 上机学时:8)适用专业:计算机科学与技术;软件工程一、课程性质与任务“数值分析”是计算机科学与技术、软件工程等相关专业学生的学科基础课,也是其它理、工科专业本科生及研究生的必修或选修课。

数值分析是研究各种数学问题在计算机上通过数值运算,得到数值解答的方法和理论。

随着计算机系统能力的提高和新型数值软件的不断开发,无论在高科技领域还是在传统学科领域,数值分析的理论和方法的作用和影响巨大,是科学工作者和工程技术人员必备的基础知识和工具。

课程的任务是使学生能了解数值分析的基本概念,熟悉常用数值方法的构造原理,了解数值算法复杂性、误差与收敛性分析的基本方法,了解重要数值算法的软件实现过程,使学生系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为掌握更复杂的现代计算方法打好基础。

内容包括数值计算的基本方法、线性和非线性方程组解法、插值法、数值积分法及微分方程的数值解法。

二、课程与其他课程的联系先修课程:高等数学,线性代数,C语言程序设计,计算基础。

后续课程:人工智能,数字图像处理技术,大数据分析及应用。

三、课程教学目标1.学习使用计算机进行数值计算的基础知识和基本理论知识,能够分辨、选用合适的数值方法解决工程问题。

(支撑毕业能力要求1和2)2. 能掌握常用数值计算方法的构造原理,根据问题设计和综合运用算法设计问题解决方案。

(支撑毕业能力要求1和2)3. 能运用数值算法复杂性、误差与收敛性分析的基本方法初步进行算法分析。

4. 能用计算机语言实现典型的数值计算算法,得到实验技能的基本训练,并具有利用计算机解决常见数学问题的能力;(支撑毕业能力要求4)5.能通过查询阅读文献资料,了解数值分析的前沿和新发展动向,了解数值分析算法原理应用的典型工程领域。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

《数值分析》教学大纲

《数值分析》教学大纲

《数值分析》教学大纲一、课程概述数值分析是应用数学的一个重要分支,通过数学建模和计算机仿真对实际问题进行数值计算和分析。

本课程旨在培养学生运用数值方法解决实际问题的能力,包括数值逼近、数值微积分、数值线性代数、数值常微分方程等内容。

二、课程目标1.理解数值分析的基本原理和方法,掌握数值计算的基本技术。

2.熟悉计算机辅助数值计算的基本工具和软件。

3.能够运用数值方法解决实际问题,并分析计算结果的精度和稳定性。

4.具备进行科学计算和工程应用的能力。

三、教学内容与进度安排1.数值逼近(3周)1.1函数逼近与插值1.2最小二乘逼近1.3数值微积分基础2.数值微积分(3周)2.1数值求积2.2数值微分2.3常微分方程的数值解法3.数值线性代数(4周)3.1线性方程组的直接解法3.2迭代解法与收敛性分析3.3最小二乘问题的数值解法4.数值常微分方程(4周)4.1常微分方程的初值问题4.2常微分方程的边值问题4.3常微分方程的稳定性与数值稳定性分析四、教学方法1.理论讲述:通过教师的课堂讲解,引导学生理解数值分析的基本概念、原理和方法。

2.实例演示:通过实际问题的求解,演示数值方法的应用过程。

3.计算机实验:利用计算机软件进行数值计算实验,帮助学生掌握数值方法的具体实现。

4.课堂讨论:组织学生进行小组讨论,共同解决课堂提出的数值问题。

五、评分标准1.期末考试:占总评成绩的60%。

2.平时作业:占总评成绩的20%,包括数值计算实验报告、课后习题等。

3.课堂表现:占总评成绩的20%,包括参与课堂讨论、提问和回答问题等。

六、参考教材1.《数值分析基础(第5版)》,谢启元,高等教育出版社,2024年。

2.《数值分析与计算方法(第3版)》,杨士勤,高等教育出版社,2024年。

七、教学资源1.硬件设施:计算机实验室、投影仪等。

2. 软件工具:MATLAB、Python等数值计算软件。

八、其他说明1.本课程的学时安排为32学时,每周2学时。

数值分析复习要点

数值分析复习要点

y((7u5)u3)u18(u1) x1
1 10 99
3、设 x 0.01458663 为真值 xT 0.01451845 的近
似,则 x 有 2 位有效数字。
设 近 似 数 x0.a1a2 an10p的 绝 对 误 差 限 是 第 n位 的 半 个 单 位 , 则 数 x有
n位 有 效 数 字 。 (a10,ai 0,1,...,9)
三. Householder变换
Householder变换阵 H I 2wwT ,其中|| w ||2 1
定理 : 设n维向量x, y, x y, 但 || x ||2 || y ||2 , u x y, 则存在Householder变换阵 H I 2wwT , w u ,
|| u ||2 使Hx y.
习题
已知向量x (2, 0, 2,1)T , 试构造Householder阵H
使Hx ke3,其中e3 0, 0,1, 0T , k R.
四.矩阵的正交分解
(1) Schmidt正交化法(P40,第二章第2节)
(2) 用Housholder方法正交化(P142,第四章第4节)
例:用Householder方法求矩阵A的正交分解,
2. 已 知 向 量 x(1,4,3,0)T,y(3,6,1,2)T,
求 x,y之 间 的 距 离 (x,y).
二. Gauss变换与矩阵的三角分解
Gauss变换阵
1
1
Lj
l j1, j 1
ln, j
1
对x
T
x1,..., x j ,..., xn 0,
xj 0
构造Gauss变换阵G,使Gx
F
(
f
( x),1( x))

大学数学易考知识点数值分析的基本方法和应用

大学数学易考知识点数值分析的基本方法和应用

大学数学易考知识点数值分析的基本方法和应用大学数学易考知识点:数值分析的基本方法和应用一、引言数值分析是现代数学在科学计算和工程实践中的应用研究领域,是研究数值计算方法和数值算法的理论与实践的学科。

在大学数学课程中,数值分析是一个重要的知识点,它涉及到数值计算的基本方法和应用。

本文将介绍数值分析的基本方法和应用,以帮助学生更好地理解和掌握这一易考的知识点。

二、数值分析的基本方法1. 插值和逼近插值与逼近方法是数值分析中常用的方法之一,它们用于通过已知数据点构造一个近似函数,以在给定范围内估计未知数据点的值。

常见的插值与逼近方法包括拉格朗日插值、牛顿插值、最小二乘逼近等。

2. 数值微积分数值微积分方法用于对函数进行数值积分和数值微分。

在实际计算中,往往难以通过解析方法求得函数的积分或导数,这时可以利用数值积分和数值微分方法来近似计算。

其中常见的数值积分方法包括梯形法则、辛普森法则等,数值微分方法包括中心差商法、向前差商法、向后差商法等。

3. 常微分方程的数值解法常微分方程数值解法用于求解无法通过解析方法得到解的常微分方程。

常见的常微分方程数值解法有欧拉法、改进欧拉法、龙格-库塔法等,它们根据不同的精度和稳定性要求,选择不同的数值解法来计算常微分方程的近似解。

4. 线性方程组的数值解法线性方程组数值解法是解决线性方程组问题的常见方法。

当线性方程组的规模较大时,无法通过直接求解的方法得到解,此时可以利用数值解法来近似求解。

常见的线性方程组数值解法包括高斯消元法、LU分解法、迭代法等。

三、数值分析的应用1. 插值与逼近的应用插值与逼近方法在科学计算和工程实践中有广泛的应用。

例如,在地理信息系统中,插值方法可以用于根据已知地理数据点生成等高线图;在图像处理中,逼近方法可以用于图像的平滑处理和边缘检测。

2. 数值积分的应用数值积分方法在物理学、经济学等领域的科学研究中有重要的应用。

例如,在物理学中,数值积分方法可以用于计算物体的质心、面积、弧长等物理量;在经济学中,数值积分方法可以用于计算经济指标、积分收益等。

[工学]数值分析_考博必考课程_研一考试复习专用

[工学]数值分析_考博必考课程_研一考试复习专用

)
a(i) ii
k i 1
(i n 1, n 2,,1)
( 2.1.8)
把 求 解(2.1.7) 的 过 程 称 为 回 代 过 程, 并 把 消 元 与 回 代
过 程 合 起 来 称 为Gauss 消 元 法 的 全 过 程.
从上面的分析可以看出, 消元过程进行到底,要 求Gauss 消 元 法 的 主 元 素ai(ii) (i 1,2,, n 1) 全 不 为 零, 若 还 有an(nn) 0, 则方程组有惟一解,其解可由式(2.1.8)表 示
1
k
n),
反 之 为 真.
15
第十五页,共32页。
证明对
k
采用归纳法.当 k
1 时, 因 为1
a(1) 11
0,
命题
显 然 成 立.
假设命题对k 1 成 立, 即, 1 0, 2 0,, k1 0,
a(1) 11
0,
a(2) 22
0,,
a ( k 1) k 1,k
1
0, 只 需 证k
0,
5
第五页,共32页。
例1
用高斯消去法解方程组
x1 x1
x2 x3 3x2 2x3
6
1
2 x1 2 x2 x3 1
解 (消元过程用增广矩阵(jǔ zhèn)的行初等变换来表示)
Ab
1 1
1 3
1 6 第一次消元 2 1 r2 r1
2 2 1 1 r3 2r1
1 1 1 6 0 2 3 5 0 4 1 11
0.
利用此定理可知, 如果矩阵 A 的各 阶顺序主子式均不 为零, 则 Gauss 消元法能进行到底, 最后解出方程组的 惟一解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
例4 用弦割法求方程 f x x 3 x 1 0 在区间1,1.5内的一个根.

故相应的弦割法迭代过程为
3 xk xk 1 x k x k 1 x k 1 x k 3 3 ( xk xk 1) ( xk 1 xk 1 1)
1
弦截法的几何意义 :
y
y f x
如 图 所 示 以 弦 Pk 1 Pk 与 x 轴 交 点 ,
Pk
的 横 坐 标x k 1 作 为 f ( x ) 0 的 新 的近似根 .
o
xk 1 xk 1
Pk 1
x
xk
x
故这种方法称为弦截法8.4.2) 称为弦截法迭代公式 , ( .
8.4 弦 截 法
利 用Ne wton法 解 方 程 f ( x ) 0, 其 优 点 是 在 根 * 邻 近 x 具 有 较 高 的 收 敛 速 度 需 计 算 导 数f ' ( x ) 为 了 避 免 , 但 计 算f ' ( x )下 面 研 究 弦 截 法 .
设 xk , xk 1 是方程 f ( x ) 0 的两个近似根 过两点 , Pk ( xk , f ( xk )), Pk 1 ( xk 1 , f ( xk 1 )) 作线性插值多项式
3
x 1.325. 得
前 面 讨 论 中 用 P0 ( x0 , f ( x0 )) 代 替 ,若 Pk 1 ( xk 1 , f ( xk 1 )),则 有
x k 1
f ( xk ) xk x0 . xk f ( x k ) f ( x0 )
(8.4.3)
上式称为单点弦截法8.1.1) 的等价形式为 . (
f ( x k ) f ( x k 1 ) x xk , P ( x ) f ( xk ) x k x k 1 (8.4.1)
将 P( x) 0 的根记为xk 1 , 则有
x k 1
f xk xk xk 1 k 0,1,2, (8.4.2) xk f x k f x k 1
取初始近似根 x0 1, x1 1.5 , 计算结果如下表:
k 0 1 2 3 5 6
xk
1 1.5 1.266667 1.315962 1.325214 1.324714 1.324718
f xk
-1 0.825 -0.234369 -0.0370369 0.00211642 -0.000016876 0.000000182
f ( x) x x0 g( x ). x x f ( x ) f ( x0 )
(8.4.4)
迭 代 格 式 8.4.3) 具 有 局 部 收 敛 性 ( 且具有线性收敛速度 .
4
相关文档
最新文档