TL494中文资料及应用电路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的 13 脚将立即从+5V 下跳到零电平,关机时 PG 输出信号比 ATX 开关电源+5V 输出电压提前几百毫秒消失, 通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。 5、主电源电路及多路直流稳压输出电路 如图 8 所示,微机受控启动后,PS 信号由主板启动控制电路的电子开关接地,允许 IC2 的⑧、11 脚输出脉 宽调制信号,去控制与推动三极管 Q3、Q4 的 c 极相连接的 T2 推动变压器次级绕组产生的激励振荡脉冲。 T2 的初级绕组由它激振荡产生的感应电动势作用于 T1 主电源开关变压器的初级绕组,从 T1 次级①②绕组 产生的感应电动势经 D20、D28 整流、L2(功率因素校正变压器,也称低电压扼流线圈。以它为主来构成功 率因素校正电路,简称 PFC 电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则 PFC 电路 就经过 L2 来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC 电路 通过 L2 校正后为负载送出较小的功率,从而达到节能的作用。)第④绕组以及 C23 滤波后输出—12V 电压; 从 T1 次级③④⑤绕组产生的感应电动势经 D24、D27 整流、L2 第①绕组及 C24 滤波后输出—5V 电压;从 T1 次级③④⑤绕组产生的感应电动势经 D21、L2 第②③绕组以及 C25、C26、C27 滤波后输出+5V 电压;从 T1 次级③⑤绕组产生的感应电动势经 L6、L7、D23、L1 以及 C28 滤波后输出+3.3V 电压;从 T1 次级⑥⑦绕 组产生的感应电动势经 D22、L2 第⑤绕组以及 C29 滤波后输出+12V 电压。其中,每两个绕组之间的 R (5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。 ATX 微机开关电源维修教程 3 6、自动稳压稳流控制电路 (1)+3.3V 自动稳压电路 IC5(精密稳压电路 TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、 R08、C28、C34 等组成+3.3V 自动稳压电路。如图 9 所示。 当输出电压(+3.3V)升高时,由 R25、R26、R27 取得升高的采样电压送到 IC5 的 G 端,使 UG 电位上升,UK 电位下降,从而使 Q2 导通,升高的+3.3V 电压通过 Q2 的 ec 极,R18、D30、D31 送至 D23 的 S 极和 G 极, 使 D23 提前导通,控制 D23 的 D 极输出电压下降,经 L1 使输出电压稳定在标准值(+3.3V)左右,反之, 稳压控制过程相反。 (2)+5V、+12V 自动稳压电路 IC2 的①、②脚电压取样比较器正、负输入端,取样电阻 R15、R16、R33、R35、R68、R69、R47、R32 构成 +5V、+12V 自动稳压电路。如图 10 所示。 当输出电压升高时(+5V 或+12V),由 R33、R35、R69 并联后的总电阻取得采样电压,送到 IC2 的①脚和② 脚,与 IC2 内部的基准电压相比较,输出误差电压与 IC2 内部锯齿波产生电路的振荡脉冲在 PWM(比较器) 中进行比较放大,使⑧、11 脚输出脉冲宽度降低,输出电压回落至标准值的范围内。 反之稳压控制过程相反,从而使开关电源输出电压保持稳定。 (3)+3.3V、+5V、+12V 自动稳压电路 IC4(精密稳压电路 TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41 等组成+3.3V、 +5V、+12V 自动稳压电路。如图 11 所示。 当输出电压升高时,T3 次级绕组产生的感应电动势经 D50、C04 整流滤波后一路经 R01 限流送至 IC3 的① 脚,另一路经 R02、R03 获得增大的取样电压送至 IC4 的 G 端,使 UG 电位上升,UK 电位下降,从而使 IC4 内发光二极管流过的电流增加,使光敏三极管导通,从而使 Q1 导通,同时经负反馈支路 R005、C41 使开关 三极管 Q03 的 e 极电位上升,使得 Q03 的 b 极分流增加,导致 Q03 的脉冲宽度变窄,导通时间缩短,最终 使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。 (4)自动稳流电路 IC2 的 15、16 脚电流取样比较器正、负输入端,取样电阻 R51、R56、R57 构成负载自动稳流电路。如图 12 所示。 负端输入端 15 脚接稳压+5V,正端输入端 16 脚, 该脚外接的 R51、R56、R57 与地之间形成回路,当负载
电脑 ATX 电源维修:
打开电源的上半盒子,观察电源内部。 A,元件有没炸裂的现象,如果保险管已烧黑,说明初级电路有短路现象,重点检查整流二极管,待机电 源管,半桥双三极管,有没击穿。 B,元件没炸裂的现象,通电,用表测量 20 针中的绿线,紫线,有没+5V 电压,如果没有,就要检查待机 电路,重点测开机电阻,一般开机电阻取值几百 K,容易出现阻值变大,开路现象 。检查与待机电源管相 连的小三极管有没短路线短路绿线与黑线强行开机,看能不能开机,如果不能, 看 TL494(7500B)的电源脚有没电压(12 脚是电源),如果没有,查与待机电路次级相连的线路。TL49 4
(7500B)的电源脚有电压,不能开机,要查死区控制脚(4)是 5V,还是 0V,如果是 5V,一般是电路保 护
了,查看三个双二极管整流器有没短路。
通过以上三项,可以修好 70%有故障的电源。在修理中发现极少有 IC 损坏的现象,坏的是 TL494 的多,
LM339 还没见损坏过。
ATX 工作原理 ATX 开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调 制控制电路、PS 信号和 PG 信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控 制电路。参照实物绘出整机电路图,如图 3 所示。 1、输入整流滤波电路 只要有交流电 AC220V 输入,ATX 开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制 电路提供工作电压。如图 4 所示,交流电 AC220V 经过保险管 FUSE、电源互感滤波器 L0,经 BD1—BD4 整流、 C5 和 C6 滤波,输出 300V 左右直流脉动电压。C1 为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影 响。TH1 为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1 和 C2 组成Π型滤波器,滤除市电电 网中的高频干扰。C3 和 C4 为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。R2 和 R3 为隔离平衡电阻,在电路中对 C5 和 C6 起平均分配电压作用,且在关机后,与地形成回路,快速泄放 C5、 C6 上储存的电荷,从而避免电击。 2、高压尖峰吸收电路 如图 5 所示,D18、R004 和 C01 组成高压尖峰吸收电路。当开关管 Q03 截止后,T3 将产生一个很大的反极 性尖峰电压,其峰值幅度超过 Q03 的 C 极电压很多倍,此尖峰电压的功率经 D18 储存于 C01 中,然后在电 阻 R004 上消耗掉,从而降低了 Q03 的 C 极尖峰电压,使 Q03 免遭损坏。 3、辅助电源电路 如图 6 所示,整流器输出的+300V 左右直流脉动电压,一路经 T3 开关变压器的初级①~②绕组送往辅助电 源开关管 Q03 的 c 极,另一路经启动电阻 R002 给 Q03 的 b 极提供正向偏置电压和启动电流,使 Q03 开始导 通。Ic 流经 T3 初级①~②绕组,使 T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路 C02、 D8、R06 送往 Q03 的 b 极,使 Q03 迅速饱和导通,Q03 上的 Ic 电流增至最大,即电流变化率为零,此时 D7 导通,通过电阻 R05 送出一个比较电压至 IC3(光电耦合器 Q817)的③脚,同时 T3 次级绕组产生的感应电 动势经 D50、C04 整流滤波后,一路经 R01 限流后送至 IC3 的①脚,另一路经 R02 送至 IC4(精密稳压电路 TL431),由于 Q03 饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经 IC4 的 K 端输出至 IC3 的② 脚电压变化率几乎为零,使 IC3 内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致 Q1 截 止。反馈电流通过 R06、R003、Q03 的 b、e 极等效电阻对电容 C02 充电,随着 C02 充电电压增加,流经 Q03 的 b 极电流逐渐减小,使③~④反馈绕组上的感应电动势开始下降,最终使 T3③~④反馈绕组感应电动势反 相(上负下正),并与 C02 电压叠加后送往 Q03 的 b 极,使 b 极电位变负,此时开关管 Q03 因 b 极无启动 电流而迅速截止。 开关管 Q03 截止时,T3③~④反馈绕组、D7、R01、R02、R03、R04、R05、C09、IC3、IC4 组成再起振支路。 当 Q03 导通的过程中,T3 初级绕组将磁能转化为电能为电路中各元器件提供电压,同时 T3 反馈绕组的④ 端感应出负电压,D7 导通、Q1 截止;当 Q03 截止后,T3 反馈绕组的④端感应出正电压,D7 截止,T3 次级 绕组两个输出端的感应电动势为正,T3 储存的磁能转化为电能经 D50、C04 整流滤波后为 IC4 提供一个变 化的电压,使 IC3 的①、②脚导通,IC3 内发光二极管流过的电流增大,使光敏三极管发光,从而使 Q1 导 通,给开关管 Q03 的 b 极提供启动电流,使开关管 Q03 由截止转为导通。同时,正反馈支路 C02 的充电电 压经 T3 反馈绕组、R003、Q03 的 be 极等效电阻、R06 形成放电回路。随着 C41 充电电流逐渐减小,开关管
Q03 的 Ub 电位上升,当 Ub 电位增加到 Q03 的 be 极的开启电压时,Q03 再次导通,又进入下一个周期的振 荡。如此循环往复,构成一个自激多谐振荡器。 Q03 饱和期间,T3 次级绕组输出端的感应电动势为负,整流二级管 D9 和 D50 截止,流经初级绕组的导通电 流以磁能的形式储存在辅助电源变压器 T3 中。当 Q03 由饱和转向截止时,次级绕组两个输出端的感应电动 势为正,T3 储存的磁能转化为电能经 D9、D50 整流输出。其中 D50 整流输出电压经三端稳压器 7805 稳压, 再经电感 L7 滤波后输出+5VSB。若该电压丢失,主板就不会自动唤醒 ATX 电源工作。D9 整流输出电压供给 IC2(脉宽调制集成电路 KA7500B)的 12 脚(电源输入端),经 IC2 内部稳压,从第 14 脚输出稳压+5V, 提供 ATX 开关电源控制电路中相关元器件的工作电压。 T2 为主电源激励变压器,当副电源开关管 Q03 导通时,Ic 流经 T3 初级①~②绕组,使 T3③~④反馈绕组产 生感应电动势(上正下负),并作用于 T2 初级②~③绕组,产生感应电动势(上负下正),经 D5、D6、C8、R5 给 Q02 的 b 极提供启动电流,使主电源开关管 Q02 导通,在回路中产生电流,保证了整个电路的正常工作; 同时,在 T2 初级①~④反馈绕组产生感应电动势(上正下负),D3、D4 截止,主电源开关管 Q01 处于截止状 态。在电源开关管 Q03 截止期间,工作原理与上述过程相反,即 Q02 截止,Q01 工作。其中,D1、D2 为续 流二极管,在开关管 Q01 和 Q02 处于截止和导通期间能提供持续的电流。这样就形成了主开关电源它激式 多谐振电路,保证了 T2 初级绕组电路部分得以正常工作,从而在 T2 次级绕组上产生感应电动势送至推动 三极管 Q3、Q4 的 c 极,保证整个激励电路能持续稳定地工作,同时,又通过 T2 初级绕组反作用于 T1 主开 关电源变压器,使主电源电路开始工作,为负载提供+3.3V、±5V、±12V 工作电压。 ATX 微机开关电源维修教程 2 4、PS 信号和 PG 信号产生电路以及脉宽调制控制电路 如图 7 所示,微机通电后,由主板送来的 PS 信号控制 IC2 的④脚(脉宽调制控制端)电压。待机时,主板启 动控制电路的电子开关断开,PS 信号输出高电平 3.6V,经 R37 到达 IC1(电压比较器 LM339N)的⑥脚(启 动端),由内部经 IC1 的①脚输出低电平,使 D35、D36 截止;同时,IC1 的②脚一路经 R42 送出一个比较 电压对 C35 进行充电,另一路经 R41 送出一个比较电压给 IC2 的④脚,IC2 的④脚电压由零电位开始逐渐 上升,当上升的电压超过 3V 时,关闭 IC2⑧、11 脚的调制脉宽电压输出,使 T2 推动变压器、T1 主电源开 关变压器停振,从而停止提供+3.3V、±5V、±12V 等各路输出电压,电源处于待机状态。受控启动后,PS 信号由主板启动控制电路的电子开关接地,IC1 的⑥脚为低电平(0V),IC2 的④脚变为低电平(0V),此 时允许⑧、11 脚输出脉宽调制信号。IC2 的 13 脚(输出方式控制端)接稳压+5V (由 IC2 内部 14 脚稳压输 出+5V 电压),脉宽调制器为并联推挽式输出,⑧、11 脚输出相位差 180 度的脉宽调制信号,输出频率为 IC2 的⑤、⑥脚外接定时阻容元件 R30、C30 的振荡频率的一半,控制推动三极管 Q3、Q4 的 c 极相连接的 T2 次 级绕组的激励振荡。T2 初级它激振荡产生的感应电动势作用于 T1 主电源开关变压器的初级绕组,从 T1 次 级绕组的感应电动势整流输出+3.3V、±5V、±12V 等各路输出电压。 D12、D13 以及 C40 用于抬高推动管 Q3、Q4 的 e 极电平,使 Q3、Q4 的 b 极有低电平脉冲时能可*截止。C35 用于通电瞬间关闭 IC2 的⑧、11 脚输出脉宽调制信号脉冲。ATX 电源通电瞬间,由于 C35 两端电压不能突 变,IC2 的④脚输出高电平,⑧、11 脚无驱动脉冲信号输出。随着 C35 的充电,IC2 的启动由 PS 信号电平 高低来加以控制,PS 信号电平为高电平时 IC2 关闭,为低电平时 IC2 启动并开始工作。 PG 产生电路由 IC1(电压比较器 LM339N)、R48、C38 及其周围元件构成。待机时 IC2 的③脚(反馈控制端) 为零电平,经 R48 使 IC1 的⑨脚正端输入低电位,小于 11 脚负端输入的固定分压比,IC113 脚(PG 信号 输出端)输出低电位,PG 向主机输出零电平的电源自检信号,主机停止工作处于待机状态。受控启动后 IC2 的③脚电位上升,IC1 的⑨脚控制电平也逐渐上升,一旦 IC1 的⑨脚电位大于 11 脚的固定分压比,经正反 馈的迟滞比较器,13 脚输出的 PG 信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主 机检测到 PG 电源完好的信号后启动系统,在主机运行过程中若遇市电停电或用户执行关机*作时,ATX 开 关电源+5V 输出电压必然下跌,这种幅值变小的反馈信号被送到 IC2 的①脚(电压取样比较器同相输入端), 使 IC2 的③脚电位下降,经 R48 使 IC1 的⑨脚电位迅速下降,当⑨脚电位小于 11 脚的固定分压电平时,IC1
TL494 内部电路方框图
1、2 脚分别为误差比较放大器的同相输入端和反相输入端。 3 脚为控制比较放大器和误差比较放大器的公共输出端,输出时表现为或输出控制特性,也 就是就在两个放大器中,输出幅度大者起作用。当 3 脚的电平变高时,TL494 送出的驱动脉 冲宽度变窄,当 3 脚电平低时,驱动脉冲宽度变宽。 4 脚为死区电平控制端,从 4 脚加入死区控制电压可对驱动脉冲的最大宽度进行控制,使其 不超过 180 度,这样可以保护开关电源电路中的三极管。 5、6 脚分别用于外接振荡电阻和电容。 7 脚为接地端。 8、9 脚和 11、12 脚分别为 TL494 内容末级两个输出三极管的集电极和发射极。 12 脚为电源供电端。 13 脚为功能控制端。 14 脚为内部 5V 基准电压输出端。 15、16 脚分别为控制比较放大器的反相输入端和同相输入端。
相关文档
最新文档