抽样调查

合集下载

抽样调查的特点是什么

抽样调查的特点是什么

抽样调查的特点是什么抽样调查是一种常见的研究方法,其特点主要体现在以下几个方面。

一、代表性抽样调查的第一个特点是代表性。

由于人口众多,时间有限,研究者无法对整个人口群体进行研究。

因此,通过抽取一部分样本来代表整个人口群体,从而推断整体情况。

抽样调查的结果如果能够正确代表整个人口群体,就具有较高的代表性。

二、随机性抽样调查的第二个特点是随机性。

随机选取样本是保证调查结果的客观性和公正性的重要方法。

随机抽样的意思是每个人或每个单位有平等的机会被选为样本,从而减少抽样偏差。

通过随机抽样,从整体上更好地代表人口群体,使得样本的结果具有更高的可靠性和有效性。

三、经济性和高效性抽样调查的第三个特点是经济性和高效性。

相对于全面调查,抽样调查能够在较短的时间内获得较多的信息,降低研究成本。

同时,抽样调查也减少了调查对象的负担,提高了参与度。

抽样调查的经济性和高效性使得它成为广泛应用的研究方法。

四、可推广性抽样调查的第四个特点是可推广性。

通过合理设计和严格控制抽样过程,抽样调查能够在较小样本中发现并推断整体人群的特征和规律。

抽样调查结果在一定程度上可以推广到更大的范围。

通过适当的统计技术和方法,研究者可以推断样本结果的泛化能力,得到更广泛的结论。

五、数据分析和解释抽样调查的第五个特点是数据分析和解释。

抽样调查所得到的数据需要通过专业的统计方法进行分析和解释。

通过对数据的整理、计算和统计分析,可以找出其中存在的关联性、差异性和规律性,为研究问题提供有力的依据。

同时,对数据的解释也是抽样调查的重要环节,通过对数据背后的意义和影响进行解释,扩展调查结果在实践中的应用价值。

总的来说,抽样调查是一种代表性高、随机性强、经济高效、可推广性好、数据分析与解释能力强的研究方法。

通过合理设计和严密把控抽样过程,抽样调查可以在较小的样本中揭示整体人群的特征和规律,从而为研究和决策提供有力的科学依据。

六、抽样误差与抽样方法抽样调查的第六个特点是抽样误差与抽样方法。

抽样调查报告12篇

抽样调查报告12篇

抽样调查报告12篇抽样调查报告1为了解我市近期建筑节能设计选用的节能技术(产品)情况,由市墙材革新与建筑节能办公室对我市____年民用建筑节能设计资料进行抽样调查、统计分析,形成以下报告。

一、抽样调查情况本次调查对象为我市____年民用建筑节能设计审查备案表,共抽样280项工程,其中公共建筑59项,居住建筑221项。

涉及到的建设单位有64家,设计院38家。

本次调查内容主要是在民用建筑中采用的各项建筑节能技术(产品)情况。

(一)外墙节能设计在外墙节能设计方面,目前使用的主要墙材是加气混凝土砌块,占85.7%,其次是烧结粉煤灰砖、蒸压泡沫粉混凝土砖和灰砂砖。

外墙使用灰砂砖的比例为1.8%,比____年抽查统计数据下降78%。

采取保温隔热措施的比例为31.4%,比____年抽查统计数据增长32.5%,其中外墙外保温做法占77.3%。

使用的保温隔热材料主要是聚苯颗粒保温砂浆,占60.2%,其次是普通砂浆,占13.6%。

其中,居住建筑中采用加气混凝土砌块的比例为86.9%;加气混凝土砌块+聚苯颗粒保温砂浆(外保温)的比例为14.9%;公共建筑中采用加气混凝土砌块的比例为81.4%,加气混凝土砌块+聚苯颗粒保温砂浆(外保温)的比例为15.3%。

外墙采用的墙材和保温隔热材料情况见表1、表2:表1外墙采用的墙材外墙采用的墙材抽样调查报告2国家统计局继首次开展全国群众安全感调查之后,已于11月份组织开展了第二次全国群众安全感抽样调查工作。

现将本次抽样调查的主要数据公布如下:一、被调查者的基本情况本次共抽取全国31个省、自治区、直辖市年满16周岁以上的101988人进行了问卷调查。

在被调查者中,男性59760人,占被调查人员总数的58.6%;女性42228人,占41.4%。

从被调查者的年龄来看,16岁至17岁的2192人,占2.1%;18岁至25岁的10396人,占10.2%;26岁至34岁的23674人,占23.2%;35岁至49岁的38407人,占37.7%;50岁至59岁的13694人,占13.4%;60岁以上的13625人,占13.4%。

第4章__抽样调查

第4章__抽样调查

4.1.3抽样误差的确定
❖1)抽样误差的概念
❖2)影响抽样平均误差的因素
1、全及总体标志变异程度 2、样本容量 3、抽样组织方式 4、抽样方法
❖3)降低调查误差的途径
1、提高样本的代表性
2、注重样本量的控制
3、提高抽样设计的效率 4、重视抽样方案的审评
5、努力降低调查员的误差 6、努力调查被调查者的误差
❖ (4)如果这一地区街对面从第一号开始都没有住户,在第一号对面的街区转 一圈,并遵循右手法则。(即按顺时针方向在街区转一圈。)试着沿路线每 隔两户访问一户。
❖ (5)在起始门牌号对面邻近的街区绕过一圈后,如果你没有完成所需的访问, 就按顺时针方向到下一个街区访问。
❖ (6)如果第三个街区的住户数不够完成你的任务,就再做几个街区直到要求 的户数完成为止;这些区要按顺时针方向绕原有的街区来找。
❖5)简单随机抽样方式的优缺点
随机抽样方式的优点
方法简单直观,当总体名单完整时,可直接从中随机抽取样本。由于 抽取概率相同,计算抽样误差及对总体指标加以推断比较方便。
随机抽样方式的缺点
尽管简单随机抽样在理论上是最符合随机原则的,但是在实际应用中 有一定的局限性。第一,采用简单随机抽样,一般需对总体各单位加以 编码,而实际市场调查活动中所需调查总体往往是十分庞大的,单位非 常多,逐一编码几乎是不可能的;第二,对于某些事物无法使用简单随 机抽样,如对连续不断产生的大量产品进行质量检验,就不能对全部产 品进行编号抽样;第三,当总体的标志变异程度较大时,简单随机抽样 的代表性就不如经过分组后再抽样的代表性高;第四,由于抽出样本单 位较为分散,所以调查人力、物力、费用消耗较大。
2)抽样调查的特征
❖(1)抽取样本的客观性 ❖(2)抽样调查可以比较准确地推断总体

抽样调查的基本原理课件

抽样调查的基本原理课件

需要采用科学的方法和严谨的程序来保证样本的多样性、随机性和无偏
性。
02
样本规模与成本
在复杂样本设计中,如何平衡样本规模和调查成本是一个关键问题。需
要综合考虑样本规模、调查精度和资源限制等因素,制定合理的调查方
案。
03
样本更新与维护
对于长期调查项目,如何定期更新和维护样本是一个重要任务。需要建
立有效的样本维护机制,保持样本的时效性和稳定性。

简单随机抽样
每个单位被选中的机会相等, 且相互独立。
分层随机抽样
将总体分成若干层,然后在每 一层内进行随机抽样。
系统随机抽样
将总体中的单位按某种顺序排 列,然后按照固定的间隔进行
随机抽样。
系统抽样
系统抽样
按照某种固定的规则从总 体中选取样本,如每隔一 定数量的单位抽取一个单 位。
适用情况
当总体中的单位排列有序 或分布均匀时,系统抽样 效果较好。
样本量的分配
样本量分配的原则
样本量分配时应遵循均匀分配、分层分配和整群分配等原则,以提高样本的代 表性和降低抽样误差。
样本量分配的方法
样本量分配的方法包括比例分配、系统分配、随机分配和最优分配等。
04
抽样调查的实施步骤
确定调查目标与范围
明确调查目的
确定调查的目标和目的,如了解市场状况、评估产品质量等。
发展历程
随着统计学和概率论的进 步,多种抽样方法如分层 抽样、系统抽样、聚类抽 样等逐渐发展起来。
当前应用
抽样调查广泛应用于社会 调查、市场研究、民意调 查等领域,成为现代统计 学的重要分支。
02
抽样调查的基本原理
随机抽样
随机抽样
从总体中随机选取一部分单位 作为样本进行调查,目的是通 过样本信息来推断总体的特征

抽样调查的案例

抽样调查的案例

抽样调查的案例抽样调查是一种常见的研究方法,通过对样本数据的收集和分析,来推断总体特征和规律。

在实际应用中,抽样调查可以帮助研究者获取所需的信息,同时也可以节约时间和成本。

下面将通过两个案例来说明抽样调查的应用。

案例一,市民满意度调查。

某市政府希望了解市民对市政工作的满意度,但是由于市民数量众多,无法对每个市民进行调查。

因此,市政府决定采用抽样调查的方法。

首先,他们将市民按照居住区域、年龄、职业等因素进行分层抽样,然后在每个分层中随机抽取一定数量的样本。

调查员们对被抽中的市民进行问卷调查,收集他们对市政工作的评价和意见。

最后,通过对样本数据的分析,市政府得出了市民对市政工作的整体满意度,并可以找出不同群体之间的差异。

案例二,产品质量抽样检验。

某家电企业生产的空调产品需要进行质量抽样检验。

为了保证抽样的代表性和可靠性,企业决定采用随机抽样的方法。

他们将生产线上的空调产品按照生产批次进行编号,然后利用随机数表或随机数生成器来抽取样本。

抽样过程中,要确保每个产品都有被抽中的机会,避免抽样偏差。

抽取的样本将进行严格的质量检验,包括外观检查、性能测试等。

最终,通过对样本产品的检验结果进行统计分析,企业可以判断整个生产批次的产品质量是否合格。

通过以上两个案例,我们可以看到抽样调查在实际应用中的重要性和灵活性。

抽样调查不仅可以帮助研究者获取所需的信息,还可以提高调查效率和节约成本。

当然,在进行抽样调查时,我们也要注意抽样方法的选择、样本的代表性和抽样误差的控制,以确保调查结果的准确性和可靠性。

总之,抽样调查是一种常用的研究方法,通过合理的抽样设计和样本分析,可以得出对总体特征和规律的推断。

在实际应用中,抽样调查可以帮助我们更好地了解客观现象、做出合理决策,是研究和实践中不可或缺的重要工具。

第七章 抽样调查

第七章  抽样调查

数据计算出样本均值(平均耐用时间)
x=1055小时,样本成数(合格率) p=91% 依据样本统计量可以对总体参数进行估 计(估计方法将在第三节介绍)。
六、抽样推断的基本原理
样本指标 1、理论基础: 大数定律 中心极限定理 2、抽样估计的基本要求:
无偏性、有效性、一致性
总体指标
第二节 抽样组织方式
对无限总体不能采用全面调查。
另外,有些产品的质量检查具有破坏性,不可能进行全面调
查,只能采用抽样调查。 从理论上讲,有些现象虽然可以进行全面调查,但实际上没 有必要或很难办到,也要采用抽样调查
抽样调查可以用于工业生产过程的质量控制。
三、抽样推断的内容
(一)参数估计。特点是不知道总体的数量特征,
X
x

2
K
p
P p
K
2
抽样平均数平均误差的计算公式:
采用重复抽样:
x

n
此公式说明,抽样平均误差与总体标准差成正 比,与样本容量成反比。(当总体标准差未知 时,可用样本标准差代替)
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
1 则: x 0.577 3n 3
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。 抽样单位数增加 0.5倍,即为原来的 1.5倍

则:
1 x 0.8165 1.5n 1.5

即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165 倍。
例:某施工班组5个工人的日工资分别为:34、38、
例:
某厂生产一种新型灯泡共2000只,随机抽出400只作耐 用时间试验,测试结果平均使用寿命为4800小时,样 本标准差为300小时,求抽样推断的平均误差? 已知:

第6章 抽样调查(1)

第6章 抽样调查(1)

33
1、由于总体单位总数未 知,因此采用重复抽样 公式。又总体标 准差未知,采用过去资 料最大标准差作为估计 值。
x

n

0.12 0.0219 (升) 30
n1 30 2 2、合格率p 93.3% n 30 S P p(1 p) 93.3% (1 93.3%) 6.25%
根据质量标 准,使用寿 命800小时及 以上者为合 格品,计算 产品平均合 格率和标准 差。
14
全及指标
X XF X N F
P N1 N
X
2
( X X )2
N

( X X )2 F F
X
(X X )
N
2

(X X ) F F
2
P 2 P(1 P)
31
例 上题中,如果寿命低于9000小时的产品是不合格品,计 算不合格率(合格率)的抽样平均误差。
不合格率:
n1 90 x p 18% n 500
Sp
p(1 p)
Sp
0.18 (1 0.18) 38.4%
重复抽样下:
p
p
Sp n
0.384 1.7% n 500
3
特 点
遵循随机原则抽取部分单位 ;
用样本推断总体;
会产生抽样误差,但误差可以计算和控制。
4
随机原则的实现
统 计 学 概 论
是将总体中每个单位的编号写在外形完全 一致的签上,将其搅拌均匀,从中任意抽 抽签法 选,签上的号码所对应的单位就是样本单 位。 将总体中每个单位编上号码,然后使 用随机数表,查出所要抽取的调查单 随机数表法 位。

抽样调查的五种方法

抽样调查的五种方法

抽样调查的五种方法
抽样调查是研究人员在研究中采取的一种常见的数据收
集方法。

通过从总体中选择一部分样本,并在样本上进行测量和分析,研究人员可以推断总体的特征和情况。

以下是五种常见的抽样调查方法:
1. 简单随机抽样:这是抽样调查中最基本的一种方法。

它要求所有个体有等同的机会被选中,并且选取的每个个体都是独立的。

研究人员可以使用随机数表或随机数生成器来进行样本选择。

2. 系统抽样:系统抽样是一种有规律的抽样方法。

研究
人员首先确定样本量,然后按照一个固定的规则选择样本。

例如,研究人员可以选择每10个人中的一个进行调查。

3. 分层抽样:分层抽样将总体分成若干层,然后从每个
层中进行抽样。

这种方法可确保样本在每个层上的代表性。

例如,如果研究人员研究一个城市的居民,他们可以将城市分成不同的区域,然后从每个区域中抽取一定数量的样本。

4. 整群抽样:整群抽样是一种将总体分成若干群体,然
后从选定的群体中进行抽样的方法。

这种方法通常用于人口较少或封闭的群体研究。

例如,如果研究人员研究一个学校的学生,他们可以将学校分成不同班级,然后从每个班级中抽取样本。

5. 方便抽样:方便抽样是一种简便的抽样方法,研究人
员选择方便获得的个体作为样本。

这种方法的优点是操作简单、节省时间和成本,但样本的代表性可能较差。

每种抽样调查方法都有其特点和适用场景。

研究人员在选择抽样方法时需要考虑研究目的、总体特征、时间和资源限制等因素。

正确选择和应用合适的抽样方法可以提高研究的准确性和可靠性。

抽样调查的名词解释

抽样调查的名词解释

抽样调查的名词解释抽样调查是社会科学研究中常见的一种数据收集方法。

它通过从研究对象中选取一部分样本进行调查,然后对样本数据进行分析和总结,以推断出整个群体的特征和规律。

抽样调查的目的是为了在有限的资源和时间条件下,获取全面和真实的信息。

对于社会研究、市场调查、舆情分析等领域来说,抽样调查是一种重要的工具,有助于揭示现象背后的原因和关联。

1. 抽样方法的选择抽样方法是抽样调查中的关键环节。

它决定了样本的代表性和可靠性。

常用的抽样方法包括简单随机抽样、系统抽样、分层抽样、整群抽样等。

简单随机抽样是一种基本的抽样方法,通过将研究对象列入抽签或抽号,随机选取样本。

系统抽样是按照一定规则,如每隔一定间隔选取一个样本。

分层抽样是将研究对象按照某种特征分组,再从每个组中随机选取样本。

整群抽样是将群体划分为若干个群组,然后从中随机选取部分群组进行调查。

2. 抽样误差的控制抽样误差是指样本数据与目标总体的真实情况之间的差异。

在抽样调查中,如果样本容量足够大,且抽样方法随机且代表性好,那么抽样误差会相对较小。

然而,由于资源、时间等限制,完全消除抽样误差是不可能的。

因此,研究者需要在控制误差和成本之间进行权衡。

常见的控制抽样误差的方法有增加样本规模、选择更适合的抽样方法、提高调查问卷的设计质量等。

3. 抽样调查的优缺点抽样调查相比于全面调查的主要优点在于节约资源、时间和人力成本。

通过对样本数据的分析,可以推断出整个群体的特征和情况。

而全面调查则需要对整个群体进行调查,成本和时间消耗较大。

然而,抽样调查也存在一定的局限性。

一是抽样误差无法完全避免,样本在一定程度上无法代表整个群体。

二是调查结果受到调查问卷设计、调查方式以及受访者个人主观因素等的影响。

因此,在抽样调查中应注意合理选择抽样方法,确保样本的代表性和可靠性。

4. 抽样调查在实际应用中的案例抽样调查在实际应用中有广泛的应用。

例如,在市场调查中,通过对样本消费者的需求和偏好进行分析,可以为企业的产品开发和营销策略提供决策依据。

抽样调查的概念以及特点

抽样调查的概念以及特点

抽样调查的概念以及特点一、抽样调查的概念和程序抽样调查的概念:抽样调查:就是从调查对象的总体中抽取一部分单位作为样本,并以对样本进行调查的结果来推断总体的方法。

总体:是指所要调查研究对象的全部单位。

如,要研究北京市居民户的生活质量,那么北京市所有的居民就是此次调查的总体。

抽样:从总体中选取一部分的方法代表的过程就是抽样;抽样框:编制抽样单位的目录,成为抽样框。

抽样框的范围与被调查总体的范围一致。

抽样框可分为1、名单抽样框2、区域抽样框3、时间标抽样框样本:是指从总体中抽取出来进行调查的一部分单位。

总体是所要研究的对象,样本是所要观察的对象。

样本的大小,即样本单位数,称为样本容量,用n表示。

抽样调查的主要特点:(1)它的调查对象只是作为样本的一部分单位,而不是全部单位,也不是个别或少数单位;(2)调查样本一般按照随机原则抽取,而不由调查者主观确定;(3)调查目的不是说明样本本身,而是从数量上推断总体、说明总体;(4)随机抽样的误差是可以计算的,误差范围是可以控制的。

抽样的一般程序:(1)设计抽样方案(2)界定调查总体(3)选择抽样方法(4)编制抽样框(5)抽取调查样本1 / 6(6)评估样本质量二、非随机抽样的具体方法非随机抽样概念:非随机抽样又称非概率抽样,就是调查者根据自己的方便或主观判断抽取样本的方法。

常见的方法有:1)任意抽样,也称方便抽样、便利抽样、偶遇抽样。

从便利的目的出发,依靠现成的研究对象获取样本就是按调查者的方便任意抽样。

如在街头、路口、商场等,随便选择某些行人、顾客等作为抽样对象进行访问调查。

2)判断抽样,又称立意抽样,就是依据调查者的主观判断来选择样本。

样本个体的选择不是根据某一概率,而是依据研究者或调查人员的判断3)配额抽样,也称定额抽样,就是根据统计报表等已知情况,按照一定标准和比例分配样本数额,然后由调查者在各个组成部分内根据配额的多少采用偶遇抽样或判断抽样方法抽取样本。

抽样调查

抽样调查

抽取样本
10 10 10 10 10 20 20 20 10 20 30 40 50 10 20 30
样本平均数 x 误差 x X
10 15 20 25 30 15 20 25 -20 -15 -10 -5 0 -15 -10 -5

x X
400 225 100 25 0 225 100 25
n N n
5
(2)不考虑顺序的重复抽样:D C
n N
n N n 1
2. 如果是不重复抽样:
n (1)考虑顺序的不重复抽样: AN N ( N 1) L ( N n 1)
N! ( N n)!

5 A50 50 49 48 47 46 254, 251, 200(种)

2
接左:
抽取样本
30 40
样本平均数 x
35
误差 x X
5
x X
25
2
30
40 40 40 40 40 50 50 50 50 50 合
50
10 20 30 40 50 10 20 30 40 50 计
40
25 30 35 40 45 30 35 40 45 50 -
10
-5 0 5 10 15 0 5 10 15 20 -
所谓推断,就是用抽样指标来推断全及指标。 一是用抽样平均数 x推断全及平均数 X,从而推断 总体标志总量 二是用抽样成数p推断全及成数P,从而推断总体 单位总量
在抽样调查中应用的总体指标和样本指标还有: 方差:总体方差 、样本方差s
2 2
标准差:总体标准差 、样本标准差s
抽样框 ——即总体单位的名单,是指对可以选择作为

第七章 抽样调查

第七章 抽样调查

第七章抽样调查一、抽样原理1、定义抽样调查是按照随机原则从被研究对象的总体中(全部研究对象)抽取一部分单位进行调查观察,并运用数理统计的原理,以调查所得的指标(实际观察数值)来推断被研究总体的相应指标达到对总体的认识。

简言之,抽样调查就是从总体中抽取一定数量的样本来推断总体的情况。

2、抽样调查的特点⑴随机原则。

所谓随机原则,就是说在我们所研究的总体中,每一个个案都有被选中、抽取的机会。

也即我们在总体中抽样时,哪一个个案能被抽取,哪一个个案不能被抽取,不是人为主观决定的,而完全是偶然碰机会的。

⑵从数量上推算全体。

抽样调查是抽取部分个案进行调查,但它的主要目的不是为了了解这部分单位本身,而是为了据此从数量上推算全体。

⑶抽样调查使我们有可能用更少的人力、物力、时间、费用达到对总体的认识,而且可以起到丢普查资料进行修正补充,提高大范围调查的准确程度的作用,因而在理论上和方法上都具有重要的意义。

3、几个概念⑴总体也称为母体、一般总体等。

是指具有某种统计特征的一类事物的全部个案。

也即,研究对象的全体称为总体。

例如,某批产品、某类病人、某个生产过程等。

总体的单位数通常用符号N来表示。

⑵个体也称为个案、元素。

组成总体的每个元素称为个体。

有时也称具有某种统计特征的每一个对象为个案构成一个总体的个案,可以是人或物,也可以指个性、心理反应等。

⑶样本也称为抽样总体、样本总体等从总体中抽取一部分代表进行研究分析时,这一部分被抽取的个案称为总体中的一个样本。

也就是说,从总体中抽取的若干个案所组成的群体,称之为样本。

总体是大群体,样本是小群体。

在社会研究中,资料的收集工作往往是在样本中完成的。

样本的单位数(即样本容量)常用符号n来表示。

⑷抽样从组成某个总体的所有元素的集合中,按一定的方式选择或抽取一部分元素(即抽取总体的一个子集)的过程,或者说,抽样是从总体中按一定方式选择或抽样样本的过程。

(5)抽样单位就是一次直接的抽样所使用的基本单位。

统计学原理抽样调查

统计学原理抽样调查
第六章 抽样调查
第一节 抽样调查的意义
一、抽样调查的概念
一般所讲的抽样调查,即指狭义的抽样调
查(随机抽样):按照随机原则从总体中抽取 一部分单位进行观察,并运用数理统计的原 理,以被抽取的那部分单位的数量特征为代 表,对总体作出数量上的推断分析。
二、抽样调查的特点
(一)抽样调查的目的是由部分来推断整体。
(三)抽样平均误差计算实例(p270-271)

五户家庭三月份购买某商品的支出: 10元,20元,30元,40元,50元
X 30元 现从五户中抽取二户作调查, 如果为重复抽样(考虑顺序) 52=25(种) 排列组合如下:
抽样平均误差
x
2
n

N N
n 1


2
n
1
n N


n N
很小时,1
n N

接近于1,n2

N N
n 1

2 很接近。
n
四、抽样平均误差的计算
(二)抽样成数的抽样平均误差
重复抽样条件下抽样成数的抽样平均误差
抽样平均误差 p
(三)统计抽样过程(图6-1,p255)
所谓推断,就是用抽样指标来推断全及指标。 一是用抽样平均数 x推断全及平均数 X,从而推断 总体标志总量 二是用抽样成数p推断全及成数P,从而推断总体 单位总量
三、抽样方法和样本可能数目
抽样方法
根据取样的方式不同,抽样方式分为:重复抽样和不重复抽样。
根据对样本的要求不同,抽样方式分为:考虑顺序抽样和不考 虑顺序抽样。
第二节 抽样调查的基本概念及理论依据
一、全及总体和抽样总体
(一) 全及总体,简称总体

统计学第六章抽样调查

统计学第六章抽样调查
2 2
标 差 总 标 差 、 本 准 s 准 : 体 准 σ 样 标 差
总体参数和样本统计量符号
总体指标符号 总体容量: N 总体平均数: µ 总体成数: P 总体方差: σ2 总体标准差: σ 样本指标符号 样本容量: n 样本平均数: x 样本成数: p 样本方差: S2 样本标准差: S
抽样组织形式
抽样估计效果好坏,关键是抽样平均误差的 抽样估计效果好坏,关键是抽样平均误差的 抽样平均误差 控制。抽样平均误差小, 控制。抽样平均误差小,抽样效果从整体上 看就是好的;否则,抽样效果就不理想。 看就是好的;否则,抽样效果就不理想。 抽样平均误差受以下几方面的因素影响: 抽样平均误差受以下几方面的因素影响:
抽样调查的基本概念 抽样调查的基本概念 重复抽样和不重复抽样
重复抽样:又称有放回的抽样 有放回的抽样,从总体中 重复抽样 有放回的抽样 抽取样本时,每次被抽中的单位都再被 放回总体中参与下一次抽样。 不重复抽样:又称无放回的抽样 无放回的抽样,总体中 不重复抽样 无放回的抽样 随机抽选的单位经观察后不放回到总体 中,即不再参加下次抽样。
µ ( p) =
P (1 − P ) n
不重复抽样条件下: 不重复抽样条件下: 条件下
µ ( p) =
P (1 − P ) n (1 − ) n N
抽样极限误差
样本平均数的抽样极限误差: 样本平均数的抽样极限误差:以绝对值形式 表示的样本平均数的抽样误差的可能范围, 表示的样本平均数的抽样误差的可能范围, 用符号表示为: 用符号表示为:
样本成数
从成数总体中抽取样本容量为n的样本 从成数总体中抽取样本容量为 的样本 样本中具有此种特征的单位占全部样本单位 数的比例称为样本成数,记作p 数的比例称为样本成数,记作p p=n1/n

抽样调查是什么意思有什么特点

抽样调查是什么意思有什么特点

抽样调查是什么意思有什么特点抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象做出估计和推断的一种调查方法。

那么你对抽样调查了解多少呢?以下是由店铺整理关于什么是抽样调查的内容,希望大家喜欢!抽样调查的概念抽样调查是根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

抽样调查的特点抽样调查从研究对象的总体中抽取一部分个体作为样本进行调查,据此推断有关总体的数字特征。

经济性好、实效性强、适应面广、准确性高抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。

它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。

与其它调查一样,抽样调查也会遇到调查的误差和偏误问题。

通常抽样调查的误差有两种:一种是工作误差(也称登记误差或调查误差),一种是代表性误差(也称抽样误差)。

但是,抽样调查可以通过抽样设计,通过计算并采用一系列科学的方法,把代表性误差控制在允许的范围之内;另外,由于调查单位少,代表性强,所需调查人员少,工作误差比全面调查要小。

特别是在总体包括的调查单位较多的情况下,抽样调查结果的准确性一般高于全面调查。

因此,抽样调查的结果是非常可靠的。

抽样调查数据之所以能用来代表和推算总体,主要是因为抽样调查本身具有其它非全面调查所不具备的特点,主要是:(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。

而不是用随意挑选的个别单位代表总体。

(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。

名词解释抽样调查

名词解释抽样调查

名词解释抽样调查抽样调查是指在整体人口或样本的基础上,通过统计方法和技术手段,采用一定的抽样方法选取一部分个体进行研究,以获取其特定信息、观点或意见的一种调查方法。

抽样调查是社会科学研究中常用的数据收集方式,通过分析抽样数据可以得到关于总体的推断性结论,具有较高的效率和可靠性。

抽样调查的主要目的是通过选取样本来代表总体,并通过研究样本数据来了解和推断总体状况。

抽样调查可以广泛应用于各个领域,包括社会学、经济学、教育学、医学等。

在具体实施抽样调查时,需要确定以下几个重要要素:1. 总体:是指研究对象的全部个体或现象。

例如,如果研究全国大学生对某一政策的态度,则总体是所有全国大学生。

2. 样本:是指从总体中选取的部分个体的集合。

样本应具有代表性,即反映总体的重要特征。

样本的大小应根据总体大小和调查目的确定,通常采用随机抽样或分层抽样等方法来选取样本。

3. 抽样方法:是指在决定样本的过程中所使用的方法。

常见的抽样方法包括随机抽样、整群抽样、分层抽样等。

不同的抽样方法适用于不同的研究场景,可以提高数据的可靠性和有效性。

4. 数据收集:是指通过设计问卷、面访、电话调查等方式获取样本个体的信息。

数据收集应当遵守一定的科学原则,确保数据的准确性和可比性。

5. 数据分析:是指对收集到的数据进行整理、统计和分析的过程。

通常使用统计学方法,如描述性统计分析、推断性统计分析等,从样本数据中推断出总体特征和总体参数。

抽样调查的优点在于降低调查成本和时间,提高效率和可靠性。

同时,抽样调查也存在一些限制和偏差,例如样本选择偏差、非回应偏执、抽样误差等。

因此,在进行抽样调查时,需要注意样本选取的科学性和合理性,以及数据分析的方法和技巧,以获取准确可靠的研究结果。

6抽样调查

6抽样调查

p(1 p) n 0.04 0.96 1 1 1 n 200 20 N
1.35%
P t p 1.961.35%, 2.65% p p P p p ,4% 2.65% 4% 2.65% 1.35% P 6.65%
x 2
n

n
, 为总体标准差
b.在简单随机不重复抽样条件下
x 2 N n
,为总体标准差 n N 1
当N很大时,
x 2
n 1 ,为总体标准差 n N
12
(2)样本成数的抽样平均误差 a.在简单随机重复抽样条件下
P(1 P) p ,P为总体成数 n
27


五、抽样估计方法 1. 点估计

直接用样本指标值作为相应总体指标的估计值, 也称为定值估计。 总体平均数估计值: X x 总体成数估计值: P p


28

总体方差估计值:
2 ( x x ) i
总体平均数方差
s
2 2
n 1
(当 n小于30时)
2 ( x x ) i
b.在简单随机不重复抽样条件下
P
P(1 P) N n ,P为总体成数 n N 1
当N很大时,
P(1 P) n P 1 ,P为总体成数 n N
13
总体标准差、总体成数的数据来源 计算抽样平均误差时,必须具备总体标准差和 总体成数的信息,但是这是不可能的!(为什么?)


2
二、抽样调查的特点
1.非全面调查
2.遵循随机原则抽取调查单位
3.根据样本指标数值推断总体指标数值 4.抽样误差可以事先计算并加以控制

写出抽样调查的主要内容

写出抽样调查的主要内容

写出抽样调查的主要内容
抽样调查作为一种常见的统计方法,其主要内容是用小样本替代大样本,以此来了解整体的状况。

其最主要特点是成本低,效率高,时间短。

下面我们将从三个方面详细解释抽样调查的主要内容。

首先是抽样调查的目的。

抽样调查的目的是为了了解整体的情况,从而有效地控制、管理和改善全体的状况。

抽样调查的目的是为了更准确地反映整体状况,及时发现存在的问题,从而帮助决策者更好地决策。

其次是抽样调查的方法。

抽样调查有很多不同的抽样方法,如分层抽样、系统抽样、随机抽样等。

每种抽样方法都有其特色,承担着不同的任务,用以满足不同的需求。

在进行抽样时,要确定抽样单位和抽样量,以及抽样样本的代表性和可靠性。

最后是抽样调查的数据分析。

抽样调查的数据分析主要是从抽样调查的研究对象、目的和原则等方面入手,有计划地运用各种统计分析方法,概括和总结已获得的资料,并借助计算机技术、信息处理技术以及相关的统计软件,将抽样调查的结果准确、即时地表达出来,以便更好地决策。

总的来说,抽样调查的主要内容是抽样调查的目的、抽样调查的方法以及抽样调查的数据分析。

它不仅能够有效地反映整体的状况,还能够有效地帮助决策者准确和迅速地做出决策,从而发挥最大的价值,是现代经济社会发展中不可或缺的工具。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、抽样调查是什么?
抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

二、抽样调查有什么特点?
1、按随机原则抽选样本;
2、总体中每一个单位都有一定的概率被抽中;
3、可以用一定的概率来保证将误差控制在规定的范围之内。

三、具体的抽样调查方法有哪些?
1、简单随机抽样
简单随机抽样也称为单纯随机抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

简单随机抽样一般可采用掷硬币、掷骰子、抽签、查随机数表等办法抽取样本。

在统计调查中,由于总体单位较多,前三种方法较少采用,主要运用后一种方法。

按照样本抽选时每个单位是否允许被重复抽中,简单随机抽样可分为重复抽样和不重复抽样两种。

在抽样调查中,特别是社会经济的抽样调查中,简单随机抽样一般是指不重复抽样。

简单随机抽样是其它抽样方法的基础,因为它在理论上最容易处理,而且当总体单位数N不太大时,实施起来并不困难。

但在实际中,若N相当大时,简单随机抽样就不是很容易办到的。

首先它要求有一个包含全部N个单位的抽样框;其次用这种抽样得到的样本单位较为分散,调查不容易实施。

因此,在实际中直接采用简单随机抽样的并不多。

2、分层抽样
分层抽样又称为分类抽样、或类型抽样,它首先是将总体的N 个单位分成互不交叉、互不重复的k个部分,我们称之为层;然后在每个层内分别抽选n1、n2、...... nk个样本,构成一个容量为个样本的一种抽样方式。

分层的作用主要有三:一是为了工作的方便和研究目的的需要;二是为了提高抽样的精度;三是为了在一定精度的要求下,减少样本的单位数以节约调查费用。

因此,分层抽样是应用上最为普遍的抽样技术之一。

按照各层之间的抽样比是否相同,分层抽样可分为等比例分层抽样与非等比例分层抽样两种。

实际上,分层抽样是科学分组与抽样原理的有机结合,前者是划分出性质比较接近的层,以减少标志值之间的变异程度;后者是按照抽样原理抽选样本。

因此,分层抽样一般比简单随机抽样和等距抽样更为精确,能够通过对较少的样本进行调查,得到比较准确的推断结果,特别是当总体数目较大、内部结构复杂时,分层抽样常能取得令人满意的效果。

3、整群抽样
整群抽样是首先将总体中各单位归并成若干个互不交叉、互不重复的集合,我们称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

整群抽样特别适用于缺乏总体单位的抽样框。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

整群抽样的优点是实施方便、节省经费;缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

4、等距抽样
等距抽样也称为系统抽样、或机械抽样,它是首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式。

根据总体单位排列方法,等距抽样的单位排列可分为三类:按有关标志排队、按无关标志排队以及介于按有关标志排队和按无关标志排队之间的按自然状态排列。

按照具体实施等距抽样的作法,等距抽样可分为:直线等距抽样、对称等距抽样和循环等距抽样三种。

等距抽样的最主要优点是简便易行,且当对总体结构有一定了解时,充分利用已有信息对总体单位进行排队后再抽样,则可提高抽样效率。

5、多阶段抽样
多阶段抽样,也称为多级抽样,是指在抽取样本时,分为两个及两个以上的阶段从总体中抽取样本的一种抽样方式。

其具体操作过程是:第一阶段,将总体分为若干个一级抽样单位,从中抽选若干个一级抽样单位入样;第二阶段,将入样的每个一级单位分成若干个二级抽样单位,从入样的每个一级单位中各抽选若干个二级抽样单位入样……,依此类推,直到获得最终样本。

多阶段抽样区别于分层抽样,也区别于整群抽样,其优点在于适用于抽样调查的面特别广,没有一个包括所有总体单位的抽样框,或总体范围太大,无法直接抽取样本等情况,可以相对节省调查费用。

其主要缺点是抽样时较为麻烦,而且从样本对总体的估计比较复杂。

6、双重抽样
双重抽样,又称二重抽样、复式抽样,是指在抽样时分两次抽取样本的一种抽样方式,其具体为:首先抽取一个初步样本,并搜取一些简单项目以获得有关总体的信息;然后,在此基础上再进行深入抽样。

在实际运用中,双重抽样可以推广为多重抽样。

双重抽样的主要作用是提高抽样效率、节约调查经费。

7、按规模大小成比例的概率抽样
按规模大小成比例的概率抽样,简称为PPS抽样,它是一种使用辅助信息,从而使每个单位均有按其规模大小成比例的被抽中概率的一种抽样方式。

其抽选样本的方法有汉森-赫维茨方法、拉希里方法等。

PPS抽样的主要优点是:使用了辅助信息,减少抽样误差;主要缺点是:对辅助信息要求较高,方差的估计较复杂等。

上述各种抽样方式均为随机抽样方式。

此外还有非随机抽样方式,即按照调查人员主观设立的某个标准抽选样本的抽样方式,如偶遇抽样、立意抽样、配额抽样等
四、哪些调查中可以用抽样调查?
第一,对一些不可能或不必要进行全面调查的社会经济现象,最适宜采用抽样调查方式解决。

例如,对有破坏性或损耗性质的商品进行质量检测;对一些无限总体的调查,如对森林木材积蓄量的调查,等等。

第二,在经费、人力、物力和时间有限的情况下,采用抽样调查方式,可节省开支,争取时效,用比较少的人力、物力和时间,达到满意的调查效果。

第三,运用抽样调查对全面调查进行验证。

全面调查涉及面广、工作量大,花费时间和经费多,组织起来比较困难。

但调查质量如何,需要验证,这显然不能重新用全面调查方式。

例如:工业普查前后需要几年时间才能完成,为了节省时间和经费,常用抽样调查进行检查和修正。

第四,对某种总体的假设进行验证,判断这种假设的真伪以决定行为的取舍,也经常利用抽样调查来测定。

相关文档
最新文档