最新2018-2019高一招生考试数学试卷
2018-2019学年河南省天一大联考高一(上)期中数学试卷
一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A ={x|y =1x },B ={y|y =1x },C ={(x ,y)|y =1x },下列结论正确的是( ) A .A =BB .A =CC .B =CD .A =B =C【解答】解:A ={x |x ≠0},B ={y |y ≠0},C 表示曲线y =1x 上的点形成的集合; ∴A =B . 故选:A .2.(5分)已知集合A ={1,2},B ={2,2k },若B ⊆A ,则实数k 的值为( ) A .1或2B .12C .1D .2【解答】解:∵集合A ={1,2},B ={2,2k},B ⊆A , ∴由集合元素的互异性及子集的概念可知2k =1,解得实数k =2. 故选:D .3.(5分)下列各组函数中,表示同一函数的是( ) A .f (x )=2lgx ,g (x )=lgx 2 B .f(x)=1(x ≠0),g(x)=x|x| C .f (x )=x ,g (x )=10lgxD .f(x)=2x ,g(x)=√22x【解答】解:A .f (x )=2lgx ,g (x )=lgx 2=2lg |x |,解析式不同,不是同一函数; B .f (x )=1(x ≠0},g(x)=x|x|={1x >0−1x <0,解析式不同,不是同一函数;C .f (x )=x 的定义域为R ,g (x )=10lgx 的定义域为(0,+∞),定义域不同,不是同一函数;D .f (x )=2x 的定义域为R ,g(x)=√22x =2x 的定义域为R ,定义域和解析式都相同,是同一函数. 故选:D .4.(5分)某班共50名同学都选择了课外兴趣小组,其中选择音乐的有25人,选择体育的有20人,音乐、体育两个小组都没有选的有18人,则这个班同时选择音乐和体育的人数为( )A.15B.14C.13D.8【解答】解:如图,设音乐和体育小组都选的人数为x人则只选择音乐的有(25﹣x)人,只选择体育小组的有(20﹣x)人,由此得(25﹣x)+x+(20﹣x)+18=50,解得x=13,∴音乐和体育都选的学生有13人,故选:C.5.(5分)定于集合A,B的一种运算“*”:A*B={x|x=x1﹣x2,x1∈A,x2∈B}.若P={1,2,3,4},Q={1,2},则P*Q中的所有元素之和为()A.5B.4C.3D.2【解答】解:P*Q={x|x=x1﹣x2,x1∈P,x2∈Q}={﹣1,0,1,2,3},P*Q中的所有元素之和为5.故选:A.6.(5分)若2a=0.5,b=2.70.3,c=0.32.7,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【解答】解:∵由2a=0.5可得a=log20.5=﹣1,b=2.70.3>2.70=1,0.30=1>c=0.32.7>0,∴a<c<b.故选:D.7.(5分)已知2x=3y=a,且1x+1y=2,则a的值为()A.√6B.6C.±√6D.36【解答】解:∵2x=3y=a,∴xlg2=ylg3=lga,∴1x=lg2lga,1y =lg3lga,∴2=1x +1y =lg2lga +lg3lga =lg6lga , ∴lga =12lg 6=lg √6, 解得a =√6. 故选:A .8.(5分)函数f(x)=2x −1x 的零点所在的区间是( ) A .(0,12)B .(34,1)C .(12,34)D .(1,2)【解答】解:由函数f(x)=2x −1x的在R 上是增函数,f (12)=1√2−2<0,f (34)=234−43>212−34>0,且f (12)f (34)<0,可得函数在区间(12,34)上有唯一零点.故选:C .9.(5分)已知函数f(x)={x 2,x <0−x 2,x ≥0,则不等式f (x +1)+f (3﹣2x )<0的解集为( )A .(4,+∞)B .(﹣∞,4)C .(−∞,23) D .(23,+∞)【解答】解:函数f(x)={x 2,x <0−x 2,x ≥0,是奇函数,在R 上是减函数,不等式f (x +1)+f (3﹣2x )<0,可得f (x +1)<﹣f (3﹣2x )=f (2x ﹣3), 解得:x +1>2x ﹣3,可得x <4,所以不等式f (x +1)+f (3﹣2x )<0的解集{x |x <4}. 故选:B .10.(5分)已知f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1,则f (e )=( ) A .e eB .eC .1D .0【解答】解:根据题意,f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1, 则f (x )﹣e x 为常数,设f (x )﹣e x =t ,则f (x )=e x +t , 又由f [f (x )﹣e x ]=1,即f (t )=1,则有e t +t =1, 分析可得:t =0, 则f (x )=e x ,则f (e )=e e , 故选:A .11.(5分)已知幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2),设a =f (m ),b =f (n ),c =f (lnn ),则( ) A .c <b <aB .c <a <bC .b <c <aD .a <b <c【解答】解:∵幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2), ∴{m −1=12n =2√2,解得m =2,n =32, ∴f (x )=x 32, ∴f (x )=x 32在(0,+∞)是增函数, 0<ln 32<1,∴f (2)>f (32)>f (ln 32),∴a >b >c .即c <b <a . 故选:A .12.(5分)已知函数f(x)={|log 2(x +1)|,−1<x ≤2−x 2+4x −3,x >2,若关于x 的方程f (x )﹣t =0有3个不同的实数根,则实数t 的取值范围是( ) A .[0,1]B .(0,1)C .[0,log 23]D .(0,log 23)【解答】解:方程f (x )﹣t =0有3个不同的实数根,画出y =f (x )的函数图象以及y =t 中的图象,|log 23|>|log 22|=1, t ∈(0,1), 故选:B .二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)设集合A ={x |x <1},B ={x |x <5},那么(∁R A )∩B = [1,5) . 【解答】解:∵∁R A ={x |x ≥1},∴(∁R A )∩B ={x |1≤x <5}. 故答案为:[1,5). 14.(5分)函数y =1ln(4−x)+√3x −9的定义域是 [2,3)∪(3,4) .【解答】解:要使函数y =1ln(4−x)+√3x −9有意义,则{4−x >04−x ≠13x −9≥0;解得2≤x <4,且x ≠3;∴该函数定义域为[2,3)∪(3,4). 故答案为:[2,3)∪(3,4).15.(5分)函数f(x)=log 12(x 2−x −6)在定义域(﹣∞,﹣2)∪(3,+∞)上的增区间是 (﹣∞,﹣2) .【解答】解:根据题意,设t =x 2﹣x ﹣6,则y =log 12t ,函数t =x 2﹣x ﹣6在(﹣∞,﹣2)上为减函数,在(3,+∞)上为增函数, 而y =log 12t 为减函数,则函数f (x )的递增区间为(﹣∞,﹣2); 故答案为:(﹣∞,﹣2).16.(5分)函数f (x )是定义在R 上的偶函数,且在(0,+∞)上递增,若f (1)=0,f (0)<0,则不等式xf (x ﹣1)<0的解集是 (﹣∞,0)∪(0,2) . 【解答】解:根据题意,f (x )在(0,+∞)上递增,且f (1)=0,f (0)<0, 则在[0,1)上,f (x )<0,在(1,+∞)上,f (x )>0, 又由函数f (x )为偶函数,则在区间(﹣1,0]上,f (x )<0,在区间(﹣∞,﹣1)上,f (x )>0, xf (x ﹣1)<0⇔{x <0f(x −1)>0或{x >0f(x −1)<0,分析可得:x <0或0<x <2,即不等式的解集为(﹣∞,0)∪(0,2); 故答案为:(﹣∞,0)∪(0,2).三、解答题:本大题共6个小题,共70分.17.(10分)计算:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23; (2)13lg125+2lg √2+log 5(log 28)×log 35.【解答】解:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23 =(32)−13+(212+313)6﹣1﹣(23)13=(23)13+72﹣1﹣(23)13=71.(2)13lg125+2lg √2+log 5(log 28)×log 35=lg 5+lg 2+log 53×log 35 =lg 10+lg3lg5×lg5lg3 =1+1=2.18.(12分)已知函数f(x)=√log 12(1−12x)的定义域为集合A ,函数g(x)=(12)x−1(−1≤x ≤1)的值域为集合B . (1)求A ∩B ;(2)设集合C ={x |a ≤x ≤3a ﹣2},若C ∩A =C ,求实数a 的取值范围. 【解答】解:(1)由log 12(1−12x)≥0得,0<1−12x ≤1;解得0≤x <2; ∴A =[0,2); ∵﹣1≤x ≤1; ∴﹣2≤x ﹣1≤0; ∴1≤(12)x−1≤4; ∴B =[1,4]; ∴A ∩B =[1,2); (2)∵C ∩A =C ; ∴C ⊆A ;∴①C =∅时,a >3a ﹣2;∴a <1;②C ≠∅时,则{a ≥13a −2<2;解得1≤a <43;综上,实数a 的取值范围是(−∞,43).19.(12分)已知函数f (x )=x +ln (1+x )﹣ln (1﹣x ). (1)求f (x )的定义域,并直接写出f (x )的单调性; (2)用定义证明函数f (x )的单调性. 【解答】解:(1)由题意得1+x >0且1﹣x >0, 解得:﹣1<x <1,故函数的定义域是(﹣1,1), 函数f (x )在(﹣1,1)递增;(2)证明:在定义域(﹣1,1)内任取x 1,x 2,且x 1<x 2, 则f (x 1)﹣f (x 2)=x 1﹣x 2+ln(1+x 1)(1−x 2)(1−x 1)(1+x 2),由于﹣1<x 1<x 2<1,故0<1+x 1<1+x 2, 故0<1+x 11+x 2<1,同理0<1−x21−x 1<1,故0<1+x11+x 2•1−x 21−x 1<1, 故ln(1+x 1)(1−x 2)(1−x 1)(1+x 2)<0,由于x 1﹣x 2<0,故f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), 故函数f (x )为(﹣1,1)上的增函数.20.(12分)已知二次函数f (x )=x 2+(2a ﹣1)x +1﹣a .(1)证明:对于任意的a ∈R ,g (x )=f (x )﹣1必有两个不同的零点;(2)是否存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点?若存在,求出实数a 的取值范围;若不存在,请说明理由. 【解答】解:(1)令g (x )=0,则f (x )=1, 即x 2+(2a ﹣1)x ﹣a =0,∵△=(2a ﹣1)2+4a =4a 2+1>0对任意的a ∈R 恒成立, 故x 2+(2a ﹣1)x ﹣a =0必有2个不相等的实数根,从而方程f (x )=1必有2个不相等的实数根,故对于任意的a ∈R ,g (x )=f (x )﹣1必有2个不同的零点; (2)不存在,理由如下:由题意,要使y =f (x )在区间(﹣1,0)以及(0,2)内各有1个零点,只需{f(−1)>0f(0)<0f(2)>0即{3−3a >01−a <03a +3>0,故{a <1a >1a >−1,无解,故不存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点. 21.(12分)某工厂生产甲、乙两种产品所得的利润分别为P 和Q (万元),它们与投入资金m (万元)的关系为:P =320m +30,Q =40+3√m .今将300万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于75万元. (1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数; (2)如何分配投入资金,才能使总利润最大?并求出最大总利润.【解答】解:(1)根据题意,对乙种产品投资x (万元),对甲种产品投资(300﹣x )(万元), 那么总利润y =320(300﹣x )+30+40+3√x =−320x +3√x +115, 由{x ≥75300−x ≥75,解得75≤x ≤225, 所以y =−320x +3√x +1154,其定义域为[75,225], (2)令t =√x ,因为x ∈[75,225],故t ∈[5√3,15], 则y =−320t 2+3t +115=−320(t ﹣10)2+130, 所以当t =10时,即x =100时,y max =130,答:当甲产品投入200万元,乙产品投入100万元时,总利润最大为130万元 22.(12分)已知函数f(x)=1−22x +1. (1)判断函数奇偶性; (2)求函数f (x )的值域;(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立,求实数m 的取值范围. 注:函数y =x +ax (a >0)在(0,a ]上单调递减,在(√a ,+∞)上单调递增.【解答】解:函数f(x)=1−22x +1.其定义域为R ;f (﹣x )=1−22−x +1=1−212x+1=1−2⋅2x 1+2x =1+2x −2⋅2x 1+2x =−(2x+1)+21+2x=﹣(1−2x)=﹣f (x ), ∴f (x )是奇函数; (2)由函数f (x )=y =1−22x+1, 可得21−y=2x +1,即2x =21−y −1 ∵2x >0, ∴21−y −1>0,即1+y 1−y>0解得:﹣1<y <1∴f (x )的值域(﹣1,1).(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立, 即(1−22x+1)m +2+2x ≥0恒成立, 可得(2x ﹣1)m +(2+2x )(2x +1)≥0; ∵x ∈(0,2]; ∴2x ﹣1>0则m ≥−(2+2x)(2x+1)2x −1,即﹣m ≤(2+2x)(22+1)2x+1; 令2x ﹣1=t ,(0,3];那么y =(2+2x)(2x+1)2x −1=(3+t)(t+2)t =t +6t +5≥2√6+5;当且仅当t =√6时取等号. ∴﹣m ≤2√6+5;可得实数m 的取值范围[−2√6−5,+∞).。
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。
2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)(解析版)
2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)一、选择题(本大题共12小题,共60.0分)1.设集合{A=x|1<x<2},{B=x|x<a},若A⊆B,则a的取值范围是()A. B. C. D.2.若f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式为()A. B. C. D.3.设α是第三象限角,化简:=()A. 1B. 0C.D. 24.设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系为()A. B. C. D.5.若函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,则f(1)的值为()A. 0B. 1C. 2D. 36.已知函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,则g(2)+g()的值为()A. 4B. 2C. 1D. 07.直角坐标系内,β终边过点P(sin2,cos2),则终边与β重合的角可表示成()A. ,B. ,C. ,D. ,8.已知函数f(x)=,,,,在定义域上单调递减,那么a的取值范围是()A. B. C. D.9.如图,在△ABC中,已知=,P为AD上一点,且满足=m+,则实数m的值为()A.B.C.D.10.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A. 2B. 4C. 5D. 1011.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x[-3,-2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[-3,3]上的零点个数为()A. 1个B. 2个C. 4个D. 6个12.设e为自然对数的底数,则函数f(x)=e x(2-e x)+(a+2)•|e x-1|-a2存在三个零点,则a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数f(x)=+lg(3x+1)的定义域为______.14.tan=______.15.在△ABC中,∠A=60°,a=4,b=4,则B等于______.16.已知,,,,且,则cos(x+2y)=______.三、解答题(本大题共6小题,共70.0分)17.(1)化简求值:(log32+1og92)(log43+1og83)+2;(2)已知x-x-1=-,求x3-x-3的值.18.已知=(1,2),=(-3,2),当k为何值时:(1)k+与-3垂直;(2)k+与-3平行,平行时它们是同向还是反向?19.声音通过空气的振动所产生的压强叫声压强,简称声压,单位为帕(Pa).把声压的有效值取对数来表示声音的强弱,这种表示声音强弱的数值叫声压级.声压级以符号S PL表示,单位为分贝(dB),公式为:S PL(声压级)=(dB),式中p e为待测声压的有效值,p ref为参考声压,在空气中参考声压p ref一般取值2×10-5Pa.根据上述材料,回答下列问题.(1)若某两人小声交谈时的声压有效值p e=0.002Pa,求其声压级;(2)已知某班开主题班会,测量到教室内最高声压级达到90dB,求此时该班教室内声压的有效值.20.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若函数f(x)在[0,π]上取最小值时对应的角度为θ,求半径为2,圆心角为θ的扇形的面积.21.已知定义域为R的函数f(x)=-+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t(1,2),不等式f(-2t2+t+1)+f(t2-2mt)≤0有解,求m的取值范围.22.已知函数f(x)=sin(x R).任取t R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t).(Ⅰ)求函数f(x)的最小正周期及对称轴方程(Ⅱ)当t[-2,0]时,求函数g(t)的解析式(Ⅲ)设函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中实数k为参数,且满足关于t的不等式k-5g(t)≤0有解.若对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围参考公式:sinα-cosα=sin(α-)答案和解析1.【答案】A【解析】解:在数轴上画出图形易得a≥2.故选:A.在数轴上画出图形,结合图形易得a≥2.本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解.2.【答案】B【解析】解:∵f(x)=2x+3,∴g(x+2)=f(x)=2x+3=2(x+2)-1,即g(x)=2x-1故选:B.由g(x+2)=f(x),把f(x)的表达式表示为含有x+2的基本形式即可.本题考查了求简单的函数解析式的问题,是基础题.3.【答案】C【解析】解:∵α是第三象限角,可得:cosα<0,∴=-,∵cos2α+cos2αtan2α=cos2α+cos2α•=cos2α+sin2α=1.∴=-1.故选:C.原式利用单项式乘以多项式法则计算,再利用同角三角函数间基本关系化简,结合角的范围即可得到结果.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.4.【答案】B【解析】解:∵a=0.60.4,c=0.40.4,由幂函数的性质可得a>c,∵b=0.40.6,c=0.40.4,由指数函数的性质可得b<c,∴b<c<a.故选:B.直接利用指数函数与幂函数的单调性进行大小比较.本题考查指数函数与幂函数的图象与性质,是基础题.5.【答案】B【解析】解:∵函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,∴f(1)-2f(1)=-1+8-8,∴f(1)=1.故选:B.在f(x)-2f(2-x)=-x2+8x-8中,令x=1,能求出f(1)的值.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.【答案】D【解析】解:若函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,故函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,故g(x)=log a x(a>0,a≠1),故g(2)+g()=log a2+=log a2-log a2=0,故选:D.由已知可得函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,即g(x)=log a x(a>0,a≠1),结合对数的运算性质,可得答案.本题考查的知识点是反函数,函数求值,对数的运算性质,难度中档.7.【答案】A【解析】解:∵β终边过点P(sin2,cos2),即为(cos (-2),sin (-2))∴终边与β重合的角可表示成-2+2kπ,k Z,故选:A.由P(sin2,cos2),即为(cos (-2),sin(-2)),即可求出.本题考查了终边相同的角和诱导公式,属基础题.8.【答案】C【解析】解:根据题意,函数f(x)的定义域为(0,+∞),y=x+在(0,1]为减函数,则[1,+∞)上为增函数,y=3-x在(0,+∞)上为减函数,又由函数y=x+与y=3-x有2个交点:(,)和(1,2),若函数f(x)=在定义域上单调递减,必有0<a≤或a=1,即a的取值范围为(0,]{1};故选:C.根据题意,分析函数f(x)的定义域为(0,+∞),再分析函数y=x+和函数y=3-x在(0,+∞)上的单调性,求出两个函数的交点,据此分析可得答案.本题考查分段函数的单调性,关键是分析分段函数解析式的形式,属于基础题.9.【答案】B【解析】解:如图,又=,所以又=m+,由平面向量基本定理可得,解得m=故选:B.由题设,可将用两向量表示出来,已知中已有足=m+,可根据平面向量基本定理建立起m的方程,从而求出m的值.本题考查平面向量基本定理的应用,根据向量的三角形法则与平行四边形法则把用两向量表示出来,是解答本题的关键.10.【答案】D【解析】解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(-r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P (rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=-r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选:D.以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.11.【答案】C【解析】解:∵当x[-3,-2]时,f(x)=x2+4x+3=(x+2)2-1[-1,0];又f(x)为R上的偶函数,∴当x[2,3]时,f(x)[-1,0];又f(x+2)=f(x),∴f(x)为以2为周期的函数,由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],由f[f(x)]+1=0得到f[f(x)]=-1,于是可得f(x)=0或±2(舍弃),由f(x)=0可得x=±1,±3,所以y=f[f(x)]+1在区间[-3,3]上的零点个数为4.故选:C.由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],确定f(x)=0,即可得出y=f[f(x)]+1在区间[-3,3]上的零点个数.本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.考查的知识点是根的存在性及根的个数判断,其中根据已知条件分析函数的性质,进而判断出函数零点的分布情况是解答本题的关键.12.【答案】D【解析】解:设t=e x-1,则e x=t+1,则f(t)=(t+1)(1-t)+(a+2)|t|-a2=1-t2+(a+2)|t|-a2,令m=|t|=|e x-1|.则f(m)=-m2+(a+2)m+1-a2,∵f(x)有三个零点,∴等价为f(m)=-m2+(a+2)m+1-a2,有两个根,一个根在(0,1)内,另一个根在[1,+∞),则,得得1<a≤2,即实数a的取值范围是(1,2],故选:D.利用换元法设m=|t|=|e x-1|.转化为一元二次函数根的分布,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用一元二次函数根的分布是解决本题的关键.综合性较强.13.【答案】,【解析】解:要使f(x)有意义,则:;∴;∴f(x)的定义域为.故答案为:.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,对数函数的定义域.14.【答案】2-【解析】解:tan=tan(-)===2-,故答案为:2-.利用两角差的正切公式求得tan=tan(-)的值.本题主要考查两角差的正切公式的应用,属于基础题.15.【答案】45度【解析】解:∵在△ABC中,∠A=60°,a=4,b=4,∴由正弦定理=得:sinB=,又a=4>b=4,∴60°=A>B,∴B=45°.故答案为:45°.利用正弦定理=即可求得sinB,再由a>b知A>B,从而可得答案.本题考查正弦定理,在△ABC中,a>b知A>B是关键,属于基础题.16.【答案】1【解析】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=-2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=-f(2y)=f(-2y).∴x=-2y,即x+2y=0.∴cos(x+2y)=1.故答案为:1.设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=-2a,进而根据函数的奇偶性,求得f(x)=-f (2y)=f(-2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想.17.【答案】解:(1)(log32+1og92)(log43+1og83)+2=+5=•+5=+5=.(2)∵x-x-1=-,∴x2+x-2+2=(x+x-1)2=(x-x-1)2+4=+4=,∴x2+x-2=.∴x3-x-3=(x-x-1)(x2+x-2+1)=×=-.【解析】(1)利用指数与对数运算性质即可得出.(2)利用乘法公式即可得出.本题考查了指数与对数运算性质、乘法公式,考查了推理能力与计算能力,属于基础题.18.【答案】解:(1)由题意可得k+=(k-3,2k+2),-3=(10,-4),由k+与-3垂直可得(k -3,2k+2)•(10,-4)=10(k-3)+(2k+2)(-4)=0,解得k=19.(2)由k+与-3平行,可得(k-3)(-4)-(2k+2)×10=0,解得k=-,此时,k+=-+=(-,),-3=(10,-4),显然k+与-3方向相反.【解析】(1)由题意可得k +和-3的坐标,由k+与-3垂直可得它们的数量积等于0,由此解得k的值.(2)由k +与-3平行的性质,可得(k-3)(-4)-(2k+2)×10=0,解得k的值.再根据 k+和-3的坐标,可得k +与-3方向相反.本题主要考查两个向量的数量积公式的应用,两个向量共线、垂直的性质,属于中档题.19.【答案】解:(1)由声压有效值p e=0.002Pa,根据S PL==40dB∴两人小声交谈时声压级为40dB(2)根据声压级S PL=90=,可得P e=帕.∴教室内最高声压级达到90dB,求此时该班教室内声压的有效值为P e=帕.【解析】(1)利用公式,代入P e=0.002帕,P mf=2×10-5帕,即可求得结论;(2)利用公式,代入P e=0.002帕,S pl=80分贝,即可求得结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,属于基础题.20.【答案】解:(Ⅰ)根据函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图可得2×(-)+φ=0,求得φ=,∴f(x)=2sin(2x+).(Ⅱ)∵函数f(x)的周期为π,在[0,π]上,当x=时,f(x)取最小值-2,此时对应的角度为θ=,结合半径为2,则圆心角为θ的扇形的面积为θ•r2=••4=.【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.(Ⅱ)求出θ,根据半径为2,求出圆心角为θ的扇形的面积.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,属于中档题.21.【答案】解:(1)∵f(x)是R上的奇函数,∴f(0)=-+=0,∴a=1.(2)f(x)=-+,故f(x)是R上的减函数.证明:设x1,x2是R上的任意两个数,且x1<x2,则f(x1)-f(x2)=-=,∵x1<x2,∴0<<,∴>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2),∴f(x)在R上是减函数.(3)∵f(x)是奇函数,f(-2t2+t+1)+f(t2-2mt)≤0有解,∴f(t2-2mt)≤-f(-2t2+t+1)=f(2t2-t-1),又f(x)是减函数,∴t2-2mt≥2t2-t-1在(1,2)上有解,∴m≤=-++.设g(t)=-++,则g′(t)=--<0,∴g(t)在(1,2)上单调递减,∴g(t)<g(1)=.∴m的取值范围是(-∞,].【解析】(1)根据f(0)=0求出a的值;(2)根据函数单调性的定义证明;(3)根据奇偶性和单调性列出不等式,从而得出m的范围.本题考查了函数奇偶性、单调性的应用,函数最值的计算,属于中档题.22.【答案】解:(Ⅰ)对于函数f(x)=sin(x R),它的最小正周期为=4,由=kπ+,求得x=2k+1,k Z,可得f(x)的对称轴方程为x=2k+1,k Z.(Ⅱ)当t[-2,0]时,①若t[-2,-),在区间[t,t+1]上,M(t)=f(t)=sin,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+sin.②若t[-,-1),在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+cos.③若t[-1,0],在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(t)=sin t,g(t)=M(t)-m(t)=cos t-sin.综上可得,g(t)=,,,,,,.(Ⅲ)函数f(x)=sin的最小正周期为4,∴M(t+4)=M(t),m(t+4)=m(t).函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,即函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集.∵h(x)=|2|x-k|=,①当k≤4时,h(x)在(-∞,k)上单调递减,在[k,4]上单调递增.故h(x)的最小值为h(k)=1;∵H(x)在[4,+∞)上单调递增,故H(x)的最小值为H(4)=8-2k.由8-2k≥1,求得k≤.②当4<k≤5时,h(x)在(-∞,4]上单调递减,h(x)的最小值为h(4)=2k-4,H(x)在[4,k]上单调递减,在(k,+∞)上单调递增,故H(x)的最小值为H(k)=2k-8,由,求得k=5,综上可得,k的范围为(-∞,]{5}.【解析】(Ⅰ)根据正弦函数的周期性和图象的对称性,求得函数f(x)的最小正周期及对称轴方程.(Ⅱ)当t[-2,0]时,分类讨论求得M(t)和m(t),可得g(t)的解析式.(Ⅲ)由题意可得函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集,分类讨论求得k的范围.本题主要考查正弦函数的周期性,指数函数的图象特征,函数的能成立、函数的恒成立问题,属于难题.。
【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)
18.已知向量 =( x,﹣ 1), =( x﹣2 ,3), =( 1﹣ 2x, 6). ( 1)若 ⊥( 2 + ),求 | | ; ( 2)若 ? < 0,求 x 的取值范围.
2
19.已知函数 f( x)=Asinx+cosx, A> 0. ( 1)若 A=1,求 f ( x)的单调递增区间;
.
22. 解: Ⅰ)若 a=1,则 f( x)=
,
函数 f ( x)的图象如下图所示:
;
(Ⅱ)若 f( x) ≥2﹣ x 对任意 x∈[1,2] 恒成立, 即 x2﹣ 4ax+3a2≥2﹣ x 对任意 x∈[1 ,2] 恒成立, 即 x2+( 1﹣4 a) x+(3a2﹣ 2) ≥0对任意 x∈[1 , 2]恒成立,
( 2)函数 f( x)在 x=x0 处取得最大值
,求 cosx0 的值.
20.已知 f ( x)是定义在 R上的偶函数,当 x ≥0时, f( x) =xa( a∈R),函数 f( x)的图象经过点( ( 1)求函数 f ( x)的解析式; ( 2)解不等式 f ( x2)﹣ f(﹣ x2+x﹣ 1)> 0.
4, 2).
3
21.已知向量 =( sinx ,﹣ 1), =( cosx , m),m∈ R.
( 1)若 m= ,且 ∥ ,求
的值;
( 2)已知函数 f ( x) =2( + ) ? ﹣2m2﹣ 1,若函数 f( x)在 [ 0, ] 上有零点,求 m 的取值范围.
22. 设函数 f ( x) =
由 y=x2+( 1﹣ 4a) x+( 3a2﹣ 2)的图象是开口朝上,且以直线 x=
为对称轴的抛物线,
2018-2019学年江苏省南通中学高一(下)期中数学试卷
2018-2019学年江苏省南通中学高一(下)期中数学试卷试题数:22,总分:1001.(单选题,3分)下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.共点的三条直线确定一个平面2.(单选题,3分)已知正方体的表面积为96,则正方体的体积为()A. 48√6B.64C.16D.963.(单选题,3分)已知sinα= 1,则cos2α的值为()8A. −3132B. 3132C. 6364D. −63644.(单选题,3分)如图,在正方体ABCD-A1B1C1D1中,E是BC的中点,则异面直线CD和D1E所成角的余弦值为()A. 23B. √53C. 2√55D. √555.(单选题,3分)设△ABC的内角A,B,C所对的边分别为a,b,c,若2sinAcosB=sinC,则△ABC的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形6.(单选题,3分)如图,△O′A′B′是水平放置的△OAB的直观图,O′A′=O′B′=2,∠A′O′B′=45°,则△OAB的面积是()A.2B.3C.4D.57.(单选题,3分)在△ABC中,角A,B,C所对的边分别为a,b,c,若B=60°,a=1,b=2,则sinA的值为()A. √32B. 14C. √34D. 12的值为()8.(单选题,3分)已知tanα=2,则sinα+cosαsinα−3cosαA.-3B.3C. 13D.- 139.(单选题,3分)已知m,n是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确为()A.若m || β,n⊥α,α⊥β,则m⊥nB.若m⊥α,n⊥β,则α || βC.若m || α,n || β,α || β,则m || nD.若α⊥β,α∩β=m,n⊂β,m⊥n,则n⊥α10.(单选题,3分)设锐角ABC的三内角A,B,C所对边的边分别为a,b,c,且a=2,B=2A,则b的取值范围为()A. (2√2,2√3)B. (2√2,4)C. (2,2√3)D.(0,4)11.(单选题,3分)在棱长为4的正方体ABCD-A1B1C1D1中,M是BC中点,点P是正方形DCC1D1内的动点(含边界),且满足∠APD=∠MPC,则三棱锥P-BCD的体积最大值是()A. 649B. 4√3C. 16√33D. 32√3912.(单选题,3分)点M是棱长为6的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1上一点,2NB1=NC1,DM⊥BN,则动点M运动路线的长度为()A. 3√15π5B. 6√15π5C. 3√10π5D. 3√3π513.(填空题,3分)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为___ .14.(填空题,3分)线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始___ h后,两车的距离最小.15.(填空题,3分)在等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折,则二面角C-BM-A的大小为___ .成二面角,折后A与C的距离为√6216.(填空题,3分)在锐角△ABC中,若sinA=4sinBsinC,则tanAtanBtanC的最小值是___ .17.(问答题,8分)在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.时,求b、c的值;(1)当a=2,m=54(2)若角A为锐角,求m的取值范围.18.(问答题,8分)如图,在四棱锥P-ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD || 面AEC;(2)求证:平面AEC⊥平面PDB.19.(问答题,8分)如图,某市市区有一条过市中心O的南北走向道路,市政府决定修建两条道路:一条路是从市中心O出发沿北偏西60°向至点B处,另一条是从市中心O的正南方向的道路上选取点A,在A、B之间修建一条道路.,求在点B处看市中心O和点A (1)如果在点A处看市中心O和点B视角α的正弦值为35处视角β的余弦值;km2,点A到市中心O的距离为(2)如果△AOB区域作为保护区,保护区的面积为15√343km,求此时A、B间的距离.20.(问答题,8分)如图1所示,在直角△ABC中,AC=6,BC=3,∠ABC=90°,∠ACB的平分线CD交AB于点D,点E在线段AC上,且CE=4.将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点,如图2所示.(1)求证:DE⊥平面BCD;(2)若EF || 平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥G-BDE的体积..21.(问答题,10分)在△ABC中,内角A,B,C所对的边分别为a,b,c,cosB= 45的值;(1)若c=2a,求sinBsinC,求sinA的值.(2)若C-B= π422.(问答题,10分)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R 表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△AB C不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.2018-2019学年江苏省南通中学高一(下)期中数学试卷参考答案与试题解析试题数:22,总分:1001.(单选题,3分)下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.共点的三条直线确定一个平面【正确答案】:C【解析】:在A中,不同线的三点确定一个平面;在B中,四边形有可能是空间四边形;在C中,梯形有一组对边平行,一定是平面图形;在D中,共点的三条直线确定一个或三个平面.【解答】:解:在A中,不同线的三点确定一个平面,故A错误;在B中,四边形有可能是空间四边形,故四边形不一定是平面图形,故B错误;在C中,∵梯形有一组对边平行,而平行线能确定一个平面,∴梯形一定是平面图形,故C正确;在D中,共点的三条直线确定一个或三个平面,故D错误.故选:C.【点评】:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系、平面的基本性质及定理等基础知识,属于基础题.2.(单选题,3分)已知正方体的表面积为96,则正方体的体积为()A. 48√6B.64C.16D.96【正确答案】:B【解析】:由正方体的表面积为96,求出正方体的棱长为4,由此能求出正方体的体积.【解答】:解:设正方体的棱长为a,∵正方体的表面积为96,∴S=6a2=96,解得a=4,∴正方体的体积为V=43=64.故选:B.【点评】:本题考查正方体的体积的求法,考查正方体的结构特征等基础知识,考查推理论证能力与运算求解能力,属于基础题.3.(单选题,3分)已知sinα= 18,则cos2α的值为()A. −3132B. 3132C. 6364D. −6364【正确答案】:B【解析】:由sinα计算二倍角的余弦值即可.【解答】:解:由sinα= 18,则cos2α=1-2sin2α=1-2× (18) 2= 3132.故选:B.【点评】:本题考查了二倍角的余弦值的计算问题,是基础题.4.(单选题,3分)如图,在正方体ABCD-A1B1C1D1中,E是BC的中点,则异面直线CD和D1E所成角的余弦值为()A. 23B. √53C. 2√55D. √55【正确答案】:A【解析】:以D 为原点建立空间直角坐标系D-xyz ,利用向量法能求出异面直线CD 和D 1E 所成角的余弦值.【解答】:解:以D 为原点建立空间直角坐标系D-xyz ,设正方体ABCD-A 1B 1C 1D 1中棱长为2,则C (0,2,0),D (0,0,0),D 1(0,0,2),E (1,2,0),CD ⃗⃗⃗⃗⃗ =(0,-2,0), D 1E ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-2),设异面直线CD 和D 1E 所成角为θ,则cosθ= |CD ⃗⃗⃗⃗⃗ •D 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |•|D 1E ⃗⃗⃗⃗⃗⃗⃗⃗ | = 4√4•√9 = 23 . ∴异面直线CD 和D 1E 所成角的余弦值为 23 .故选:A .【点评】:本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.(单选题,3分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sinAcosB=sinC ,则△ABC 的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形【正确答案】:B【解析】:由已知等式可得sin(A-B)=0,结合角的范围可得A=B,则答案可求.【解答】:解:由2sinAcosB=sinC,得2sinAcosB=sin(A+B)=sinAcosB+cosAsinB,∴sinAcosB-cosAsinB=0,∴sin(A-B)=0.∵0<A<π,0<B<π,∴-π<A-B<π,则A-B=0,即A=B.∴△ABC的形状为等腰三角形.故选:B.【点评】:本题考查三角形形状的判断,考查两角和与差的正弦,是基础题.6.(单选题,3分)如图,△O′A′B′是水平放置的△OAB的直观图,O′A′=O′B′=2,∠A′O′B′=45°,则△OAB的面积是()A.2B.3C.4D.5【正确答案】:C【解析】:根据题意,设△OAB的面积为S,其直观图面积为S′,分析可得△O′A′B′的面积S′,由直观图的性质S′S = √24计算可得答案.【解答】:解:根据题意,设△OAB的面积为S,其直观图面积为S′,△O′A′B′中,O′A′=O′B′=2,∠A′O′B′=45°,则其面积S′= 12×2×2×sin∠A′O′B′= 12×2×2× √22= √2,又由S′S = √24,则S= S′√24=4;故选:C.【点评】:本题考查平面图形的直观图,涉及由直观图还原原图,属于基础题.7.(单选题,3分)在△ABC中,角A,B,C所对的边分别为a,b,c,若B=60°,a=1,b=2,则sinA的值为()A. √32B. 14C. √34D. 12【正确答案】:C【解析】:直接利用正弦定理求出结果.【解答】:解:已知:B=60°,a=1,b=2,利用正弦定理:asinA =bsinB,解得:sinA= √34,故选:C.【点评】:本题考查的知识要点:正弦定理的应用及相关的运算问题.8.(单选题,3分)已知tanα=2,则sinα+cosαsinα−3cosα的值为()A.-3B.3C. 13D.- 13【正确答案】:A【解析】:由题意利用同角三角函数的基本关系,求得要求式子的值.【解答】:解:∵tanα=2,则sinα+cosαsinα−3cosα = tanα+1tanα−3=-3,故选:A.【点评】:本题主要考查同角三角函数的基本关系,属于基础题.9.(单选题,3分)已知m,n是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确为()A.若m || β,n⊥α,α⊥β,则m⊥nB.若m⊥α,n⊥β,则α || βC.若m || α,n || β,α || β,则m || nD.若α⊥β,α∩β=m,n⊂β,m⊥n,则n⊥α【正确答案】:D【解析】:在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m与n相交、平行或异面;在D中,由面面垂直的性质定理得n⊥α.【解答】:解:由m,n是两条不重合的直线,α,β是两个不重合的平面,得:在A中,若m || β,n⊥α,α⊥β,则m与n相交、平行或异面,故A错误;在B中,若m⊥α,n⊥β,则α与β相交或平行,故B错误;在C中,若m || α,n || β,α || β,则m与n相交、平行或异面,故C错误;在D中,若α⊥β,α∩β=m,n⊂β,m⊥n,则由面面垂直的性质定理得n⊥α,故D正确.故选:D.【点评】:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力与运算求解能力,属于中档题.10.(单选题,3分)设锐角ABC的三内角A,B,C所对边的边分别为a,b,c,且a=2,B=2A,则b的取值范围为()A. (2√2,2√3)B. (2√2,4)C. (2,2√3)D.(0,4)【正确答案】:A【解析】:根据锐角三角形的性质,先求出A的范围,结合正弦定理进行转化求解即可.【解答】:解:在锐角三角形中,0<2A<π2,即0<A<π4,且B+A=3A,则π2<3A<π,即π6<A<π3,综上π6<A<π4,则√22<cosA<√32,∵a=2,B=2A,∴由正弦定理得asinA =bsinB=b2sinAcosA,得b=4cosA,∵ √22<cosA<√32,∴2 √2<4cosA<2 √3,即2 √2<b<2 √3,则b的取值范围是(2 √2,2 √3),故选:A.【点评】:本题主要考查三角函数的图象和性质,结合锐角三角形的性质以及正弦定理进行转化是解决本题的关键.11.(单选题,3分)在棱长为4的正方体ABCD-A1B1C1D1中,M是BC中点,点P是正方形DCC1D1内的动点(含边界),且满足∠APD=∠MPC,则三棱锥P-BCD的体积最大值是()A. 649B. 4√3C. 163√3D. 329√3【正确答案】:D【解析】:由题意画出图形,可得PD=2PC,研究点P在面ABCD内的轨迹(立体几何平面化),可知当P到底面距离为4√33时三棱锥P-BCD的体积最大,则答案可求.【解答】:解:∵AD⊥底面D1DCC1,∴AD⊥DP,同理BC⊥平面D1DCC1,则BC⊥CP,∠APD=∠MPC,∴△PAD∽△PMC,∵AD=2MC,∴PD=2PC,下面研究点P在面ABCD内的轨迹(立体几何平面化),在平面直角坐标系内设D(0,0),C(4,0),C1(4,4),设P(x,y),∵PD=2PC,∴ √x2+y2 = 2√(x−4)2+y2,化简得:3x2+3y2-32x+64=0(0≤x≤4).该圆与CC1交点的纵坐标最大,交点坐标为(4,4√33),三棱锥P-BCD的底面BCD的面积为8,则三棱锥P-BCD的体积最大值是13×8×4√33=32√39.故选:D.【点评】:本题考查棱锥体积的求法,考查函数与方程思想的应用,考查计算能力,是中档题.12.(单选题,3分)点M是棱长为6的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1上一点,2NB1=NC1,DM⊥BN,则动点M运动路线的长度为()A. 3√15π5B. 6√15π5C. 3√10π5D. 3√3π5【正确答案】:B【解析】:由题意画出图形,在BB1上取点P,使2BP=PB1,连接CP、DP,由线面垂直的判定和性质可得M点的轨迹为平面DCP与球O的截面圆周,利用空间向量求解球心的平面的距离,然后求解圆的半径得答案.【解答】:解:如图:棱长为6的正方体ABCD-A1B1C1D1,在BB1上取点P,使2BP=PB1,连接CP、DP,BN,∵NC1=2NB1,∴CP⊥BN,又DC⊥平面BCC 1B 1,∴DC⊥BN ,则BN⊥平面DCP ,则M 点的轨迹为平面DCP 与球O 的截面圆周.建立如图所示的坐标系,则D (0,0,0),C (0,6,0),P (6,6,2),O (3,3,3), 设平面DOP 的法向量为 n ⃗ =(x ,y ,z ),由 {n ⃗ •DC ⃗⃗⃗⃗⃗ =0n ⃗ •CP ⃗⃗⃗⃗⃗ =0,即 {6y =06x +2z =0 ,令x=1.y=0,z=-3,所以 n ⃗ =(1,0,-3), O 到平面DOP 的距离为: |DO ⃗⃗⃗⃗⃗⃗ •n ⃗ ||n ⃗ | = |3+0−9|√1+9 = 6√10, 所以截面圆的半径为: √32−(6√10)2 = 3√155 . 所以动点M 运动路线的长度为: 2×3√155×π = 6√155π . 故选:B .【点评】:本题考查考查空间想象能力和思维能力,训练了点到平面的距离的求法,正确找出M 点的轨迹是关键,属于难题.13.(填空题,3分)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为___ .【正确答案】:[1]3:1:2 【解析】:由已知中一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,则我们易根据圆柱、圆锥及球的体积公式,求出圆柱、圆锥及球的体积,进而得到答案.【解答】:解:设球的半径为R ,则圆柱和圆锥的高均为2R ,则V 圆柱=2π•R 3,V圆锥= 2π•R3,3π•R3,V球= 43故圆柱、圆锥、球的体积之比为:3:1:2故答案为:3:1:2【点评】:本题考查的知识点是圆柱、圆锥及球的体积公式,其中根据已知,设出球的半径,进而求出圆柱、圆锥及球的体积中解答本题的关键.14.(填空题,3分)线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始___ h后,两车的距离最小.【正确答案】:[1] 7043【解析】:设t小时后,汽车由A行驶到D,摩托车由B行驶到E,进而根据时间和速度表示出AD和BE,求得BD=200-80t,题就就抓化为求DE最小时t的值.利用余弦定理建立方程,根据二次函数的性质求得函数取最小值时t的值.【解答】:解:如图所示:设th后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.因为AB=200,所以BD=200-80t,问题就是求DE最小时t的值.由余弦定理:DE2=BD2+BE2-2BD•BEcos60°=(200-80t)2+2500t2-(200-80t)•50t=12900t2-42000t+40000.时DE最小.当t= 7043故答案为:7043【点评】:本题主要考查了解三角形的实际应用.应熟练掌握如正弦定理,余弦定理及其变形公式.15.(填空题,3分)在等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为√62,则二面角C-BM-A的大小为___ .【正确答案】:[1]120°【解析】:推导出MC=AM= √22,且CM⊥BM,AM⊥BM,从而∠CMA是二面角C-BM-A的大小,利用余弦定理能求出二面角C-BM-A的大小.【解答】:解:∵在等腰直角△ABC中,AB=BC=1,∴AC= √12+12 = √2,∵M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为√62,∴MC=AM= √22,且CM⊥BM,AM⊥BM,∴∠CMA是二面角C-BM-A的大小,∴cos∠CMA= AM2+CM2−AC22×AM×CM =12+12−322×√22×√22=- 12,∴∠CMA=120°,∴二面角C-BM-A的大小为120°.故答案为:120°.【点评】:本题考查二面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力与运算求解能力,属于中档题.16.(填空题,3分)在锐角△ABC中,若sinA=4sinBsinC,则tanAtanBtanC的最小值是___ .【正确答案】:[1]16【解析】:结合三角形关系和式子sinA=4sinBsinC可推出sinBcosC+cosBsinC=4sinBsinC,进而得到tanB+tanC=4tanBtanC,结合函数的单调性可求得最小值.【解答】:解:由sinA=sin(π-A)=sin(B+C)=sinBcosC+cosBsinC,sinA=4sinBsinC,可得sinBcosC+cosBsinC=4sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在① 式两侧同时除以cosBcosC,可得:tanB+tanC=4tanBtanC,又tanA=-tan(π-A)=-tan(B+C)=- tanB+tanC1−tanBtanC,② ,则tanAtanBtanC=- tanB+tanC1−tanBtanC•tanBtanC,由tanB+tanC=4tanBtanC,可得tanAtanBtanC=- 4(tanBtanC)21−tanBtanC,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由② 式得1-tanBtanC<0,解得t>1,tanAtanBtanC=- 4t21−t =- 41t2−1t,1t2- 1t=(1t- 12)2- 14,由t>1得,- 14≤ 1t2- 1t<0,因此tanAtanBtanC的最小值为16.故答案为:16.【点评】:本题考查了三角恒等式的变化技巧和函数单调性知识,考查了转化思想,有一定灵活性,属于中档题.17.(问答题,8分)在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.(1)当a=2,m=54时,求b、c的值;(2)若角A为锐角,求m的取值范围.【正确答案】:【解析】:(1)sinB+sinC=msinA(m∈R),利用正弦定理可得:b+c=ma,且a2-4bc=0.a=2,m=54时,代入解出即可得出.(2)利用余弦定理、不等式的解法即可得出.【解答】:解:(1)由题意得b+c=ma,a2-4bc=0.当a=2,m=54时,b+c=52,bc=1.解得 {b =2c =12或{b =12c =2. (2) cosA =b 2+c 2−a 22bc =(b+c )2−2bc−a 22bc =m 2a 2−a 22−a 2a 22=2m 2−3∈(0,1) . ∴ 32<m 2<2 ,又由b+c=ma 可得m >0,所以√62<m <√2 . 【点评】:本题考查了正弦定理余弦定理、不等式的解法,考查了推理能力与计算能力,属于中档题.18.(问答题,8分)如图,在四棱锥P-ABCD 中,四边形ABCD 是菱形,PA=PC ,E 为PB 的中点.(1)求证:PD || 面AEC ;(2)求证:平面AEC⊥平面PDB .【正确答案】:【解析】:(1)设AC∩BD=O ,连接EO ,证明PD || EO ,利用直线与平面平行的判定定理证明PD || 面AEC .(2)连接PO ,证明AC⊥PO ,AC⊥BD ,通过PO∩BD=O ,证明AC⊥面PBD ,然后证明面AEC⊥面PBD【解答】:解:(1)证明:设AC∩BD=O ,连接EO ,因为O ,E 分别是BD ,PB 的中点,所以PD || EO…(4分)而PD⊄面AEC ,EO⊂面AEC ,所以PD || 面AEC…(7分)(2)连接PO,因为PA=PC,所以AC⊥PO,又四边形ABCD是菱形,所以AC⊥BD…(10分)而PO⊂面PBD,BD⊂面PBD,PO∩BD=O,所以AC⊥面P BD…(13分)又AC⊂面AEC,所以面AEC⊥面PBD…(14分)【点评】:本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力.19.(问答题,8分)如图,某市市区有一条过市中心O的南北走向道路,市政府决定修建两条道路:一条路是从市中心O出发沿北偏西60°向至点B处,另一条是从市中心O的正南方向的道路上选取点A,在A、B之间修建一条道路.,求在点B处看市中心O和点A (1)如果在点A处看市中心O和点B视角α的正弦值为35处视角β的余弦值;km2,点A到市中心O的距离为(2)如果△AOB区域作为保护区,保护区的面积为15√343km,求此时A、B间的距离.【正确答案】:【解析】:(1)由题意,利用两角差的余弦公式求出cosβ的值;(2)由△AOB的面积值求出OB,再利用余弦定理求得AB的值.【解答】:解:(1)由题可得∠AOB=120°,∠BAO为锐角,且sin∠BAO=sinα= 35,所以cosα= 45,所以cosβ=cosB=cos(60°-α)=cos60°cosα+sin60°sinα= 12 × 45+ √32× 35= 4+3√310;(2)由OA=3,计算△AOB的面积为:S= 12OA×OB×sin∠AOB= 12×3OB×sin120°= 3√34OB= 15√34,解得OB=5;由余弦定理可得AB2=OA2+OB2-2OA•OBcos∠AOB=9+25-2×3×5×(- 12)=49,所以AB=7,即A、B间的距离为7km.【点评】:本题考查了三角函数求值运算问题,也考查了解三角形的应用问题,是基础题.20.(问答题,8分)如图1所示,在直角△ABC中,AC=6,BC=3,∠ABC=90°,∠ACB的平分线CD交AB于点D,点E在线段AC上,且CE=4.将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点,如图2所示.(1)求证:DE⊥平面BCD;(2)若EF || 平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥G-BDE的体积.【正确答案】:【解析】:(1)取AC的中点P,连接DP,证明DP⊥AC,∠EDC=90°,ED⊥DC;利用平面与平面垂直的性质证明DE⊥平面BCD;(2)说明G为EC的中点,求出B到DC的距离h,说明到DC的距离h就是三棱锥B-DEG 的高,求出三角形DEG的面积,再由等体积法即可求得三棱锥G-BDE的体积.【解答】:(1)证明:取AC的中点P,连接DP,∵在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,∴∠A=30°,△ADC是等腰三角形,得DP⊥AC,DP= √3,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4,∴AE=2,EP=1,得∠EDP=30°,∴∠EDC=90°,即ED⊥DC;∵平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,∴DE⊥平面BCD;(2)解:EF || 平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,在Rt△ABC中,∵AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,∴BD= √3,DC= √32+(√3)2=2√3,∴B到DC的距离h= BD×BCDC = √3×32√3=32,∵平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,∴B到DC的距离h就是三棱锥B-DEG的高.∵ S△DEG=12×2×√3=√3,∴ V G−BDE=V B−DEG=13S△DEG×ℎ = 13×√3×32=√32.即三棱锥G-BDE的体积为√32.【点评】:本题考查直线与平面垂直的判定、直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.21.(问答题,10分)在△ABC中,内角A,B,C所对的边分别为a,b,c,cosB= 45.(1)若c=2a,求sinBsinC的值;(2)若C-B= π4,求sinA的值.【正确答案】:【解析】:(1)由已知及余弦定理可得a 2+c2−b22ac= 45,结合c=2a,可求bc= 3√510,进而利用正弦定理即可得解.(2)利用二倍角的余弦公式可求cos2B的值,进而可求sinB,sin2B的值,由于A= 3π4-2B,利用两角差的正弦函数公式即可计算得解.【解答】:(本小题满分14分)解:(1)在△ABC中,因为cosB= 45,所以a 2+c2−b22ac= 45.因为c=2a,所以(c2)2+c2−b22c×c2= 45,即b2c2= 920,所以bc = 3√510,由正弦定理得sinBsinC =bc,所以:sinBsinC =3√510.(2)因为cosB= 45,所以cos2B=2cos2B-1= 725.又0<B<π,所以sinB= √1−cos2B = 35,所以sin2B=2sinBcosB=2× 35×45= 2425.因为C-B= π4,即C=B+ π4,所以A=π-(B+C)= 3π4-2B,所以sinA=sin(3π4 -2B)=sin 3π4cos2B-cos 3π4sin2B= √22×725-(- √22)× 2425= 31√250.【点评】:本题主要考查了余弦定理,正弦定理,二倍角的余弦公式,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.22.(问答题,10分)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R 表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.【正确答案】:【解析】:(1)由正弦定理知ABsinC = bsinB= asinA=2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.【解答】:解:(1)在△ABC中,BC=2,∠ABC=45°,由ABsinC = bsinB= asinA=2R=4⇒b=2 √2,sinA= 12∵A为锐角∴A=30°,又B=45°∴C=105°,∴AB=2Rsin105°=4sin75°= √6+√2;(2)∠C为钝角,∴cosC<0,且cosC≠1,cosC= a2+b2−c22ab<0,∴a2+b2<c2<(2R)2,即a 2+b 2<4R 2.(3)a >2R 或a=b=2R 时,△ABC 不存在, 当 {a =2R b <a 时,A=90°,△ABC 存在且只有一个,∴c= √a 2−b 2 ,当 {a <2R b =a时,∠A=∠B 且都是锐角即sinA=sinB= a2R 时,△ABC 存在且只有一个,∴c=2RsinC=2Rsin2A=2R×2sinAcosA= a R√4R 2−a 2 , 当 {a <2Rb <a时,∠B 总是锐角,∠A 可以是钝角,可是锐角,∴△ABC 存在两个, ∠A <90°时,c= √a 2+b 2+ab2R 2(√4R 2−a 2√4R 2−b 2−ab) , ∠A >90°时, c= √a 2+b 2+ab2R 2(√4R 2−a 2√4R 2−b 2−ab) ,【点评】:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a ,b 两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.。
2018~2019学年度高一年级6月考试数学
2018~2019学年度高一年级6月考试数学2019.6考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
2. 考生作答时,请将答案答在答题卡上。
第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米的黑色墨水签字笔在答题卡上各题的答题区域 内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。
3. 本卷命题范围:必修4第三章,必修5第一、二章。
第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
1. 已知数列{}n a 的通项公式1(1)1n n a +=-+,则23a a +=A. 1-B. 0C. 1D. 22. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a c =,1sin 5C =,则sin A =A. 15B. 25C. 35D. 453. cos27cos57sin27cos147︒︒-︒︒等于A.B. C.12D. 12-4. 设数列{}n a 满足12(2)n n a a n -=≥,且112a =,则16a = A. 142B. 152C. 162D. 1725. 在等差数列{}n a 中,若2346a a a ++=,6=4a ,则9a =A. 3B. 4C. 5D. 66. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a =,60B =︒,ABCS =则c =A. 2B. 4C. D.7. 已知3tan 4α=-,则tan()4πα-等于A. 17-B. 7-C.17D. 7 8. 已知△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若sin sin sin a b Ca c A B-=-+,则B = A. 6π B. 4π C. 3πD. 23π9. 已知数列{}n a 满足12a =,1*12(2,)n n n a a n n N --=≥∈,则数列{}n a 的前8项和为A. 29B. 37C. 45D. 6110. 已知(0,)2παβ+∈,且9cos()10αβ-=,3sin()5αβ+=,则cos cos αβ等于A. 1720B. 310C. 1120D. 132011. 已知△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若cos cos sin A B Ca b c==,则 △ABC 是A. 等腰直角三角形B. 钝角三角形C. 等边三角形D. 有一个内角是30°的直角三角形12. 设n S 为等差数列{}n a 的前n 项和,其中11a =,且*1()n n n S a a n N λ+=∈,记2nnn a a b =, 数列{}n b 的前n 项和为n T ,若对任意的*n N ∈,都有n T m <成立,则m 的取值范围为 A. [1,)+∞ B. [2,)+∞ C. 1[,)2+∞ D. [0,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2018-2019学年高一数学第二学期期末试卷及答案(一)
2018-2019学年高一数学第二学期期末试卷及答案(一)2018-2019学年高一数学第二学期期末试卷及答案(一)一.选择题1.两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A. 4B.C.D.2.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A. 1B.C.D.3.下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4.在空间中,给出下面四个命题,则其中正确命题的个数为()①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的无数条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条平行线.A. 0B. 1C. 2D. 35.已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A. 0或1B. 1或C. 0或D.6.如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为的点,则实数a的取值范围是()A. (﹣3,﹣1)∪(1,3)B. (﹣3,3)C. [﹣1,1]D. [﹣3,﹣1]∪[1,3]7.若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为()A. 4B. 16C. 4或16D. 2或48.已知二面角α﹣l﹣β为60°,AB?α,AB⊥l,A为垂足,CD?β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()9.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O 于C点,那么图中与∠DCF相等的角的个数是()A. 4B. 5C. 6D. 710.点P是双曲线﹣=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N的坐标为(5,0),则|PM|﹣|PN|的最大值为()A. 5B. 6C. 7D. 811.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是()A. m⊥l,n⊥l,则m∥nB. α⊥γ,β⊥γ,则α⊥βC. m∥α,n∥α,则m∥nD. α∥γ,β∥γ,则α∥β12.曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()二.填空题13.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为________.14.若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是________.15.若点P在圆上,点Q在圆上,则|PQ|的最小值是________.16.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为________.三.解答题17.已知△ABC三边所在直线方程:l AB:3x﹣2y+6=0,l AC:2x+3y﹣22=0,l BC:3x+4y﹣m=0(m ∈R,m≠30).(1)判断△ABC的形状;(2)当BC边上的高为1时,求m的值.18.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D 为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.答案解析部分一.选择题1.【答案】D【考点】两条平行直线间的距离【解析】【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d= = = .故答案为:D【分析】根据两条直线平行的一般式的系数关系可求出m=2,进而得到两条直线的方程,再利用两条平行线间的距离公式可得结果。
XXX2018-2019学年高一上学期入学数学试卷-含详细解析
XXX2018-2019学年高一上学期入学数学试卷-含详细解析XXX2018-201年高一上学期入学数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下面几组对象可以构成集合的是()A。
视力较差的同学B。
2013年的中国富豪C。
充分接近2的实数的全体D。
大于-2小于2的所有非负奇数2.一元二次方程2x^2-6x-3=0的两根为x1,x2,则(1+x1)(1+x2)的值为()A。
3B。
6C。
-3D。
13.在“等边三角形”、平行四边形、圆、正五角星、抛物线“这五个图形中,是中心对称图形但不是轴对称图形的个数是()A。
0B。
1C。
2D。
34.分式方程(x-1)/(x+1)=2的解是()A。
2B。
1C。
-1D。
-25.下面四个几何体中,左视图是四边形的几何体共有()个.A。
0B。
1C。
2D。
36.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为()A。
3/5B。
4/5C。
1/2D。
2/57.不透明的盒子里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,一位学生随机摸出两个球,两个球的数字之和是偶数的概率是()A。
2/5B。
1/2C。
3/5D。
4/58.若a≠0,b≠0,则代数式(2a/b)+(3b/a)的取值共有()A。
2个B。
3个C。
4个D。
5个9.如图,点E在正方形ABCD边CD上,四边形DEFG也是正方形,已知AB=a,DE=b(a,b为常数,且a>b>0),则△ACF的面积()A。
只与a的大小有关B。
只与b的大小有关C。
只与CE的大小有关D。
无法确定10.若关于x的方程x^2-2mx+m+6=0的两实根为x1,x2,y=(x1-1)^2+(x2-1)^2的取值范围是()A。
y≥0B。
y≥8C。
y≥18D。
y>-2二、填空题(共10小题,每小题4分,满分40分)11.已知函数y=√(4-x^2),自变量x的取值范围是[-2,2]。
江苏省2018-2019年高一入学考试数学试卷
高一入学考试数学试题一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -1是1的()A. 倒数B. 相反数C. 绝对值D. 立方根【答案】B故选B.2. 下列各式的运算正确的是()A. B. C. D.【答案】D【解析】A.,故原题计算错误;B. 和a不是同类项,不能合并,故原题计算错误;C.=,故原题计算错误;D. ,故原题计算正确;故选:D.3. 已知,一块含角的直角三角板如图所示放置,,则()A. B. C. D.【答案】D【解析】如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=,∵∠APB=,∴∠APQ=,∴∠3=−∠APQ=,∴∠1=,故选:D.4. 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达6.8亿元,将6.8亿用科学记数法表示为()A. B. C. D.【答案】C【解析】6.8亿= 元。
故选C.5. 积极行动起来,共建节约型社会!某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是()A. 240吨B. 360吨C. 180吨D. 200吨【答案】A【解析】根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选A6. 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A. 5个B. 6个C. 7个D. 8个【答案】A【解析】由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体。
2018-2019学年高一数学下学期期末考试试题(含解析)_7
2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个备选项中,只有一项是符合题目要求的.)1.的值等于()A. B. C. D.【答案】C【解析】分析:由题意结合诱导公式和特殊角的三角函数值整理计算即可求得最终结果.详解:由题意结合诱导公式可得:.本题选择C选项.点睛:本题主要考查三角函数的诱导公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.2.设向量,且,则实数的值为()A. B. C. D.【答案】D【解析】【分析】根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选:D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.3.一个人打靶时连续射击两次,则事件“至多有一次中靶”的互斥事件是()A. 至少有一次中靶B. 只有一次中靶C. 两次都中靶D. 两次都不中靶【答案】C【解析】分析:利用对立事件、互斥事件的定义直接求解.详解:一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:C.点睛:本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.4.已知则的值为()A. B. C. D.【答案】B【解析】【分析】直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选:B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.5.若直线与圆有公共点,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析】根据直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,可得圆心到直线x﹣y+1=0的距离不大于半径,从而可得不等式,即可求得实数a取值范围.【详解】∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选:C.【点睛】本题考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离不大于半径,建立不等关系,属于基础题.6.已知函数的部分图象如图所示,则的解析式是A.B.C.D.【答案】A【解析】【分析】观察图象的长度是四分之一个周期,由此推出函数的周期,又由其过点然后求出,即可求出函数解析式.【详解】由图象可知:的长度是四分之一个周期函数的周期为2,所以函数图象过所以,并且,的解析式是故选:A.【点睛】本题考查由的部分图象确定其解析式,读懂图象是解题关键,并结合图象求出三角函数的解析式,本题是基础题.7.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A. 640B. 520C. 280D. 240【答案】B【解析】【分析】由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.65.∴获得复赛资格的人数为:065×800=520.故选:B.【点睛】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.8.若,,与的夹角为,则的值是()A. B. C. D.【答案】C【解析】【分析】由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.9.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B. 1 C. 2 D.【答案】A【解析】【分析】根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.【答案】D【解析】【分析】设OA=2,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=2,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣2,黑色月牙部分的面积为π﹣(π﹣2)=2,图Ⅲ部分的面积为π﹣2.设整个图形的面积为S,则p1,p2,p3.∴p1=p2>p3,故选:D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.二、选择题(本大题共3小题,每小题4分,共12分.在每小题给出的四个备选项中,有多项符合题目要求,全对得4分,有错选的得0分,部分选对的得2分)11.将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g(x)的图象,则下列说法不正确的是()A. 函数g(x)的图象关于点对称B. 函数g(x)的周期是C. 函数g(x)在上单调递增D. 函数g(x)在上最大值是1【答案】ABD【解析】【分析】利用函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的性质,判断各个选项是否正确,从而得出结论.【详解】将函数f(x)=2sin(x)﹣1的图象上各点横坐标缩短到原来的(纵坐标不变),得到函数g(x)=2sin(2x)﹣1的图象,由于当x时,f(x)=﹣1,故函数g(x)的图象关于点(,1)对称,故A错误;函数g(x)的周期为π,故B错误;在(0,)上,2x∈(,),g(x)单调递增,故C正确;在(0,)上,2x∈(,),g(x)的最大值趋向于1,故D错误,故选:ABD.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的性质,属于中档题.12.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:498%则下列判断中正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】【分析】根据题意,分析表中数据,即可得出正确的选项.【详解】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确.故选:ACD.【点睛】本题考查了数据分析与统计知识的应用问题,考查了读表与分析能力,是基础题.13.已知向量,是平面α内的一组基向量,O为α内的定点,对于α内任意一点P,当=x+y时,则称有序实数对(x,y)为点P的广义坐标.若点A、B的广义坐标分别为(x1,y1)(x2,y2),关于下列命题正确的是:()A. 线段A、B的中点的广义坐标为();B. A、B两点间的距离为;C. 向量平行于向量的充要条件是x1y2=x2y1;D. 向量垂直于的充要条件是x1y2+x2y1=0【答案】AC【解析】【分析】运用向量的坐标,共线向量,向量垂直的充要条件,两点间的距离公式可得.【详解】根据题意得,由中点坐标公式知A正确;只有平面直角坐标系中两点间的距离公式B才正确,未必是平面直角坐标系因此B错误;由向量平行的充要条件得C正确;与垂直的充要条件为x1x2+y1y2=0,因此D不正确;故选:AC.【点睛】本题考查向量的坐标运算,共线向量的知识,向量垂直和平行的充要条件.三、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡相应横线上)14.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n = .【答案】13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______【答案】5.5【解析】【分析】先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=5.5.故答案为:5.5.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.16.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________【答案】8【解析】【分析】先将所求化为M到AB中点的距离的最小值问题,再求得AB 中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为:8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.17.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______【答案】【解析】【分析】首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MC MNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.四、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤)18.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.【答案】(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19.已知函数,(1)求的值;(2)求的单调递增区间.【答案】(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,(1)将代入,利用特殊角的三角函数可得的值;(2)利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:(Ⅰ)===(Ⅱ)由题可得,函数的单调递增区间是点睛:本题主要考查三角函数的单调性、三角函数的恒等变换,属于中档题.函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间.20.某校团委会组织某班以小组为单位利用周末时间进行一次社会实践活动,每个小组有5名同学,在活动结束后,学校团委会对该班的所有同学进行了测试,该班的A,B两个小组所有同学得分(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组同学的平均分高一分.(1)若在B组学生中随机挑选1人,求其得分超过86分的概率;(2)现从A、B两组学生中分别随机抽取1名同学,设其分数分别为m、n,求的概率.【答案】(1)(2)【解析】【分析】(1)求出A组学生的平均分可得B组学生的平均分,设被污损的分数为X,列方程得X,从而得到B组学生的分数,其中有3人分数超过86分,由此能求出B组学生中随机挑选1人,其得分超过86分概率.(2)利用列举法写出在A、B两组学生中随机抽取1名同学,其分数组成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【详解】(1)A组学生的平均分为,所以B组学生的平均分为86分设被污损的分数为,则,解得所以B组学生的分数为91、93、83、88、75,其中有3人分数超过86分在B组学生中随机挑选1人,其得分超过86分概率为.(2)A组学生的分数分别是94、80、86、88、77,B组学生的分数为91、93、83、88、75,在A、B两组学生中随机抽取1名同学,其分数组成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(8691),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25个随机各抽取1名同学的分数满足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10个∴的概率为.【点睛】本题考查概率的求法,考查古典概型、列举法、茎叶图等基础知识,考查了推理能力与计算能力,是基础题.21.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)①建立月总成本y与月产量x之间的回归方程;②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:=14.45,=27.31,=0.850,=1.042,=1.222.②参考公式:相关系数:r=.回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=-【答案】(1)见解析;(2)①;②3.385万元.【解析】【分析】(1)由已知条件利用公式,求得的值,再与比较大小即可得结果;(2)根据所给的数据,做出变量的平均数,根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程;将代入所求线性回归方程求出对应的的值即可.【详解】(1)由已知条件得:,这说明与正相关,且相关性很强.(2)①由已知求得,所以所求回归直线方程为.②当时,(万元),此时产品的总成本为3.385万元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.22.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴的正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.【答案】(1)2;(2)见解析.【解析】试题分析:(1)由已知利用周期公式可求最小正周期,由题意可求Q坐标为(4,0).P坐标为(2,),结合△OPQ为等腰直角三角形,即可得解;(2)由(Ⅰ)知,,,可求点P′,Q′的坐标,由点在曲线,(x>0)上,利用倍角公式,诱导公式可求,又结合,,可求的值,由于,即可证明点Q′不落在曲线()上.试题解析:(1)因为函数()的最小正周期,所以函数的半周期为,所以,即有坐标为,又因为为函数图象的最高点,所以点的坐标为.又因为为等腰直角三角形,所以.(2)点不落在曲线()上,理由如下:由(1)知,,所以点,的坐标分别为,.因为点在曲线()上,所以,即,又,所以.又.所以点不落曲线()上.23.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.【答案】(1)存在,(2)证明见解析,圆方程恒过定点或【解析】【分析】(1)将曲线Γ方程中的y=0,得x2﹣mx+2m=0.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=0,得x2﹣mx+2m=0.设A(x1,0),B(x2,0),则可得△=m2﹣8m>0,x1+x2=m,x1x2=2m.令x=0,得y=2m,即C(0,2m).(1)若存在以AB为直径的圆过点C,则,得,即2m+4m2=0,所以m=0或.由△>0,得m<0或m>8,所以,此时C(0,﹣1),AB的中点M(,0)即圆心,半径r=|CM|故所求圆的方程为.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2满足代入P得展开得(﹣x﹣2y+2)m+x2+y2﹣y=0当,即时方程恒成立,∴圆P方程恒过定点(0,1)或.【点睛】本题考查圆的方程的应用,圆系方程恒过定点的求法,考查转化思想以及计算能力.2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个备选项中,只有一项是符合题目要求的.)1.的值等于()A. B. C. D.【答案】C【解析】分析:由题意结合诱导公式和特殊角的三角函数值整理计算即可求得最终结果.详解:由题意结合诱导公式可得:.本题选择C选项.点睛:本题主要考查三角函数的诱导公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.2.设向量,且,则实数的值为()A. B. C. D.【答案】D【解析】【分析】根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选:D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.3.一个人打靶时连续射击两次,则事件“至多有一次中靶”的互斥事件是()A. 至少有一次中靶B. 只有一次中靶C. 两次都中靶D. 两次都不中靶【答案】C【解析】分析:利用对立事件、互斥事件的定义直接求解.详解:一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:C.点睛:本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.4.已知则的值为()A. B. C. D.【答案】B【解析】【分析】直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选:B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.5.若直线与圆有公共点,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析】根据直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,可得圆心到直线x﹣y+1=0的距离不大于半径,从而可得不等式,即可求得实数a取值范围.【详解】∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选:C.【点睛】本题考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离不大于半径,建立不等关系,属于基础题.6.已知函数的部分图象如图所示,则的解析式是A.B.C.D.【答案】A【解析】【分析】观察图象的长度是四分之一个周期,由此推出函数的周期,又由其过点然后求出,即可求出函数解析式.【详解】由图象可知:的长度是四分之一个周期函数的周期为2,所以函数图象过所以,并且,的解析式是故选:A.【点睛】本题考查由的部分图象确定其解析式,读懂图象是解题关键,并结合图象求出三角函数的解析式,本题是基础题.7.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()A. 640B. 520C. 280D. 240【答案】B【解析】【分析】由频率分布直方图得到初赛成绩大于90分的频率,由此能求出获得复赛资格的人数.【详解】初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,由频率分布直方图得到初赛成绩大于90分的频率为:1﹣(0.0025+0.0075+0.0075)×20=0.65.∴获得复赛资格的人数为:065×800=520.故选:B.【点睛】本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,是基础题.8.若,,与的夹角为,则的值是()A. B. C. D.【答案】C【解析】【分析】由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.9.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B. 1 C. 2 D.【答案】A【解析】【分析】根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.10.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.【答案】D【解析】设OA=2,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=2,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣2,黑色月牙部分的面积为π﹣(π﹣2)=2,图Ⅲ部分的面积为π﹣2.设整个图形的面积为S,则p1,p2,p3.∴p1=p2>p3,故选:D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.二、选择题(本大题共3小题,每小题4分,共12分.在每小题给出的四个备选项中,有多项符合题目要求,全对得4分,有错选的得0分,部分选对的得2分)11.将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g (x)的图象,则下列说法不正确的是()A. 函数g(x)的图象关于点对称B. 函数g(x)的周期是C. 函数g(x)在上单调递增【答案】ABD【解析】【分析】利用函数y=Asin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的性质,判断各个选项是否正确,从而得出结论.【详解】将函数f(x)=2sin(x)﹣1的图象上各点横坐标缩短到原来的(纵坐标不变),得到函数g(x)=2sin(2x)﹣1的图象,由于当x时,f(x)=﹣1,故函数g(x)的图象关于点(,1)对称,故A错误;函数g(x)的周期为π,故B错误;在(0,)上,2x∈(,),g(x)单调递增,故C正确;在(0,)上,2x∈(,),g(x)的最大值趋向于1,故D错误,故选:ABD.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的性质,属于中档题.12.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:498%则下列判断中正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】ACD【解析】【分析】根据题意,分析表中数据,即可得出正确的选项.【详解】根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D 正确.故选:ACD.【点睛】本题考查了数据分析与统计知识的应用问题,考查了读表与分析能力,是基础题.13.已知向量,是平面α内的一组基向量,O为α内的定点,对于α内任意一点P,当=x+y时,则称有序实数对(x,y)为点P的广义坐标.若点A、B的广义坐标分别为(x1,y1)(x2,y2),关于下列命题正确的是:()A. 线段A、B的中点的广义坐标为();B. A、B两点间的距离为;C. 向量平行于向量的充要条件是x1y2=x2y1;D. 向量垂直于的充要条件是x1y2+x2y1=0【答案】AC【解析】【分析】运用向量的坐标,共线向量,向量垂直的充要条件,两点间的距离公式可得.【详解】根据题意得,由中点坐标公式知A正确;只有平面直角坐标系中两点间的距离公式B才正确,未必是平面直角坐标系因此B错误;。
河北省唐山市第一中学2018-2019学年高一10月月考数学试题及解析(新)
唐山一中高一年级2018年10月份考试数学试卷卷Ⅰ(选择题共60分)一、选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项正确,选对的得5分,选错或不答的得0分)1.设集合,则下列关系中正确的是( )A. B. C. D.【答案】D【解析】【分析】根据题干条件得到是A的子集.【详解】集合,,根据集合间的包含关系得到.故答案为:D.【点睛】这个题目考查了集合间的包含关系和元素与集合间的从属关系,较为基础.2.如图,是全集,是的子集,则阴影部分所表示的集合是( )A. B.C. D.【答案】C【解析】【分析】观察阴影部分所表示的集合中元素的特点,它具有在集合P和M中,不在集合S中,利用集合元素的含义即可解决.【详解】依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈C I S,所以阴影部分所表示的集合是(M∩P)∩C I S,故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,属于基础题.3.设为两个非空实数集合,定义集合,若,则集合的子集个数是( )A. 2B. 3C. 4D. 8【答案】D【解析】【分析】先确定a,b的取值,再求两者之比,由元素的互异性,比值相等的算一个,可求出答案.【详解】∵a∈P,b∈Q,∴a可以为﹣1,0,1三个数中的一个,b可以为﹣2,2三个数中的一个,根据定义集合P*Q={z|z=,a∈P,b∈Q},∴z=,z=,z=0,有3个元素,则子集个数为8个.故选:D.【点睛】本题考查元素与集合关系,解决本题的关键是读懂题意,求出集合P*Q.若集合有n个元素,其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.4.函数的定义域为()A. B.C. D.【答案】A【解析】试题分析:定义域满足和均有意义,故故选A.考点:1、函数定义域;2、不等式解法;3、集合的交运算.5.函数满足,则常数等于( )A. 3B. -3C. 3或-3D. 5或-3【答案】B【解析】【分析】首先,求出f[f(x)]的表达式,然后,根据多项式相等,当且仅当,对应项的系数相等,从而确定c的值.【详解】因为函数f(x)=,所以,f[f(x)]==∴2(c+3)x2+9x=c2x,∴c+3=0且c2=9,∴c=﹣3,故答案为:B.【点睛】本题重点函数的解析式,待定系数法的应用思想和方法,属于基础题,注意运算的准确性和科学性.也考查到了函数解析式的求法,已知函数解析式求函数值,可分别将自变量的值代入解析式即可求出相应的函数值.当自变量的值为包含字母的代数式时,将代数式作为一个整体代入求解;已知函数解析式,求对应函数值的自变量的值(或解析式中的参数值),只需将函数值代入解析式,建立关于自变量(或参数)的方程即可求解,注意函数定义域对自变量取值的限制.6.函数的图象如图所示,则下列结论成立的是()A. ,,B. ,,C. ,,D. ,,【答案】C【解析】试题分析:函数在处无意义,由图像看在轴右侧,所以,,由即,即函数的零点,故选C.考点:函数的图像视频7.已知,,且对任意都有:①②给出以下三个结论:(1);(2);(3)其中正确结论为【答案】①②③【解析】因为,所以是一个首项为f(m,1),公差为2的等差数列,所以,又因为,是首项为, 公比为2的等比数列,所以,所以和和都正确.正确结论为①②③.8.已知,分别是定义在上的偶函数和奇函数,且,则()A. -3B. -1C. 1D. 3【答案】C【解析】试题分析:,分别是定义在上的偶函数和奇函数,所以,故.考点:函数的奇偶性.9.已知符号函数是上的增函数,,则()A. B. C. D.【答案】B【解析】试题分析:本题是选择题,可以用特殊法,符号函数,是上的增函数,,不妨令,则,,所以A不正确,B正确,,C不正确,D正确;对于D,令,则,所以D不正确;故选B.考点:函数与方程的综合应用【思路点睛】符号函数或者说函数的新定义问题是高考中一类常考题目,此类题目一般难度不是很大,但想做出来也是很复杂的.所以做此类题目一定要弄清楚新定义函数的意思,然后根据函数的意义及性质,逐步进行解题.此题中新定义的函数,是分段函数的形式,且给了我们另一个函数以及与的关系,利用函数的性质代入即可得到所求答案.视频10.已知偶函数在区间单调递增,则满足的的取值范围是()A. B. C. D.【答案】A【解析】试题分析:由题意可得:,,故选A.考点:函数的单调性.11.已知函数的定义域为,当时,;当时,;当时,,则()A. B.C. 0D. 2【答案】D【解析】试题分析:由得,,即函数是以为周期的周期函数,由得,函数为奇函数,故,故答案为.考点:(1)函数的奇偶性和周期性;(2)求函数的值.12.已知函数满足,若函数与图象的交点为,则交点的所有横坐标和纵坐标之和为()A. 0B.C.D.【答案】B【解析】【分析】由条件可得f(x)+f(﹣x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,计算即可得到所求和.【详解】函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),即为f(x)+f(﹣x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,(x2,y2)为交点,即有(﹣x2,2﹣y2)也为交点,…则有=(x1+y1)+(x2+y2)+…+(x m+y m)=[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(x m+y m)+(﹣x m+2﹣y m)] =m.故选:B.【点睛】本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.卷Ⅱ(非选择题共90分)二、填空题(共4小题,每小题5分,共20分)13.若,,用列举法表示.【答案】【解析】本试题主要是考查了集合的描述法的准确运用。
【优质文档】2018–2019学年度湖南省名校高一第一学期期末联考数学试卷(七)含答案
8. 函数 f x ln x ex 的零点所在的区间是 (
)
A. 0, 1 B . 1 ,1
e
e
C . 1, e D . e, +
9. 一个几何体的三视图如图所示,则该几何体的体积为
()
第 2 页 共 18 页
A. 1 B .
C.
D.
10. 若动点 P( x, y ) 在曲 线 y 2x2 1 上移动,则 P 与点 Q (0, -1 ) 连线中点的轨迹方程为
A. x y 1=0
B. x y 1 0
C. x y 3 0
D. x y 3 0
5. 如果直线 ax 2 y 2 0 与直线 3x y 2 0 平行,则 a 的值为 ( )
A. 3
B
.6
C .3
D .2
2
3
6. 如图, 在正方体 ABCD A1B1C1D1 中, E, F , G, H 分别为 AA1 , AB ,BB1 , B1C1 的 中点,则异面直线 EF 与 GH 所成的角大小等于 ( )
2018–2019 学年度湖南省名校高一第一学期期末联考数学试卷(七) 数学
全卷满分 150 分,考试时间 120 分钟。
★祝考试顺利 ★
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。并将准考证号条形码粘 贴在答题卡上的指定位置。
2.选择题作答用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干 净后,再选涂其它答案标号。答在试卷和草稿纸上无效。
A. 45
B . 60
C . 90
D . 120
7. 函数 f ( x) 是 R上的偶函数,且在 [0 ,+∞) 上单调递增,则下列各式成立的是 ( )
2019年全国2卷数学试卷及参考答案
2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .2y = D .y =6.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A .BCD .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2018-2019学年高一数学下学期期末考试测试试题(含解析)
2018-2019学年高一数学下学期期末考试测试试题(含解析)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名、考试科目、班级和考生号等信息填写在答题卡上,并用2B 铅笔将考号在答题卡相关的区域内涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡对应的答案符号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卡答卷交给监考老师。
第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分,四个选项中,只有一项符合要求)1.直线的倾斜角的大小为().A. B. C. D.【答案】B【解析】由直线方程可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.2.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A. ①③B. ①④C. ②③D. ①②【答案】B【解析】试题分析::∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.考点:变量间的相关关系3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 400,40B. 200,10C. 400,80D. 200,20【答案】A【解析】【分析】由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.4.直线与直线平行,则=()A. B. C. -7 D. 5【答案】D【解析】【分析】由两直线平行的条件计算.【详解】由题意,解得.故选D.【点睛】本题考查两直线平行的条件,直线与平行的条件是:在均不为零时,,若中有0,则条件可表示为.5.若圆和圆相切,则等于( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.6.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C. 2 D. 3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!7.中,角所对的边分别为,若,则为( )A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形【答案】B【解析】【分析】由已知结合正弦定理可得sinC<sinBcosA利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0从而有sinAcosB<0结合三角形的性质可求.【详解】∵A是△ABC的一个内角,0<A<π,∴sinA>0.∵<cosA,由正弦定理可得,sinC<sinBcosA∴sin(A+B)<sinBcosA∴sinAcosB+sinBcosA<sinBcosA∴sinAcosB<0 又sinA>0∴cosB<0 即B为钝角故选:B.8.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.【答案】B【解析】【分析】根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选:B.【点睛】本题考查两组数据平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.9.对于平面、、和直线、、、,下列命题中真命题是( )A. 若,则B. 若,则C. 若则D. 若,则【答案】C【解析】试题分析:对于平面、、和直线、,真命题是“若,,,则”.考点:考查直线与直线,直线与平面,平面与平面的位置关系.10.圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】【分析】设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【详解】设球半径为,则由,可得,解得,故选C.【点睛】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.11.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为( )A. B. C. D.【答案】C【解析】【分析】配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【点睛】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.12.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A. 2B. 4C.D.【答案】D【解析】【分析】由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【点睛】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.【答案】0.75【解析】【分析】根据随机模拟的方法,先找到20组数据中至少含有2,3,4,5,6,7,8,9中的3个数字的组数,然后根据古典概型求出概率.【详解】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次击中3次的有:7527,0293,9857,0347,4373,8636,6947,4698,6233,2616,8045 ,3661,9597,7424,4281,共15组随机数,所以所求概率为.【点睛】本题考查随机模拟的应用,考查理解能力和运用能力,解题时读懂题意是解题的关键,然后在此基础上确定基本事件总数和所求概率的事件包含的基本事件的个数,再根据古典概型的概率公式求解.14.若某圆锥的轴截面是面积为的等边三角形,则这个圆锥的侧面积是__________.【答案】【解析】【分析】由轴截面面积求得轴截面边长,从而得圆锥的底面半径和母线长.【详解】设轴截面等边三角形边长为,则,,∴.故答案为.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题基础.15.已知直线与圆相交于A、B两点,则∠AOB大小为________.【答案】60°【解析】【分析】由垂径定理求得相交弦长,然后在等腰三角形中求解.【详解】圆心到直线的距离为,圆心半径为,∴,∴为等边三角形,.【点睛】本题考查直线与圆相交弦长问题.求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有.16.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.【答案】45°【解析】【分析】先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA 与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.【点睛】本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.三、解答题:17.已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.【答案】(1)x+2y-4=0.(2)2x-3y+6=0.(3)y=2x+2.【解析】试题分析:(1)直线方程的两点式求出所在直线的方程;(2)先求BC的中点D坐标为(0,2),由直线方程的截距式求出AD所在直线方程;(3)求出直线)BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由截距式求出DE的方程。
安徽省示范高中2018_2019学年高一数学下学期联考试题(含解析)
安徽省示范高中2018-2019学年高一数学下学期联考试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】由一元一次不等式的解法求得集合B,由交集运算求出,得到结果。
【详解】由题意得,,又,所以,故选C【点睛】本题考查集合的交集运算,属基础题2.在中,内角的对边分别为,若,则()A. B. C. D.【答案】B【解析】【分析】根据正弦定理,可得,带入数据可求解。
【详解】由正弦定理,变形可得,故选B【点睛】本题考查正弦定理的应用,属基础题。
3.在数列中,,,且,则()A. 22B. -22C. 16D. -16【答案】C【解析】【分析】由数列的递推关系,带入,,即可求出,再将带入,即可求出。
【详解】令,则,又,,所以;再令,则,所以,故选C【点睛】本题考查数列的递推公式,对赋值,求解数列中的项,属于简单题。
4.的内角的对边分别为,若,,,则()A. B. C. D.【答案】D【解析】【分析】根据正弦定理,带入数据,即可求解。
【详解】由正弦定理,变形可得,故选D【点睛】本题考查正弦定理的应用,属基础题。
5.在正项等比数列中,若依次成等差数列,则的公比为()A. 2B.C. 3D.【答案】A【解析】【分析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值。
【详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题。
6.的内角的对边分别为,根据下列条件解三角形,其中有两解的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】逐一分析每个选项,结合正弦定理及大边对大角原则,进行判断。
【详解】选项A,由正弦定理,所以,又,所以,只有一解。
语中学18—19学年高一招生考试数学试题(附答案)
双语中学2018届高中一年级第一次招生考试数 学 试 题一、选择题(每小题4分,共48分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列命题正确的是( )A .相等的圆周角所对的弧相等B .等弧所对的弦相等C .三点确定一个圆D .平分弦的直径垂直于弦3.如图,D 是△ABC 的边AB 上的一点,那么下列四个条件不能单独判定△ABC ∽△ACD 的是( )A .∠B=∠ACDB .∠ADC=∠ACBC .D .AC 2=AD•AB4.下列一元二次方程中有两个相等实数根的是 ( )A .2x 2-6x +1=0B .3x 2-x -5=0C .x 2+x =0D .x 2-4x +4=0 5、如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是 ( )A .14; B .38; C .28; D .18; 6、如图,直线AB 、AD 分别与⊙O 相切于点B 、D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .100°C .105°D .110°7、将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(4,3)B.(﹣1,4)C.(3,4)D.(﹣2,3)8、如图,A、B两点在双曲线y= 上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A、5B、6C、3D、79、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6(10题图) (11题图)11.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为( ) A .(2,2) B .(2,2) C .(2,1) D .(1, 2)12.如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )二、填空题(每小题4分,共24分)13. 一元二次方程x 2﹣3x=0的较大根是x=14. 如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合,若AP=1,那么线段PP ′的长等于______.15. 如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P ,若OP=,则k的值为 .16. △ABC 的三边长分别为5,12,13,与它相似的△DEF 的最小边长为15,则△DEF 的周长为___________,面积为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(全卷共四个大题,满分100分,考试时间90分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.参考公式:抛物线c bx ax y ++=2的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴公式为abx 2-= 一、单选题(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡题号右侧正确答案所对应的方框涂黑. 1.如果与的和为0,那么是( )A .B .C .D .2.下列运算正确的是( ) A . B . C .D .3.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .投掷一枚硬币100次,一定有50次“正面朝上”D .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定 4.下列图形是用长度相等的火柴棒按一定规律排列的图形,第(1)个图形中有8根火柴棒,第(2)个图形中有14根火柴棒,第(3)个图形中有20根火柴棒,…,按此规律排列下去,第(6)个图形中,火柴棒的根数是( )A .34B .36C .38D .485.函数中,自变量x 的取值范围是( ) A .x >0 B .x >1 C .x >0且x≠1 D .x≥0且x≠1 6.非零整数a 、b=a 的值为( )A.3或12 B.12或27 C.40或8 D.3或12或277.紧跟2006年第十八届世界杯足球赛的步伐,师大学生也举行了足球比赛,下表是师范大学四个系举行足球单循环赛的成绩:表中成绩栏中的比为行中所有球队比赛的进球之比.如①表示中文系与数学系的比赛中,中文系以1:0获胜;②表示与①同一场比赛,数学系输给了中文系.按规定,胜一场得3分,平一场得1分,负一场得0分,按得分由多到少排名次,则此次比赛的冠军队是().A.数学系B.中文系C.教育系D.化学系8.如图所示,在同一水平面从左到右依次是大厦、别墅、小山、小彬为了测得小山的高度,在大厦的楼顶B处测得山顶C的俯角∠GBC=13°,在别墅的大门A点处测得大厦的楼顶B 点的仰角∠BAO=35°,山坡AC的坡度i=1:2,OA=500米,则山C的垂直高度约为()(参考数据:sin13°≈0.22,tan13°≈0.23,sin35°≈0.57)A.161.0 B.116.4 C.106.8 D.76.29.如图,已知四边形的边在轴上,,过点的双曲线交于,且,若的面积等于3,则的值等于()第8题图第9题图A.2 B.C.D.10.如果关于的不等式组的解集为,且关于的分式方程有非负数解,则所有符合条件的整数的值之和是()A.-2 B.-1 C.0 D.2二、填空题(本大题5个小题,每小题3分,共15分)请将每小题的答案直接直接填在答题卡中对应的横线上.11.如图,依据尺规作图的痕迹,计算∠α=________°.12.小明和他的爸爸妈妈共3人站成一排拍照,他与爸爸妈妈相邻的概率是. 13.如图,在半径为2 的中,点、点是弧的三等分点,点是直径的延长线上一点,,则图中阴影部分的面积是___________(结果保留).14.松松和东东骑自行车分别从迎宾大道上相距9500米的A、B两地同时出发,相向而行,行驶一段时间后松松的自行车坏了,立刻停车并马上打电话通知东东,东东接到电话后立刻提速至原来的倍,碰到松松后用了5分钟修好了松松的自行车,修好车后东东立刻骑车以提速后的速度继续向终点A地前行,松松则留在原地整理工具,2分钟以后松松以原速向B 走了3分钟后,发现东东的包在自己身上,马上掉头以原速的倍的速度回A地;在整个行驶过程中,松松和东东均保持匀速行驶(东东停车和打电话的时间忽略不计),两人相距的路程S(米)与松松出发的时间t(分钟)之间的关系如图所示,则东东到达A地时,松松与A地的距离为_________米.15.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是.三、解答题(本大题共5个小题,其中16题8分,其余每小题10分,共48分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案写在答题卡中对应的位置上16.化简:(1)()()()2223nnmnmnm--+--(2)22)113(4422+++-+÷++-xxxxxxx17.数学综合实践课上,老师提出问题:如图,有一张长为4dm,宽为3dm的长方形纸板,在纸板四个角剪去四个相同的小正方形,然后把四边折起来(实线为剪裁线,虚线为折叠线),做成一个无盖的长方体盒子,问小正方形的边长为多少时,盒子的体积最大?为了解决这个问题,小明同学根据学习函数的经验,进行了如下的探究:18.(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得第15题图到y 与x 的函数关系式是 ,其中自变量x 的取值范围是 . (2)列出y 与x 的几组对应值如下表:(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;(4)结合函数图象回答:当小正方形的边长约为 dm 时,无盖长方体盒子的体积最大,最大值约为 .18.为提升红岩连线景区旅游服务功能和景区品质,沙区政府投资修建了白公馆到渣滓洞的人行步道。
施工单位在铺设人行步道路面时,计划投入34万元的资金购买售价分别为60元/张和50元/张的A 、B 两种型号的花岗石石材,且购买A 型花岗石的数量不超过B 型花岗石数量的2倍。
(1)求该施工单位最多能购买A 型花岗石多少张?(2)在实际购买中,销售商为支持景区建设,将A 、B 两种型号花岗石石材的售价均打a折(即原价的10a)出售,因施工实际需要,A 型花岗石的数量在(1)中购买最多的基础上再购买40a 张,B 型花岗石的数量在(1)中购买最少的基础上再购买20a 张,这样购买花岗石石材的总费用恰好比原计划减少了6460元,求a 的值.19.已知,在口ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,.如图1,当,时,求▱ABCD的面积;如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当时,求证:.20.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.四、解答题(本大题1个小题,共7分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案写在答题卡中对应的位置上21.如图1,抛物线与x轴相交于A,B两点(点A在点B的右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)如图2,连接AC、BC,若点P是直线AC上方抛物线上一动点,过P作PE//BC交AC 于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,将△PQE沿着直线AC平移,记移动中的△PQE为,连接,求△PQE的周长的最大值及的最小值;(2)如图3,点G为x轴正半轴上一点,且OG=OC,连接CG,过G作GH⊥AC于点H,将△CGH绕点O顺时针旋转(),记旋转中的△CGH为,在旋转过程中,直线,分别与直线AC交于点M,N,能否成为等腰三角形?若能直接写出所有满足条件的的值;若不能,请说明理由.参考答案1.C【解析】【分析】根据题意可得关于a的方程,a+()=0,解方程即可得.【详解】由题意得:a+()=0,解得:a= ,故选C.【点睛】本题考查了一元一次方程的应用,能根据语句列出方程是解题的关键.2.D【解析】【分析】根据合并同类项、同底数幂的乘法、积的乘方及幂的乘方法则逐项计算即可.【详解】A.x2与x3不是同类项,不能合并,故不正确;B. ,故不正确;C. ,故不正确;D. ,故正确;故选D.【点睛】本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、积的乘方及幂的乘方法则是解答本题的关键.3.D【解析】分析:根据各个选项中的说法,可以判断是否正确,从而可以解答本题.详解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,一组数据1、2、5、5、5、3、3的中位数和众数分别是3、5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D 正确,故选:D.点睛:本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.4.C【解析】【分析】本题是一道通过图形变化而发现规律的题型.【详解】根据数据,结合图形,不难发现:后边的图形总比前边的图形多6.即第n个图形中,有8+6(n-1)=6n+2.所以,第(6)个图形中,火柴棒的根数是6×6+2=38.故选C.【点睛】注意结合图形进行分析,更能清楚地发现规律.5.B【解析】根据分式有意义的条件和二次根式有意义的条件,可知x-1>0,解得x>1.故选:B.点睛:此题主要考查了函数有意义的取值范围,解题时要明确分式有意义的条件为分母不为0,二次根式有意义的条件是被开方数为非负数,灵活确定函数解析式的特点是关键.6.D,可知它们是化简后被开方数为3数,且小于48,因此可知a的取值为3或12或27.故选:D.点睛:此题主要考查了同类二次根式,关键是明确同类二次根式的特点:化成最简二次根式后,被开方数相同,比较容易.7.B【解析】【分析】分别求出中文系,数学系,化学系,教育系的得分,就可以解决.【详解】∵一共有四只球队参加比赛∴每支球队只参加3场比赛分别求出4支队伍的得分:中文:3+1+3=7,数学:0+3+1=4,教育:0+1+3=4,化学:1+0+0=1,∴中文是冠军故选:B【点睛】此题主要考查了利用表格获取正确的信息,以及解决实际生活问题,题目比较新颖.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.8.A【解析】分析:分别过点C作CM⊥OA,CN⊥BG,垂足为点M,N,构建Rt△ABO,Rt△ACM,Rt△BCN,利用三角形函数的定义列方程求解.详解:分别过点C作CM⊥OA,CN⊥BG,垂足为点M,N.Rt△ABO中,BO=OAtan35°≈0.7×500=350.设MC=x,则AM=2x,所以BN=OM=500+2x,CN=350-x.Rt△BCN中,CN=BNtan13°,即350-x=0.23(500+2x),解得x≈161.0米.故选A.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,用勾股定理或三角形函数的定义求解.9.B【解析】【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D作DE⊥x轴于点E.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=6.∴8k=6,k=.故选B.【点睛】此题考查了反比例函数的应用、平行线分线段成比例及有关图形面积的综合运用,综合性较强.10.A【解析】【分析】不等式组变形后,根据解集确定出m的范围,再表示出分式方程的解,由分式方程有非负数解,确定出满足条件m的值,进而求出之和.【详解】解不等式,得:x≤m+3,解不等式,得:x<1,∵不等式组的解为x<1,∴m+3≥1,解得:m≥-2,解分式方程:得x=,∵分式方程有非负数解,∴≥0且≠1,解得m<3且m≠2,则-2≤m<3且m≠2,则所有符合条件的整数m的值之和是-2-1+0+1=-2.故选A.【点睛】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.11.56.【解析】试题分析:如图,根据作图痕迹可知,GH垂直平分AC,AG平分∠CAD.∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ABC=68°。