最新解三角形精典题型归纳(包括知识点)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5 第一章 解三角形复习
一、知识点总结
【正弦定理】
1.正弦定理:
2sin sin sin a b c
R A B C
=== (R 为三角形外接圆的半径). 2.正弦定理的一些变式:
()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R =
=2c
R
=
; ()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)
R C
B A c
b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:
(1)已知两角和任意一边,求其他的两边及一角.
(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)
【余弦定理】
1.余弦定理: 222222
2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C
⎧=+-⎪=+-⎨⎪=+-⎩ 2.推论: 222222222
cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪
+-⎪=⎨⎪⎪+-=
⎪⎩
.
设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:
①若2
2
2
a b c +=,则90C =;②若2
2
2
a b c +>,则90C <; ③若2
2
2
a b c +<,则90C >.
3.两类余弦定理解三角形的问题:(1)已知三边求三角.
(2)已知两边和他们的夹角,求第三边和其他两角.
【面积公式】
已知三角形的三边为a,b,c,
1.111sin ()222
a S ah a
b C r a b
c ===++(其中r 为三角形内切圆半径)
2.设)(2
1
c b a p ++=
,))()((c p b p a p p S ---=(海伦公式)
【三角形中的常见结论】
(1)π=++C B A
(2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-
2cos 2sin
C B A =+,2
sin 2cos C
B A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>
C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)
(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于
60,最小角小于等于
60
(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角
⇔任意两边的平方和大于第三边的平方.
钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是
60=B .
(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总
题型1【判定三角形形状】
判断三角形的类型
(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.
(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形
是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形
∆
(注意:是锐角A ⇔ABC 是锐角三角形∆)
(3) 若B A 2sin 2sin =,则A=B 或2
π
=
+B A .
题型2【解三角形及求面积】
题型3【证明等式成立】证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.
题型4【解三角形在实际中的应用】
解三角形测试题
一、选择题
1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于
( )
A .60°
B .60°或120°
C .30°或150°
D .120°
2、海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )
A.10 海里
B.5海里
C. 56 海里
D.53 海里
3、在锐角三角形ABC 中,有 ( )
A .cosA>sin
B 且cosB>sinA B .cosA C .cosA>sinB 且cosB D .cosA 4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 5.△ABC 中,cos cos cos a b c A B C == ,则△ABC 一定是 ( ) A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 6. △ABC 中,60B =,2 b a c =,则△ABC 一定是 ( ) A 锐角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形 7.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 8.△ABC 中,8b =,c =,ABC S =则A ∠等于 ( ) A 30 B 60 C 30或150 D 60或120 9.△ABC 中,若60A =,a =sin sin sin a b c A B C +-+-等于 ( ) A 2 B 1 2 D