三种基本逻辑电路运算比较

合集下载

《数字电子技术(第三版)》2. 基本逻辑运算及集成逻辑门

《数字电子技术(第三版)》2. 基本逻辑运算及集成逻辑门

Y=A+ Y=A+B
功能表
开关 A 断开 断开 闭合 闭合 开关 B 断开 闭合 断开 闭合 灯Y 灭 亮 亮 亮
真值表
A 0 0 1 1
B 0 1 0 1
逻辑符号
Y 0 1 1 1
实现或逻辑的电 路称为或门。或 门的逻辑符号:
A B
≥1
Y=A+B
2.1.3、非逻辑(非运算) 2.1.3、非逻辑(非运算) 非逻辑指的是逻辑的否定。当决定事件(Y) 发生的条件(A)满足时,事件不发生;条件不 满足,事件反而发生。表达式为: Y=A 开关A控制灯泡Y
A E B Y
A断开、B接通,灯不亮。 断开、 接通 灯不亮。 接通, 断开
A E B Y
A接通、B断开,灯不亮。 接通、 断开,灯不亮。 接通 断开
A、B都接通,灯亮。 、 都接通,灯亮。 都接通
两个开关必须同时接通, 两个开关必须同时接通, 灯才亮。逻辑表达式为: 灯才亮。逻辑表达式为:
Y=AB
2.4 集成逻辑门
2.4.1 TTL与非门 TTL与非门 2.4.2 OC门和三态门 OC门和三态门 2.4.3 MOS集成逻辑门 MOS集成逻辑门 2.4.4 集成逻辑门的使用问题 退出
逻辑门电路:用以实现基本和常用逻辑运算的电子电 路。简称门电路。 基本和常用门电路有与门、或门、非门(反相器)、 与非门、或非门、与或非门和异或门等。 逻辑0和1: 电子电路中用高、低电平来表示。 获得高、低电平的基本方法:利用半导体开关元件 的导通、截止(即开、关)两种工作状态。 集成逻辑门 双极性晶体管逻辑门 TTL ECL I2L 单极性绝缘栅场效应管逻辑门 PMOS NMOS CMOS
(6)平均传输延迟时间tpd:从输入端接入高电平开始,到输出端 输出低电平为止,所经历的时间叫导通延迟时间(tpHL); 从输入端接入低电平开始,到输出端输出高电平为止,所经 历的时间叫截止延迟时间(tpLH)。 tpd=(tpHL+ tpLH)/2=3~40ns 平均传输延迟时间是衡量门电路运算速度的重要指标。 (7)空载功耗:输出端不接负载时,门电路消耗的功率。 静态功耗是门电路的输出状态不变时,门电路消耗的功率。其中: 截止功耗POFF是门输出高电平时消耗的功率; 导通功耗PON是门输出低电平时消耗的功率。 PON> POFF (8)功耗延迟积M:平均延迟时间tpd和空载导通功耗PON的乘积。 M= PON× tpd (9)输入短路电流(低电平输入电流)IIS:与非门的一个输入端直 接接地(其它输入端悬空)时,由该输入端流向参考地的电流。 约为1.5mA。

基本逻辑运算

基本逻辑运算
异或门
1
1
0
1
1
0
(3) 逻辑符号 国 A 标 B
=1 L
国 外
A B
L *
10
4、同或逻辑
(1) 逻辑式: L=A⊙B (2) 真值表
A 0 0 1 1 B 0 1 0 1 L 1 0 0 1
L AB AB
只有两变量 参与运算
同入出1 异入出0
同或门 表示反相 L
(3) 逻辑符号 国 A 标 B
*
4
2、或逻辑(逻辑加)
(1)定义:在决定事物结果的诸条件中只要任何一个满 足,结果就会发生。 A (2)逻辑式:L= A + B
B + _
(3)真值表
设 开关闭合为 1,断开为 0 灯亮为 1,熄灭为 0
A 0 0 B 0 1 L 0 1
L
当逻辑变量A、B中任何一 个为1时,逻辑函数L等于1。 (低低得低)
只有输入A、B同时为0时,输 出L才为1 有1出0 全0出1
或非门 表示反相 L 表示反相
(3) 逻辑符号 国 A 标 B
1
国 A 外 B
L *
9
3、异或逻辑
(1) 逻辑式: L A B (2) 真值表
A 0 0 B 0 1 L 0 1
L AB AB
只有两变量 参与运算
同入出0 异入出1
分配律
B A.B B.A 0 0 0 1 0 0 0 0 0 1 1 1
*
13
2、常用恒等式
AB AC BC AB AC
含A的 原变量 含A的 反变量 含除A以外的 其余因子
冗余 项
如何证明?
检验等式两边的真值表 是否相等

数电简明教程第一章 逻辑代数基础知识

数电简明教程第一章 逻辑代数基础知识

10
第六章 脉冲产生与整形电路
概述 6.1 施密特触发器
11
12
概 述
一、逻辑代数(布尔代数、开关代数) 逻辑: 事物因果关系的规律 逻辑函数: 逻辑自变量和逻辑结果的关系
Z f ( A, B, C )
逻辑变量取值:0、1 分别代表两种对立的状态 一种状态 另一状态 高电平 真 低电平 假 是 非 有 无 … … 1 0 0 1
概述 3.1 3.2 3.3 3.4 3.5 组合电路的分析方法和设计方法 加法器和数值比较器 编码器和译码器 数据选择器和分配器 用 MSI 实现组合逻辑函数
8
第四章
概述
触发器
4.1 基本触发器 4.2 同步触发器 4.3 边沿触发器 4.4 触发器的电气特性
9
第五章
时序逻辑电路
概述 5.1 时序电路的基本分析和设计方法 5.2 计数器 5.3 寄存器和读/写存储器
( 26 )10 = 16 + 8 + 2 = 24 +23 + 21 = ( 1 1 0 1 0 )2
16 8 4 2 1
20
(3) 二-八转换: 每 3 位二进制数相当一位 8 进制数
( 0 10 101 111 ) 2 ( 257 )8
2 5 7
( 0 1 0 0 1 1 1 0 0 0 0 1. 0 0 0 1 1 0 )2 ( 2 3 4 1 . 0 6 )8
(4) 八-二转换: 每位 8 进制数转换为相应 3 位二进制数
( 31. 47 )8 ( 011 001 . 100 111
)2
)2
( 375.64 )8 ( 011 111 101 . 110 100

基本的逻辑运算表示式-基本逻辑门电路符号

基本的逻辑运算表示式-基本逻辑门电路符号

基本的逻辑运算表示式-基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,通过开关的工作加以说明与逻辑的运算。

从上图看出,当开关有一个断开时,灯泡处于灭的,仅当两个开关合上时,灯泡才会亮。

于是将与逻辑的关系速记为:“有0出0,全1出1”。

图(b)列出了两个开关的组合,以及与灯泡的,用0表示开关处于断开,1表示开关处于合上的;灯泡的用0表示灭,用1表示亮。

图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,开关有三个则符号的左边再加上一道线就行了。

逻辑与的关系还用表达式的形式表示为:F=A·B上式在不造成误解的下可简写为:F=AB。

2、或逻辑(OR Logic)上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。

如开关合上的用1表示,开关断开的用0表示;灯泡的亮时用1表示,不亮时用0表示,则可列出图(b)的真值表。

这种逻辑关系通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。

或逻辑可速记为:“有1出1,全0出0”。

上图(c)为或逻辑门电路符号,通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个的1,输出就为1。

逻辑或的表示式为:F=A+B3、非逻辑(NOT Logic)非逻辑又常称为反相运算(Inverters)。

下图(a)的电路实现的逻辑功能非运算的功能,从图上看出当开关A 合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的与输入A的相反。

非运算的逻辑表达式为图(c)给出了非逻辑门电路符号。

复合逻辑运算在数字系统中,除了与运算、或运算、非运算之外,使用的逻辑运算还有是通过这三种运算派生出来的运算,这种运算通常称为复合运算,的复合运算有:与非、或非、与或非、同或及异或等。

4、与非逻辑(NAND Logic)与非逻辑是由与、非逻辑复合而成的。

2.1基本逻辑运算和基本门电路

2.1基本逻辑运算和基本门电路

第二章逻辑代数与逻辑门电路基本要求:理解“与”逻辑及“与”门、“或”逻辑及“或”门、“非”逻辑及“非”门;理解正、负逻辑的概念,掌握逻辑代数的基本定律、基本规则和常用公式;理解复合逻辑的概念;了解集成门电路的分类;理解TTL、MOS门电路;理解逻辑函数的表示方法;掌握逻辑函数的代数化简法和卡诺图化简法。

本章主要内容:介绍逻辑代数、集成逻辑门电路和逻辑函数化简。

逻辑代数是数字电路的理论基础,是组合逻辑和时序逻辑电路分析、设计中要用到的基本工具;集成逻辑门电路是组成数字逻辑电路的基本单元电路;逻辑函数化简是逻辑电路分析的基础。

本章重点:基本逻辑门电路和功能逻辑代数的基本定律及常用公式逻辑函数的代数化简法本章难点:基本定律、公式及化简法的正确与准确一、逻辑变量与逻辑函数:在逻辑代数中的变量称逻辑变量,用字母A、B、C……来表示。

逻辑变量只能有两种取值:真和假。

常把真记作“1”,假记作“0”。

这里的“1”和“0”并不表示数量的大小,而是表示完全对立的两种状态。

在逻辑问题的研究中,涉及到问题产生的条件和结果。

表示条件的逻辑变量称输入变量,表示结果的逻辑变量称输出变量。

将输入变量和输出变量通过逻辑运算符连接起来的式子称逻辑函数,常用F、L表示。

基本的逻辑运算有“与”运算、“或”运算、“非”运算。

二、逻辑运算:逻辑运算的值要通过对逻辑变量进行逻辑运算来确定。

1.与运算及与门逻辑运算F与逻辑变量A、B的逻辑与运算表达式是:F=A·B, 式中“·”为与运算符。

在逻辑电路中,把能实现与运算的基本单元叫与门,它是逻辑电路中最基本的一种门电路。

二极管构成的与门电路及逻辑符号如下:2.或运算及或门逻辑函数F与逻辑变量A、B的逻辑运算表达式是:F=A+B,式中“+”为或运算符。

在逻辑电路中,把能实现或运算的基本单元叫或门。

二极管构成的或门电路及逻辑符号如下:3.非逻辑及非门对逻辑变量A进行逻辑非运算的表达式是:F=,这里的“-”是非运算符。

组合逻辑电路(半加器全加器及逻辑运算)

组合逻辑电路(半加器全加器及逻辑运算)

一种常见的实现方式是使 用异或门实现和S,使用 与门实现进位C。
半加器的性能分析
逻辑级数
半加器的逻辑级数通常较低,因 为它只涉及基本的逻辑运算。
可靠性
半加器的结构简单,因此具有较 高的可靠性。
延迟时间
由于逻辑级数较低,半加器的延 迟时间相对较短。
资源消耗
半加器使用的逻辑门数量相对较 少,因此在资源消耗方面较为经 济。
组合逻辑电路(半加器 全加器及逻辑运算)
• 组合逻辑电路概述 • 半加器原理与设计 • 全加器原理与设计 • 逻辑运算原理与设计 • 组合逻辑电路的分析与设计方法 • 组合逻辑电路在数字系统中的应用
目录
Part
01
组合逻辑电路概述
定义与特点
定义
无记忆性
组合逻辑电路是一种没有记忆功能的数字 电路,其输出仅取决于当前的输入信号, 而与电路过去的状态无关。
比较器
比较两个二进制数的大小关系,根 据比较结果输出相应的信号,可以 使用与门、或门和非门实现。
全加器
在半加器的基础上增加对进位的处理 ,使用与门、或门和异或门实现两个 一位二进制数带进位的加法运算。
多路选择器
根据选择信号的不同,从多个输 入信号中选择一个输出,可以使 用与门、或门和非门实现。
Part
用于实现控制系统的逻辑 控制、数据处理等功能。
Part
02
半加器原理与设计
半加器的基本原理
半加器是一种基本的组合 逻辑电路,用于实现两个 二进制数的加法运算。
它接收两个输入信号A和 B,并产生两个输出信号: 和S以及进位C。
半加器不考虑来自低位的进 位输入,因此只能处理两个 一位二进制数的加法。
组合逻辑电路的应用领域

三种基本逻辑门电路

三种基本逻辑门电路

三种基本逻辑门电路三种基本的门:全部其它组合规律功能都可由这三种门单之产生。

规律门表示法符号希尔符号NOT (非)ā 或/A — 或/ (非、负)AND (与)A * B * 与(积)OR (或)A+B + (和)二规律门等效于AND 和NOT : NAND 与非门OR 和NT : NOR 或非任何规律功能都可以表示为“ 与非门” 或者“ 或非门” 的功能。

三种基本规律门的真值表运算符的优先级正常的运算次序是:NOT ,AND ,OR, 括号中的内容总是比表达式的其它部分先进行运算。

例:交换律、结合律和安排律AND 功能和OR 功能可以交换和结合。

操作数可以任何次序消失,而不会影响功能的运算结果:1. 交换律2. 结合律3. 安排律1. A*(B+C) = (A*B)+(A*C) :象标准的代数规章(乘对加)2. A+(B*C) = (A+B)*(A+C) :真值表或规律变换证明( 加对乘)4.对偶性对偶性原理:– 假如用*替换+,+替换*,1替换0,0替换1,则替换后的表达式与原等式等同。

– 因此只要证明第一条安排律是正确的,通过对偶性就能证明其次条安排律的正确性。

5. 规律运算的法则四条基本公理– 公理1 :a. X+0=X b. X*0=0– 公理2 :a. X+/X=1 b. X*/X=0– 公理3 :a. X+Y=Y+X b. X*Y=Y*X– 公理4 :a. X*(Y+Z)=(X*Y)+(X*Z) b. X+(Y*Z)=(X+Y) *(X+Z)九条基本交理– 定理1 :a. X+X=X b. X*X=X– 定理2 :a. X+1=1 b. X*0=0– 定理3 :/(/X)=X ( 不包括具有对偶的元素+ 、* 、1 或0) – 定理4 :a. X+(Y+Z)=(X+Y)+Z l b. X*(Y*Z)=(X*Y) *Z– 定理5 :a. /(X+Y)=/X*/Y b. /(X*Y)=/X+/Y– 定理6 :a. X+(X*Y)=X b. X*(X+Y)=X– 定理7 :a. (X+Y)+(X*/Y)=X b. (X+Y) *(X+/Y)=X– 定理8 :a. X+(/X*Y)=X+Y b. X*(/X+Y)=X*Y– 定理9 : a. (X*Y)+(/X*Z)+(Y*Z)=(X*Y)+(/X*Z) b. (X+Y) *(/X+Z)*(Y*Z)=(X+Y)*(/X+Z)除定理3 ,每个定理或公理都有二种形式,属对偶性原理的关系。

理论三 逻辑门电路

理论三 逻辑门电路
逻辑门电路
1
课前预备
熟练数制间的转换
重、难点
基本逻辑运算及基本逻辑门电路
1.基本逻辑运算及基本逻辑门电路
概念
在数字电路中往往用输入信号表示“条件”,用输出信号表示“结果”,而
条件与结果之间的因果关系称为逻辑关系,能实现某种逻辑关系的数字电
子电路称为逻辑门电路。
基本的逻辑关系有:与逻辑、或逻辑、非逻辑;
能实现非逻辑功能的电路称为非门电路,又称 反相器 ,简称非

非门电路的电路图形符号
非逻辑函数表达式: =

非逻辑功能为:“有0出1,有1出0”
2.复合逻辑运算
几种常用的复合逻辑运算
• 与非
或非
与或非
几种常用的复合逻辑运算
• 异或
• Y= A B
A
B
Y
0
0
0
0
1
1
1
0
1
1
1
0
几种常用的复合逻辑运算
与之相应的基本逻辑门电路有:与门、或门、非门。来自逻辑代数中的三种基本运算
与(AND)
或(OR)
非(NOT)
以A=1表示开关A合上,A=0表示开关A断开;
以Y=1表示灯亮,Y=0表示灯不亮;
三种电路的因果关系不同:
一、与逻辑和与门电路
1.与逻辑关系
当一件事情的几个条件全部具备之后,这件事情才能发生,否则不
三极管、MOS管和电阻等分立元件组成,也可以由集成电路组成。
与逻辑的真值表
与逻辑功能为:
“有0出0,全1出1”
与门电路的电路图形符号
逻辑表达式Y=A·B或
Y=AB
二、或逻辑和或门电路

数字电路中最基本的三种逻辑运算

数字电路中最基本的三种逻辑运算

数字电路是一种用来处理数字信号的电路,它由逻辑门组成,可以实现各种逻辑运算。

在数字电路中,最基本的三种逻辑运算分别是与运算、或运算和非运算。

本文将对这三种逻辑运算进行详细介绍,以帮助读者更好地理解数字电路的基本原理和运作方式。

1. 与运算与运算是指在两个信号同时为高电平时,输出为高电平;否则输出为低电平。

在数字电路中,与运算通常由与门来实现。

与门有两个输入端和一个输出端,只有在两个输入端同时为高电平时,输出端才会输出高电平。

与门的逻辑符号通常表示为“∧”。

2. 或运算或运算是指在两个信号中至少有一个为高电平时,输出为高电平;只有在两个输入端同时为低电平时,输出端才会输出低电平。

在数字电路中,或运算通常由或门来实现。

或门同样有两个输入端和一个输出端,只要两个输入端中至少有一个为高电平,输出端就会输出高电平。

或门的逻辑符号通常表示为“∨”。

3. 非运算非运算是指将输入信号取反,即如果输入信号为低电平,则输出为高电平;如果输入信号为高电平,则输出为低电平。

在数字电路中,非运算通常由非门来实现。

非门只有一个输入端和一个输出端,其输出信号与输入信号相反。

非门的逻辑符号通常表示为“¬”。

通过这三种最基本的逻辑运算,数字电路可以实现各种复杂的逻辑功能。

通过组合多个与门、或门和非门,可以构建出加法器、减法器、乘法器、除法器等各种算术逻辑单元,从而实现数字信号的加减乘除运算。

这三种逻辑运算的组合还可以实现逻辑判断、比较、选择等功能,为数字系统的设计和实现提供了基础。

数字电路中的与运算、或运算和非运算是最基本的逻辑运算,它们是数字电路的基石。

通过这三种逻辑运算,我们可以实现各种复杂的数字逻辑功能,从而构建出功能强大的数字系统。

希望本文对读者理解数字电路和逻辑运算有所帮助,谢谢阅读!上文中我们已经介绍了数字电路中最基本的三种逻辑运算,接下来我们将继续探讨这些逻辑运算在数字电路中的应用以及它们的扩展。

4. 异或运算异或运算是指在两个信号不输出为高电平;两个输入端相同时输出为低电平。

基本逻辑关系

基本逻辑关系

基本逻辑关系通常,把反映“条件”和“结果”之间的关系称为逻辑关系.如果以电路的输入信号反映“条件”,以输出信号反映“结果",此时电路输入、输出之间也就存在确定的逻辑关系。

数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。

逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。

基本逻辑关系和逻辑门基本逻辑关系和逻辑门逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门.一、与逻辑及与门与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。

如图2。

1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。

这种因果关系就是与逻辑关系,可表示为Y =A •B ,读作“A 与B”。

在逻辑运算中,与逻辑称为逻辑乘。

与门是指能够实现与逻辑关系的门电路。

与门具有两个或多个输入端,一个输出端。

其逻辑符号如图2。

1.2所示,为简便计,输入端只用A 和B 两个变量来表示。

与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y =A •B =AB两输入端与门的真值表如表2.1.1所示.波形图如图2。

1.3所示。

A B Y0 0 0 0 1 0 1 0 0 1 11(a)常用符号表2.1.1 与门真值表 图2.1.1 与逻辑举例(b )国标符号图2.1.2 与逻辑符号由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。

二、或逻辑及或门或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。

如图2.1。

4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。

这种因果关系就是或逻辑关系。

可表示为:Y =A +B读作“A 或B”.在逻辑运算中或逻辑称为逻辑加。

第11章 逻辑代数的三种基本运算

第11章 逻辑代数的三种基本运算

开关B 断开 闭合 断开 闭合
灯Y 灭 亮 亮 亮
A、B有1, Y就为1。
6
逻辑表达式: Y=A+B = + 符号“+”读作“或”(或读作“逻辑加”)。 实现或逻辑的电路称作或门,或逻辑和或门 的逻辑符号如图1-2(b)所示,符号“≥1”表示或 逻辑运算。
图1-2(b) 或逻辑的逻辑符号
2011-6-15 7
11
(4)特殊的定理
De · morgen 定理
表1-16 反演律(摩根定理)真值表 反演律(摩根定理)
2011-6-15
12
表1-15 逻辑代数的基本公式
2011-6-15
13
11.4.2 常用公式
A:公因子
B:互补
A是AB的因子 AB的因子
2011-6-15 14
A的反函数 是因子 添加项
2011-6-15
26
1 函数表达式的常用形式
• 五种常用表达式 F(A、 F(A、B、C)= AB + AC
= (A + C)(A + B)
“与―或”式 与 “或―与”式 或 “与非―与非”式 与非―与非” 与非 基本形式
= AB • AC
或非― 或非 或非” = A + C + A + B “或非―或非”式 “与―或― 与 = A • 利用还原律 利用反演律 非”式 C+A•B • 表达式形式转换
Y = A+ B +C + D + E Y = A ⋅ (B + C + D + E) Y = A⋅ B ⋅C ⋅ D ⋅ E
运用反演规则时,要注意运算的优先顺序(先 括号、再相与,最后或) ,必要时可加或减扩号。

电路中的逻辑门基本的逻辑运算与逻辑电路设计

电路中的逻辑门基本的逻辑运算与逻辑电路设计

电路中的逻辑门基本的逻辑运算与逻辑电路设计逻辑门是电子电路中的基本组成元件,负责进行逻辑运算。

通过逻辑门的组合,可以实现复杂的逻辑功能,从而实现数字电路中的各种计算和控制。

一、逻辑门的基本运算逻辑门主要有与门、或门、非门、异或门等几种基本类型。

下面分别介绍各种逻辑门的基本运算原理及其电路图。

1. 与门与门是最简单的逻辑门之一。

它的逻辑运算规则是:当所有输入端都为高电平时,输出端才会产生高电平;只要有一个输入端为低电平,输出端就为低电平。

与门的电路图如下所示:```输入A 输入B 输出─────▷││ ├────▷│─────▷│```2. 或门个输入端为高电平,输出端就为高电平;只有所有输入端都为低电平时,输出端才会为低电平。

或门的电路图如下所示:```输入A 输入B 输出─────▷│ ├────▷─────▷```3. 非门非门是逻辑运算最简单的一种。

它只有一个输入端和一个输出端,当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。

非门的电路图如下所示:```输入输出─────▷│```4. 异或门端的电平相同时,输出端为低电平;当输入端的电平不同时,输出端为高电平。

异或门的电路图如下所示:```输入A 输入B 输出─────▷│└────│```二、逻辑电路设计通过将不同类型的逻辑门组合,可以实现复杂的逻辑运算和控制。

下面以一个简单的逻辑电路设计为例进行说明。

假设我们需要设计一个简单的两输入四输出选择器。

根据需求,只有某个特定的输入端的输出端才能为高电平,其他输出端为低电平。

我们可以通过逻辑门的组合来实现这个功能。

首先,我们可以使用或门,将输入信号与某个输出端相连,使得当输入信号为高电平时,对应的输出端为高电平;而其他输出端则需要与非门相连,当输入信号为低电平时,这些输出端才会为高电平。

具体的电路设计如下所示:```输入A 输入B 输出1 输出2 输出3 输出4─────────────│╶─▷│─────────────│ ├────▷╶─▷│ ─────►│─────────────│ ├────▷╭─────────┴──────►│─────────────│```通过以上的逻辑电路设计,我们可以实现输入信号选择某个输出端的功能。

三种基本的逻辑运算

三种基本的逻辑运算

11
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B

Y
A B
Y
图2.2.2 与门逻辑符号
若有n个逻辑变量做与运算,其逻辑式可表示为
Y A1A2An
2.2.2 或运算
或运算也叫逻辑加或逻辑或,即当其中一个条 件满足时,事件就会发生,即“有一即可
如图2.2.3所示电路,两个 并联的开关控制一盏灯就是或 逻辑事例,只要开关A、B有 一个闭合时灯就会亮。
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。
以四变量为例,逻辑表达式为:
Y ( AB CD)
上式说明:当输入变量A、B A
同时为1或C、D同时为1时, B
Y
输出Y才等于0。与或非运算 C 是先或运算后非运算的组合。 D
在工程应用中,与或非运算 由与或非门电路来实现,其
A B C
& 1 Y
真值表见书P22表2.2.6所示, D
逻辑符号如图2.2.9所示
图 2.2.9 与 或 非 门 逻 辑 符 号
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取值
不同时Y=1,即不同为“1”相同为“0”,异或运算
用异或门电路来实现
其真值表如表2.2.6所示 其门电路的逻辑符号如图2.2.10
表2.2.6 异或逻辑真值

输入
输出
A
BY
所示
0
00
A B
=1 YA B
Y
0
11
1
01
1
10
图2.2.10 异或门逻辑符号

逻辑门电路及其运算

逻辑门电路及其运算

逻辑门电路及其运算逻辑门电路是计算机和数字电路中不可或缺的基础组成部分。

它通过逻辑门的组合和运算来实现信息处理和信号传输。

本文将介绍逻辑门电路的基本概念、分类和常见的运算方式。

一、逻辑门电路的基本概念逻辑门电路是由多个逻辑门组成的电路系统,逻辑门是电子元件,能够根据输入信号的逻辑状态产生输出信号。

逻辑门电路可以用于构建各种数字逻辑电路,如加法器、多路选择器和计数器等。

逻辑门电路的最基本的逻辑门有三种:与门(AND)、或门(OR)和非门(NOT)。

与门的输出信号只有在所有输入信号都为高电平时才为高电平;或门的输出信号只要有一个输入信号为高电平就为高电平;非门的输出信号和输入信号相反。

二、逻辑门电路的分类除了基本的三种逻辑门外,还有其他的逻辑门类型,如与非门(NAND)、或非门(NOR)和异或门(XOR)等。

这些逻辑门可以通过组合和连接来构建更加复杂的逻辑电路。

1. 与非门(NAND)与非门是一种组合逻辑门,它是与门和非门的结合。

与非门在所有输入信号都为高电平时输出低电平,其余情况下输出高电平。

与非门可用于构建其他类型的逻辑电路。

2. 或非门(NOR)或非门也是一种组合逻辑门,它是或门和非门的结合。

或非门在所有输入信号都为低电平时输出高电平,其余情况下输出低电平。

或非门同样可以用来构建其他类型的逻辑电路。

3. 异或门(XOR)异或门是一种常用的逻辑门,它的输出信号只有在输入信号中的奇数个为高电平时才为高电平,偶数个为高电平时输出低电平。

异或门在数字电路和通信系统中有广泛应用。

三、逻辑门电路的运算逻辑门电路可以进行多种运算,如逻辑与、逻辑或、逻辑非、逻辑异或等。

这些运算通过逻辑门的组合和连接来实现。

1. 逻辑与运算逻辑与运算是指对两个或多个输入信号进行与运算,输出信号只有在所有输入信号都为高电平时才为高电平,否则为低电平。

逻辑与运算可以用与门实现。

2. 逻辑或运算逻辑或运算是指对两个或多个输入信号进行或运算,输出信号只要有一个输入信号为高电平就为高电平,否则为低电平。

逻辑运算

逻辑运算

逻辑运算逻辑代数的基本运算比较简单,只有三种:“与”运算、“或”运算和“非”运算。

任何复杂的逻辑运算都可由这三种基本逻辑运算构成。

如,广泛采用的“与非”、“或非”、“与或非”、“异或” 。

、“同或”等逻辑运算,它们的逻辑关系可以由以上三种基本运算导出。

1.“与”运算当决定一事件的所有条件都具备之后,这事件才会发生,称这种因果关系为“与”逻辑关系,或称为“与”逻辑运算或逻辑乘。

条件用逻辑变量“A,B…..”表示,变量取值为1,表示条件具备;取值为0,表示条件不具备。

事件用F表示,只有发生(用1表示)和不发生(用0表示)两种取值。

“与”逻辑运算用表达式表示为:F=A·B 或者F=A ∧B一般简写为:F=AB,把此式称为变量A、B相“与”的逻辑表达式。

用两个串联的开关A、B控制一盏灯,如图1(a)所示。

灯亮的条件是开关A“与”开关B同时处在合上位置。

假定灯亮为“1”,不亮为“0”,开关在合上位置为“1”,在断开位置为“0”,那么,把灯的状态和两个开关所处位置之间的关系列表,如图1(b)所示。

把这种表称为真值表(或称为功能表)。

常用真值表来表示逻辑命题的真假关系。

把所有的条件(输入变量)的全部组合以表格形式列出来,这里为A、B,再把在每一种组合下对应的事件(函数)的值F求出,这张表格就是真值表。

因为每个条件有两种状态“0”、“1”,因此,n个条件就有2n个组合。

图1(b)为A“与”B 的真值表。

同一逻辑函数只可能有唯一的真值表!2.“或”运算当决定事件发生的各种条件中,只要有一个或一个以上条件具备时,这事件就会发生,这样的因果关系称为“或”逻辑关系,或称逻辑加。

“或”运算的逻辑表达式为:F=A+B 或者F=A∨B 。

用并联的两个开关A、B控制一盏灯,如图2(a)所示,只要开关A“或”开关B在合上位置,灯就亮。

按照前面假定来赋值“0”、“1”,列出真值表,如图2(b)所示。

3.“非”运算“非”运算,就是否定,或者称为求反。

第2章 逻辑门电路

第2章   逻辑门电路

等式两边的真值表如表1.3所示: 等式两边的真值表如表1.3所示: 1.3所示
A
0 0 1 1
B
0 1 0 1
A⋅ B
1 1 1 0
A+ B
1 1 1 0
2. 常用公式
利用上面的公理、定律、规则可以得到一些常用的公式。 利用上面的公理、定律、规则可以得到一些常用的公式。
(1)吸收律
A+A·B = A
工作原理 请自行分析
◆ 多变量的函数表达式
● ● ● ● ●
与 或 与非 或非
F=A·B·C… F=A+B+C…
F = A⋅ B ⋅C
F = A+ B +C
等等 ◆ 运算的优先级别
与或非 F = AB + CD
括号→非运算→与运算→ 括号→非运算→与运算→或运算
2.3 逻辑变量与逻辑函数
F=A+B
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
F = A ⋅ B ⋅C ⋅ D ⋅ E
1. 要保持原式中逻辑运算的优先顺序; 保持原式中逻辑运算的优先顺序; 原式中逻辑运算的优先顺序 2. 不是一个变量上的反号应保持不变,否则就要出错。 不是一个变量上的反号应保持不变,否则就要出错。 上的反号应保持不变

数字电子技术第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路

数字电子技术第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路

第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路●本次重点内容:1、与、或、非三种基本逻辑关系及真值表、逻辑表达式、门电路逻辑符号。

2、分立元件门电路的工作原理。

3、复合逻辑关系:与非、或非、与或非、异或、同或的真值表、逻辑表达式、门电路逻辑符号。

●教学过程6.1三种基本逻辑关系一、与逻辑关系所谓与逻辑关系:就是指决定某事件结果的所有条件全部具备,结果才能发生,而只要其中一个条件不具备,结果就不能发生,这种逻辑关系称为与逻辑关系。

与逻辑示意如图6-1所示:用A,B表示条件,即开关的状态;用Y表示结果,即表示灯的亮、灭状态。

图6-1 与逻辑示意图开关:“1”表示开关闭合,“0”表示开关断开。

灯:“1”表示灯亮,“0”表示灯灭。

根据所有可能的开关组合状态与灯亮、灭的对应关系,可以列出真值表。

如表6-1所示。

表6-1 与逻辑真值表由表6-1可以得出“与”逻辑关系为“有0出0,全1出1”。

与门是实现与逻辑关系的电路,其逻辑符号如图6-2所示:图6-2 与逻辑符号二、或逻辑—在A,B等多个条件中,只要具备其中一个条件,事件就会发生;只有所有条件均不具备时,事件才不会发生,这种因果关系称为或逻辑关系。

或逻辑示意如图6-3所示:图6-3 或逻辑示意图经分析开关A,B的闭合情况,可以列出或逻辑真值表如表6-2所示:表6-2 或逻辑真值表由上表6-2可以得知或逻辑功能为“有1出1,全0出0”。

或门是实现或逻辑关系的电路,其逻辑符号如图6-4所示。

图6-4或逻辑符号三、非逻辑:决定事件结果只有一个条件,当条件具备时,结果就不发生;当条件不具备时,结果就发生。

这种因果关系称为非逻辑关系。

非逻辑示意如图6-5所示。

当开关A闭合时,灯Y灭;当开关A断开时,灯Y亮。

可见,对灯亮来说,开关A闭合是非逻辑关系。

图6-5非逻辑示意如图经分析可以列出或逻辑真值表6-3。

表6-3 非逻辑真值表由上表可以得知非逻辑功能为“是0出1,是1出0”。

组态技术 与 或 非符号

组态技术 与 或 非符号

组态技术与或非符号
“与或非”逻辑“与”、“或”及“非”三种运算结合在一起的逻辑称为“与或非”逻辑。

与,或,非三种基本逻辑门电路符号是:1“!”(逻辑非)、“&&”(逻辑与)、“||”(逻辑或)是三种逻辑运算符。

2“逻辑与”相当于生活中说的“并且”,就是两个条件都同时成立的情况下“逻辑与”的运算结果才为“真”。

逻辑运算又称布尔运算布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。

他用等式表示判断,把推理看作等式的变换。

数学符号很多,看看,≈≡≠=≤≥<>≮≯∷±+×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ这些都是。

除了数字是极其精准的以外,其他事情都有些模棱两可,比如一盆水加一盆水还是一盆水,因为两个盆子都不满,这就给决策者带来了很大的麻烦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三种基本逻辑电路运算比较
01基本概念
1.逻辑常量与变量:逻辑常量只有两个,即0和1,用来表示两个对立的逻辑状态。

逻辑变量与普通代数一样,也可以用字母、符号、数字及其组合来表示,但它们之间有着本质区别,因为逻辑变量的取值只有两个,即0和1,而没有中间值。

2.逻辑运算:在逻辑代数中,有与、或、非三种基本逻辑运算。

表示逻辑运算的方法有多种,如语句描述、逻辑代数式、真值表、卡诺图等。

3.逻辑函数:逻辑函数是由逻辑变量、常量通过运算符连接起来的代数式。

同样,逻辑函数也可以用表格和图形的形式表示。

4.逻辑代数:逻辑代数是研究逻辑函数运算和化简的一种数学系统。

逻辑函数的运算和化简是数字电路课程的基础,也是数字电路分析和设计的关键。

02三种基本逻辑运算与运算1
图1(a)表示一个简单与逻辑的电路,电压V通过开关A和B向灯泡L供电,只有A和B同时接通时,灯泡L才亮。

A和B中只要有一个不接通或二者均不接通时,则灯泡L 不亮,其真值表如图1(b)。

因此,从这个电路可总结与运算逻辑关系。

语句描述:只有当一件事情(灯L亮)的几个条件(开关A与B都接通)全部具备之后,这件事情才会发生。

这种关系称与运算。

逻辑表达式:L=A·B
式中小圆点“·”表示A、B 的与运算,又称逻辑乘。

在不致引起混淆的前提下,乘号“·”被省略。

某些文献中,也有用符号∧、∩表示与运算的。

真值表:如果开关不通和灯不亮均用0表示,而开关接通和灯亮均用1表示,得到如图1(c)所示的真值表描述。

真值表的左边列出为所有变量的全部取值组合,右边列出的是对应于A,B变量的每种取值组合的输出。

因为输入变量有两个,所以取值组合有22=4种,对于n个变量,应该有2n种取值组合。

逻辑符号:与运算的逻辑符号如图1(d)所示,其中A,B为输入,L为输出。

相关文档
最新文档