动态规划之最短路问题、背包问题、排序问题

合集下载

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。

在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。

1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。

给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。

动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。

dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。

通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。

可以通过回溯的方法找到具体放入背包的物品。

2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。

动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。

dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。

对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。

通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。

同样可以通过回溯的方法找到具体的最短路径。

背包问题、多阶段生产安排问题

背包问题、多阶段生产安排问题

f1 (1) 0, x1 0 y x1 f1 (0) 0, x1 0 a1 x1 1
f1 (5) 8, x1 1 f1 (3) 8, x1 1
x1 1 x1 0 x1 0
动态规划 7-5 运筹学5-5
找讲师、公开课,上诺达名师网,中国最大的培训平台
物品
3.计算举例 例3 解:
重量(公斤/件) 每件使用价值
1
3 8
2
2 5
3
5 12
f1 (1) 0, x1 0 f k ( y ) max { ck xk f k 1 ( y ak xk ) } y f1 (0) 0, x1 0 0 x
k
f1 (5) 8, x1 1 f1 (3) 8, x1 1
动态规划 7-5 运筹学5-5
3.计算举例 例3
物品
1 3 8
2 2 5
3 5 12
a 5公 斤
重量(公斤/件) 每件使用价值
求: f 3 ( 5)
{ ck xk f k 1 ( y ak xfk )(} k 2,3, n 解: f k ( y) max y 2 5)
xn
… … … n
a1 c1
a2 c2
ak ck
an cn
他应如何选择这n种物品的件数,使得使用价 问题: 值最大?
建立数学模型:
max Z c1 x1 c2 x2 cn xn s .t . a1 x1 a2 x2 an xn a xi 0, 且为整数,i 1, 2, n
f 3 (5) max { c3 x3 f 2 (5 a3 x3 ) } f 2 (0)

动态规划算法--01背包问题

动态规划算法--01背包问题

动态规划算法--01背包问题基本思想:动态规划算法通常⽤于求解具有某种最优性质的问题。

在这类问题中,可能会有许多可⾏解。

每⼀个解都对应于⼀个值,我们希望找到具有最优值的解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若⼲个⼦问题,先求解⼦问题,然后从这些⼦问题的解得到原问题的解。

与分治法不同的是,适合于⽤动态规划求解的问题,经分解得到⼦问题往往不是互相独⽴的(即下⼀个⼦阶段的求解是建⽴在上⼀个⼦阶段的解的基础上,进⾏进⼀步的求解)。

若⽤分治法来解这类问题,则分解得到的⼦问题数⽬太多,有些⼦问题被重复计算了很多次。

如果我们能够保存已解决的⼦问题的答案,⽽在需要时再找出已求得的答案,这样就可以避免⼤量的重复计算,节省时间。

我们可以⽤⼀个表来记录所有已解的⼦问题的答案。

不管该⼦问题以后是否被⽤到,只要它被计算过,就将其结果填⼊表中。

这就是动态规划法的基本思路。

具体的动态规划算法多种多样,但它们具有相同的填表格式。

应⽤场景:适⽤动态规划的问题必须满⾜最优化原理、⽆后效性和重叠性。

1、最优化原理(最优⼦结构性质)最优化原理可这样阐述:⼀个最优化策略具有这样的性质,不论过去状态和决策如何,对前⾯的决策所形成的状态⽽⾔,余下的诸决策必须构成最优策略。

简⽽⾔之,⼀个最优化策略的⼦策略总是最优的。

⼀个问题满⾜最优化原理⼜称其具有最优⼦结构性质。

2、⽆后效性将各阶段按照⼀定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态⽆法直接影响它未来的决策,⽽只能通过当前的这个状态。

换句话说,每个状态都是过去历史的⼀个完整总结。

这就是⽆后向性,⼜称为⽆后效性。

3、⼦问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。

其中的关键在于解决冗余,这是动态规划算法的根本⽬的。

动态规划实质上是⼀种以空间换时间的技术,它在实现的过程中,不得不存储产⽣过程中的各种状态,所以它的空间复杂度要⼤于其它的算法。

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。

它通常用于涉及最
优化问题和最短路径的计算中。

下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。

其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。

解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。

2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。

然后通过递推关系来计算出最终的结果。

3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。


决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。

4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。

以上是一些常见的动态规划问题解法。

通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

C语言动态规划之背包问题详解

C语言动态规划之背包问题详解

C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。

问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。

根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。

它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。

输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。

输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。

按照题⽬要求进⾏打表,列出对应的dp表。

W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。

第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。

第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。

分支限界法典型例题

分支限界法典型例题

分支限界法典型例题分支限界法(Branch and Bound)是一种常见的算法分析技术,用于解决搜索问题和动态规划问题。

以下是一些分支限界法的典型例题:1. 最长公共子序列(LCS):求给定两个字符串的最长公共子序列。

可以使用分支限界法,首先找出两个字符串中的不同字符出现的次数,然后用哈希表存储这些计数器。

最后,遍历哈希表中的每个计数器,找到最大的计数器的值,即为最长公共子序列的长度。

2. 背包问题(Knapsack problem):给定一个背包,容量为64,有多个选项,每个选项的重量和容量不限。

求给定背包中可以放入的最大重量的背包物品。

可以使用分支限界法,首先列出所有可能背包容量的组合,然后用枚举法找出每个背包容量下可以放入的最大重量的物品,最后计算出可以放入的最大重量的物品数量。

3. 最短路径问题(Shortest Path problem):给定一个二维图,目标为找到从源点出发,到达所有目标点的路径。

可以使用分支限界法,首先找出图中的所有节点和它们之间的联系,然后用递归算法计算每个节点到源点的路径。

最后,通过剪枝,可以找到最短路径。

4. 最大子数组和问题(Maximum Subarray and Problem):给定一个数组,求出其中任意一个元素的最大值。

可以使用分支限界法,首先找出数组中的最小值和最大值,然后用递归算法计算每个元素的最大值。

最后,通过剪枝,可以找到最大子数组和问题。

5. 模拟退火问题(Simulated Annealing Problem):给定一个概率分布,求出在一定条件下,随机变量的取值分布。

可以使用分支限界法,首先找出概率分布中所有可能的取值,然后用模拟退火算法计算在这些取值中随机变量的取值分布。

最后,通过剪枝,可以找到最优解。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

运筹学 动态规划

运筹学 动态规划

max
3x1 4 x2 5 x3
max 3 x1 max 4 x2 5 x3 5 x2 6 x3 10 4 x1 10 0 x1 max 3 x1 f 2 10 4 x1
10 0 x1 4 4
,则有:
N 1 J x0 max L xk , u k u 0 ,u 1,,u N 1 k 0
* N N 1 max L x0 , u 0 L xk , u k u 0 ,u 1,,u N 1 k 1


(5)
(5)式表明,多阶段决策的最优策略只依赖于系统的初始状态 x 0 。
Байду номын сангаас
多阶段决策问题的最优性原理 多阶段决策问题的最优性原理可表述为: 如果 u * 0, u * 1,, u * N 1 是最优 策略序列,那么它的一部分 u * 1, u * 2,, u * N 1 也是一个最优策略序列。其反 证法的证明是无须赘述的[8,9]。 简单说, “最优策略的子策略必为最优子策略”
4 x2 5 x3
max 4 x2 max 5 x3 6 x3 2 5 x2 2 0 x2 max 4 x2 f 3 2 5 x2
2 0 x2 5 5
max 4 x2 max 5 x3 6 x3 105 x2 10 0 x2 max 4 x2 f 3 10 5 x2
k 1:
f1 10
4 x1 5 x2 6 x3 10
max
3 x1 4 x2 5 x3
Max z 3 x1 4 x2 5 x3 s.t. 3 x1 4 x2 5 x3 10 var iable positive, I

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。

动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。

二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。

常见的解法有两种:递归和动态规划。

递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。

动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。

常见的解法有两种:Dijkstra算法和Bellman-Ford算法。

Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。

Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。

总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。

在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。

动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。

以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。

它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。

可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。

2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。

背包问题包括 0/1 背包问题和完全背包问题。

0/1 背包问题中每个物品要么被选中放入背包,要么不选。

完全背包问题中每个物品可以被选中多次放入背包。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。

3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。

最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。

通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。

4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。

给定两个字符串,找到它们之间最长的公共子序列。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。

5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。

给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。

以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包背包问题是动态规划中的⼀个经典题型,其实,也⽐较容易理解。

当你理解了背包问题的思想,凡是考到这种动态规划,就⼀定会得很⾼的分。

背包问题主要分为三种:01背包完全背包多重背包其中,01背包是最基础的,最简单的,也是最重要的。

因为其他两个背包都是由01背包演变⽽来的。

所以,学好01背包,对接下来的学习很有帮助。

废话不多说,我们来看01背包。

01 背包问题:给定 n 种物品和⼀个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装⼊背包的物品,使得装⼊背包中的物品的总价值最⼤?第⼀眼看上去,我们会想到贪⼼(背包问题还不会QAQ)。

⽤贪⼼算法来看,流程是这样的:1.排序,按价值从⼤到⼩排序2.选价值尽可能⼤的物品放⼊。

但是,贪⼼做这题是错的。

让我们举个反例:n=5,C=10重量价值第⼀个物品:105第⼆个物品:14第三个物品:23第四个物品:32第五个物品:41⽤贪⼼⼀算。

答案是5,但正解是⽤最后4个,价值总和是10.那将重量排序呢?其实也不⾏。

稍微⼀想就想到了反例。

我们需要借助别的算法。

贪⼼法⽤的是⼀层循环,⽽数据不保证在⼀层循环中得解,于是,我们要采⽤⼆层循环。

这也是背包的思想之⼀。

来看背包算法:1.⽤⼆维数组dp [ i ] [ j ],表⽰在⾯对第 i 件物品,且背包容量为 j 时所能获得的最⼤价值⽐如说上⾯的那个反例:dp [ 1 ] [ 3 ] = 4 + 3 = 7.2.01背包之所以叫“01”,就是⼀个物品只能拿⼀次,或者不拿。

那我们就分别来讨论拿还是不拿。

(1)j < w[i] 的情况,这时候背包容量不⾜以放下第 i 件物品,只能选择不拿dp [ i ] [ j ] = dp [ i - 1 ] [ j ];(2)j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更⼤的价值。

动态规划经典问题

动态规划经典问题

动态规划经典问题动态规划(Dynamic Programming)是一种常用的求解最优化问题的方法,它通过将问题分解成若干子问题,并保存子问题的解,从而避免重复计算,提高计算效率。

在动态规划中,经典问题有不少,其中包括背包问题、最长公共子序列问题、最长递增子序列问题等。

本文将介绍其中的两个经典问题:背包问题和最长递增子序列问题。

一、背包问题背包问题是动态规划中的经典问题之一,它描述了一个给定容量的背包和一系列物品,每一个物品有自己的分量和价值,在限定的容量下,如何选择物品使得背包中的总价值最大化。

假设有一个背包,容量为W,有n个物品,每一个物品的分量分别为w1,w2, ..., wn,对应的价值分别为v1, v2, ..., vn。

要求在限定的背包容量下,选择一些物品放入背包,使得背包中物品的总价值最大。

解决背包问题的一种常用方法是使用动态规划。

我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

根据动态规划的思想,我们可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)其中,dp[i-1][j]表示不选择第i个物品时的最大价值,dp[i-1][j-wi] + vi表示选择第i个物品时的最大价值。

具体求解背包问题的步骤如下:1. 初始化dp数组,将dp[0][j]和dp[i][0]均设为0,表示背包容量为0时和没有物品可选时的最大价值均为0。

2. 逐个计算dp[i][j]的值,根据状态转移方程更新dp数组。

3. 最终得到dp[n][W]的值,即为所求的最大价值。

例如,假设背包容量为10,有4个物品,它们的分量和价值分别如下:物品1:分量2,价值6物品2:分量2,价值3物品3:分量3,价值5物品4:分量4,价值8根据上述步骤,可以得到如下的dp数组:0 1 2 3 4 5 6 7 8 9 100 0 0 0 0 0 0 0 0 0 0 01 0 0 6 6 6 6 6 6 6 6 62 0 0 6 6 9 9 9 9 9 9 93 0 0 6 6 9 9 11 11 14 14 144 0 0 6 6 9 9 11 11 14 14 17可以看到,dp[4][10]的值为17,表示在背包容量为10时,选择物品1、物品3和物品4可以得到的最大价值为17。

背包问题的各种求解方法

背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。

因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。

则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。

如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。

这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。

1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。

则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。

由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。

因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。

12个动态规划算法举例

12个动态规划算法举例

动态规划是一种用于解决最优化问题的算法。

它通常用于找到最小或最大值。

这里列举了12 个常见的动态规划算法,并给出了每个算法的举例:
1 最长公共子序列(LCS)算法:用于比较两个序列,找出它们之
间的最长公共子序列。

2 最小编辑距离算法:用于比较两个字符串,找出将一个字符串变
为另一个字符串所需的最少编辑操作次数。

3 背包问题算法:用于在限制给定的总体积的情况下选择最优的物
品组合。

4 最短路径算法:用于求解有向图或路径的最短路径。

5 最小生成树算法:用于求解图的最小生成树。

6 线性规划算法:用于求解线性规划问题。

7 矩阵链乘法算法:用于计算矩阵链乘法的最优计算次序。

8 单源最短路径算法:用于求解有向图的单源最短路径问题。

9 拓扑排序算法:用于对有向无环图(DAG)进行拓扑排序。

10图形相似性算法:用两个图形进行对齐,并通过比较它们之间的差异来评估它们的相似程度。

11 11 区间动态规划算法:用于解决区间动态规划问题,例如
最小编辑代价问题。

12 分数背包问题算法:用于在限制给定的总价值的情况下选择
最优的物品组合。

13这些算法的具体细节及实现方式可以通过搜索或者学习相
关的资料来了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f s opt v s , u
k k
u
k
,,
un
k ,n
k
k
, , sn1

(二)、动态规划的基本思想
1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
变量称为状态变量。 状态变量的取值有一定的允许集合或范围,此集合 称为状态允许集合。
3、决策:表示当过程处于某一阶段的某个状态时, 可以作出不同的决定,从而确定下一阶段的状态,这 种决定称为决策。
描述决策的变量,称为决策变量。决策变量是状态 变量的函数。可用一个数、一组数或一向量(多维情 形)来描述。 在实际问题中决策变量的取值往往在某一范围之内, 此范围称为允许决策集合。 4、多阶段决策过程 可以在各个阶段进行决策,去控制过程发展的多段过 其发展是通过一系列的状态转移来实现的; 程; 系统在某一阶段的状态转移不但与系统的当前的状态 和决策有关,而且还与系统过去的历史状态和决策有 关。
(三)、建立动态规划模型的步骤 1、划分阶段 划分阶段是运用动态规划求解多阶段决策问题的第一 步,在确定多阶段特性后,按时间或空间先后顺序, 将过程划分为若干相互联系的阶段。对于静态问题要 人为地赋予“时间”概念,以便划分阶段。
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态 变量的选择是从过程演变的特点中寻找。 3、确定决策变量及允许决策集合 通常选择所求解问题的关键变量作为决策变量,同时 要给出决策变量的取值范围,即确定允许决策集合。
其状态转移方程如下(一般形式)
s2 T1 ( s1 , u1 ) s3 T2 ( s1 , u1 , s2 , u2 ) sk 1 Tk ( s1 , u1 , s2 , u2 , , sk , uk )
图示如下:
状态转移方程是确定 过程由一个状态到另 一个状态的演变过程。 如果第k阶段状态变量 sk的值、该阶段的决策 变量一经确定,第k+1 阶段状态变量sk+1的值 也就确定。
u k ,,u n
Vk ,n ( sk , uk , sk 1 , uk 1 ,, sn 1 )
可递推
k [ sk , uk , Vk 1, n ( sk 1 , uk 1 , , sn 1 )]
指标函数形式: 和、 积
解多阶段决策过程问题,求出
最优策略,即最优决策序列
{u , u , , u }
最优轨线,即执行最优策略时的状态序列
* * * { s1 , s2 , , sn }
* 1
* 2
* n
f1(s1)
最优目标函数值
* V1,n * * * 从 k 到终点最优策略 * * V1,n ( s1 , u1 ,, sn , un )
子策略的最优目标函数值
这时,机器的年完好率为a,即如果年初完好机 器的数量为u,到年终完好的机器就为au, 0<a<1。
在低负荷下生产时,产品的年产量h和投入生产 的机器数量u2的关系为 h=h(u2)
相应的机器年完好率b, 0< b<1。
假定开始生产时完好的机器数量为s1。要求制 定一个五年计划,在每年开始时,决定如何重新 分配完好的机器在两种不同的负荷下生产的数量, 使在五年内产品的总产量达到最高。
小结: 无后效性 动态规划本质上是多阶段决策过程;
概念 : 阶段变量k﹑状态变量sk﹑决策变量uk; 方程 :状态转移方程 sk 1 Tk ( sk , uk ) 指标: Vk ,n Vk ,n ( sk , uk , sk 1 , uk 1 ,, sn1 )
效益
f k ( s k ) opt V k ,n ( s k , u k ,, s n 1)
3. 航天飞机飞行控制问题:由于航天飞机的 运动的环境是不断变化的,因此就要根据航天飞机 飞行在不同环境中的情况,不断地决定航天飞机的 飞行方向和速度(状态),使之能最省燃料和实现 目的(如软着落问题)。
不包含时间因素的静态决策问题(本质上是一 次决策问题)也可以适当地引入阶段的概念,作为 多阶段的决策问题用动态规划方法来解决。 4 . 线性规划、非线性规划等静态的规划问题也 可以通过适当地引入阶段的概念,应用动态规划方 法加以解决。
5 . 最短路问题:给定一个交通网络图如下,其 中两点之间的数字表示距离(或花费),试求从A点 到G点的最短距离(总费用最小)。
1 C1 3 6 8 3 D1 1 2 2 2 5 E2 2 D2 E1 3
5
A 3
B1
6
8 B2 7 6
C2
5
3
5
F1
3
4
G
C3 8 C4
3
4 D3
3
3 4 E3
6
6
F2
s1
u1 1
s2
u2 2
s3

sk
uk k
sk+1
能用动态规划方法求解的多阶段决策过程是一类 特殊的多阶段决策过程,即具有无后效性的多阶段 决策过程。
无后效性(马尔可夫性) 如果某阶段状态给定后,则在这个阶段以后 过程的发展不受这个阶段以前各段状态的影响; 过程的过去历史只能通过当前的状态去影响 它未来的发展; 构造动态规划模型时,要充分注意 是否满足无后效性的要求; 状态变量要满足无后效性的要求; 如果状态变量不能满足无后效性的要求,应 适当地改变状态的定义或规定方法。 状态具有无后效性的多阶段决策过程的状 态转移方程如下 动态规划中能 s2 T1 ( s1 , u1 ) 处理的状态转移 s3 T2 ( s2 , u2 ) 方程的形式。 sk 1 Tk ( sk , uk )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
1 D
C3
最短路线为
A→B1→C1 →D
路长为 6
练习1: 求从A到G的最短路径
1 5 A 3 B2 C1 6 8 C2 2 2 D2 3 8 4 D3 3 3 E3 1 5
B1
6 8 7
3
3
5 3
D1
E1
3 5 F1 4 G
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 1 2 3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
第三阶段( A → B ): A 到B 有二条路线。
f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7 ∴ f3 (A) = min d(A, B1 )+ f2 ( B1 ) = min{6,7}=6 d(A, B2 )+ f2 ( B2 ) (最短路线为A→B1→C1 →D)
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动态规 划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数 是指从第k 阶段状态出发到第n 阶段末所获得收益的最 优值,最后写出动态规划基本方程。 以上五步是建立动态规划数学模型的一般步骤。由于 动态规划模型与线性规划模型不同,动态规划模型没有统 一的模式,建模时必须根据具体问题具体分析,只有通过 不断实践总结,才能较好掌握建模方法与技巧。
解:整个计算过程分三个阶段,从最后一个阶段开始。
第一阶段(C →D): C 有三条路线到终点D 。
显然有 f1 (C1 ) = 1 ; f1(C2 ) = 3 ; f1 (C3 ) = 4
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 ): B 到C 有六条路线。
C1
C2 4 C3 3
1 D
3 1
d( B2,C1 ) + f1 (C1 ) 2+1 f2 ( B2 ) = min d( B2,C2 ) + f1 (C2 ) = min 3+3 d( B2,C3 ) + f1 (C3 ) 1+4 3 = min 6 = 3 (最短路线为B2→C1 →D) 5
3
动态决策问题的特点: 系统所处的状态和时刻是进行决策的重要因素; 即在系统发展的不同时刻(或阶段)根据系统 所处的状态,不断地做出决策; 找到不同时刻的最优决策以及整个过程的最优策略。
多阶段决策问题: 是动态决策问题的一种特殊形式; 在多阶段决策过程中,系统的动态过程可以按照时间 进程分为状态相互联系而又相互区别的各个阶段; 每个阶段都要进行决策,目的是使整个过程的决策 达到最优效果。
5、策略:是一个按顺序排列的决策组成的集合。在 实际问题中,可供选择的策略有一定的范围,称为允 许策略集合。从允许策略集合中找出达到最优效果的 策略称为最优策略。
6、状态转移方程:是确定过程由一个状态到另一 个状态的演变过程,描述了状态转移规律。 7、指标函数和最优值函数:用来衡量所实现过程优 劣的一种数量指标,为指标函数。指标函数的最优值, 称为最优值函数。在不同的问题中,指标函数的含义 是不同的,它可能是距离、利润、成本、产量或资源 消耗等。 动态规划模型的指标函数,应具有可分离性,并满 足递推关系。
相关文档
最新文档