动态规划之01背包问题(最易理解的讲解)

合集下载

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

(完整版)01背包问题

(完整版)01背包问题

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。

利用动态规划解决01背包问题01背包问题动态规划

利用动态规划解决01背包问题01背包问题动态规划

利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。

将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。

背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。

一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。

此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。

二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。

假设:xi表示物体i被装入背包的情况,xi=0,1。

当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。

根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。

在这类问题中,可能会有许多可行解。

每一个解都对应于一个值,我们希望找到具有最优值的解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。

若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。

如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。

我们可以用一个表来记录所有已解的子问题的答案。

不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。

具体的动态规划算法多种多样,但它们具有相同的填表格式。

(二)算法设计假定背包的载重量范围为0~m。

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。

注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。

在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。

2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。

蛮力法、动态规划法 求解01背包问题

蛮力法、动态规划法 求解01背包问题
v[i][j]=values[i]+v[i-1][j-weigths[i]];
else
v[i][j]=v[i-1][j];
}
else v[i][j]=v[i-1][j];
}
return v[n][m];
}
int main()
{
int m,n;int i,j;
cout<<"请输入背包的承重量:"<<endl;
2)复杂度分析:2n
2、动态规划法
1)基本思想:Dynamic programming is a technique for solving problems with overlapping subproblems.The function:
V(i,0)=V(0,j)=0;(1)
V(i-1,j)j<w
if (cur_weight <= capacity && cur_value > max_value) {
max_value = cur_value;
}
return;
}
c[d] = 0;
MFKnapsack(capacity, values, weights, c,
d + 1, max_value);
cout << MFKnapsack(capacity, values, weights, n) << endl;
return 0;
}
(2)Dynamic Programming
#include<iostream.h>
#include<string.h>
int v[10][100];//对应每种情况的最大价值

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)

01背包问题(01knapsackproblem)0 / 1 背包问题(0 / 1 knapsack problem)背包问题(Knapsack problem)是⼀种组合优化的问题。

问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。

问题的名称来源于如何选择最合适的物品放置于给定背包中。

相似问题经常出现在商业、[组合数学],[计算复杂性理论]、[密码学]和[应⽤数学]等领域中。

也可以将背包问题描述为,即在总重量不超过W的前提下,总价值是否能达到V。

1、题⽬描述假设商店中有如下3个商品,他们的重量和价格如下:索引重量价值011500143000232000假如你是⼀个⼩偷,你有⼀个重量为4的包,每个商品只能偷⼀次,请问你怎么偷才会使得最后的价值最⼤?2、分析这种问题⼀般可以⽤动态规划很好地解决。

但是如果我不⽤动态规划,⽽是⽤搜索所有情况来解决也可以,每个商品都有偷或不偷的选项,所以n个商品就有n^2种情况,所以⽤遍历的⽅法时间复杂度为O(n^2) n为商品的数量现在我们假设B(k, w)表⽰的是前k个商品,在背包容量为w的情况下能偷的最⾼价值当现在⾯对的第k个物品重量太重时:B(k, w) = B(k-1, w),代表我在多了⼀个物品的选择的情况下,仍然和没有这件物品时的选择⼀样,所以结果也⼀样(因为我偷不了或者我不偷的情况)当第k个物品的重量我可以接受时:B(k, w) = B(k-1, w - 这件物品的重量) + 这件物品的价值代表我如果偷了这件物品,那剩下的w - 这件物品重量的空间可以容纳的最⼤价值就是在上⼀次选择时B(k-1, w - 这件物品的重量)的值。

再加上这件物品的价值就是我偷了这件物品的最⼤值。

所以,在衡量⼀个B(k, w)时,⾸先看⼀下能不能偷,能得话看⼀下偷还是不偷两个的最⼤值,就是B(k, w)的值,所以我们回到上⾯的问题,问题的解就是B(2,4)的值我们⽤⼆维数组 dp[][]来表⽰整个的过程可选商品 \ 背包容量012340号商品(1,1500)015001500150015000 ~ 1号商品(4,3000)015001500150030000 ~ 2号商品(3,2000)01500150020003500如图中加粗数字1500代表的是在有前两个商品,背包容量为2时可以偷的最⼤价值为1500图中加粗数字3000,即在有前2个商品,背包重量为4时,可以偷的最⼤价值为3000,这个数是这样算的:第⼆个商品(1号)重量为4,正好满⾜,如果偷的话所以价值为3000 + 0 = 3000如果不偷的话价值和只有1个商品,背包容量为4的价值⼀样,1500取最⼤值为3000所以问题的关键就在构建这个⼆维数组3、实现/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(n * capacity) 可以优化为capacity*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[][] dp = new int[goods][capacity + 1];// 初始化第⼀⾏,因为第⼀⾏上层没有元素了,即只有第⼀个商品时for(int j = 1; j <= capacity; j++){if(j >= w[0]) dp[0][j] = v[0];}// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 1; i < goods; i++) {for(int j = 1; j < capacity + 1; j++) {// 如果容量不够放下第i个商品if(w[i] > j) {dp[i][j] = dp[i-1][j];} else { // 如果可以放下这件商品dp[i][j] =Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]);}}}// System.out.println(Arrays.deepToString(dp));return dp[goods - 1][capacity];}}⽤滚动数组优化空间复杂度:因为如果我们从后往前构建每⼀⾏,那上⼀⾏保留的就可以在构建时候⽤/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(capacity)*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[] dp = new int[capacity + 1];// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 0; i < goods; i++) {for(int j = capacity; j > 0; j--) {// 如果能装下就更新,装不下就不更新(上⼀⾏的值)if(j - w[i] >= 0) {dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);}}}return dp[capacity];}}。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

C语言动态规划之背包问题详解

C语言动态规划之背包问题详解

C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。

问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。

根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。

它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。

输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。

输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。

按照题⽬要求进⾏打表,列出对应的dp表。

W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。

第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。

第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。

动态规划01背包问题

动态规划01背包问题
最终,f[n][W]就是最优解,其中 n 是物品的总数,W 是背包 的容量。
01 背包问题的时间复杂度为 O(nW),空间复杂度为 O(nW)。
• 选择放入第 i 个物品。此时,背包的剩余容量为 j-w[i], 所以 f[i][j] = f[i-1][j-w[i]] + v[i]。 • 不选择放入第 i 个物品。此时,f[i][j] = f[i-1][j]。
综上所述,状态转移方程为:
f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i])
01 背包问题是一种经典的动态规划问题,其目的是在限制条 件下,使得背包内的物品价值最大。
在 01 背包问题中,每种物品都有其体积和价值。同时,背 包也有一定的容量限制。问题的目标是在不超过背包容量的 前提下,使得背包内物品的价值最大。
为了解决 [j]表示前 i 个物品放入一个容量为 j 的背包可以获得的最大价值。然后,我们考虑第 i 个物品的 选择情况,其中有两种情况:

0-1背包问题动态规划详解及代码

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。

其关键是发现子问题和记录其结果。

然后利用这些结果减轻运算量。

比如01背包问题。

/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。

输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。

所以,我们的程序要从1到M一个一个的试。

比如,开始任选N 件物品的一个。

看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。

怎么能保证总选择是最大价值呢?看下表。

测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。

加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。

总的最佳方案是5+4为9.这样.一排一排推下去。

最右下放的数据就是最大的价值了。

(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

01背包跳跃点解法的解题思路

01背包跳跃点解法的解题思路

01背包跳跃点解法的解题思路?
答:01背包问题是一个经典的动态规划问题,而01背包跳跃点解法则是对此问题的一种优化解法。

以下是01背包跳跃点解法的解题思路:
定义状态:令dp[i]表示背包容量为i时能够获得的最大价值。

初始化:将dp数组全部初始化为0。

状态转移方程:考虑当前物品的重量和价值。

假设当前物品的重量为w,价值为v。

对于每个背包容量i,可以选择将该物品放入背包或者不放入背包。

若不放入物品,则dp[i]保持不变,即dp[i] = dp[i]。

若放入物品,则背包容量减少w,同时价值增加v,即dp[i] = dp[i-w] + v。

综上所述,状态转移方程为:dp[i] = max(dp[i], dp[i-w] + v)。

遍历顺序:在进行状态转移时,需要按照背包容量从大到小的顺序遍历,确保每个状态都是基于之前的状态计算得出的。

返回结果:最终的答案即为dp[背包容量]。

通过使用01背包跳跃点解法,可以有效地优化时间复杂度,使得求解01背包问题的效率更高。

该方法基于一个观察:不同重量的物品之间的状态转移是相互独立的,因此可以跳过一些不必要的计算,直接利用之前已经计算出的状态值。

这种优化的思想在解决大规模背包问题时非常有用。

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包背包问题是动态规划中的⼀个经典题型,其实,也⽐较容易理解。

当你理解了背包问题的思想,凡是考到这种动态规划,就⼀定会得很⾼的分。

背包问题主要分为三种:01背包完全背包多重背包其中,01背包是最基础的,最简单的,也是最重要的。

因为其他两个背包都是由01背包演变⽽来的。

所以,学好01背包,对接下来的学习很有帮助。

废话不多说,我们来看01背包。

01 背包问题:给定 n 种物品和⼀个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装⼊背包的物品,使得装⼊背包中的物品的总价值最⼤?第⼀眼看上去,我们会想到贪⼼(背包问题还不会QAQ)。

⽤贪⼼算法来看,流程是这样的:1.排序,按价值从⼤到⼩排序2.选价值尽可能⼤的物品放⼊。

但是,贪⼼做这题是错的。

让我们举个反例:n=5,C=10重量价值第⼀个物品:105第⼆个物品:14第三个物品:23第四个物品:32第五个物品:41⽤贪⼼⼀算。

答案是5,但正解是⽤最后4个,价值总和是10.那将重量排序呢?其实也不⾏。

稍微⼀想就想到了反例。

我们需要借助别的算法。

贪⼼法⽤的是⼀层循环,⽽数据不保证在⼀层循环中得解,于是,我们要采⽤⼆层循环。

这也是背包的思想之⼀。

来看背包算法:1.⽤⼆维数组dp [ i ] [ j ],表⽰在⾯对第 i 件物品,且背包容量为 j 时所能获得的最⼤价值⽐如说上⾯的那个反例:dp [ 1 ] [ 3 ] = 4 + 3 = 7.2.01背包之所以叫“01”,就是⼀个物品只能拿⼀次,或者不拿。

那我们就分别来讨论拿还是不拿。

(1)j < w[i] 的情况,这时候背包容量不⾜以放下第 i 件物品,只能选择不拿dp [ i ] [ j ] = dp [ i - 1 ] [ j ];(2)j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更⼤的价值。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

动态规划专题01背包问题详解【转】

动态规划专题01背包问题详解【转】

动态规划专题01背包问题详解【转】对于动态规划,每个刚接触的⼈都需要⼀段时间来理解,特别是第⼀次接触的时候总是想不通为什么这种⽅法可⾏,这篇⽂章就是为了帮助⼤家理解动态规划,并通过讲解基本的01背包问题来引导读者如何去思考动态规划。

本⽂⼒求通俗易懂,⽆异性,不让读者感到迷惑,引导读者去思考,所以如果你在阅读中发现有不通顺的地⽅,让你产⽣错误理解的地⽅,让你难得读懂的地⽅,请跟贴指出,谢谢!初识动态规划经典的01背包问题是这样的:有⼀个包和n个物品,包的容量为m,每个物品都有各⾃的体积和价值,问当从这n个物品中选择多个物品放在包⾥⽽物品体积总数不超过包的容量m时,能够得到的最⼤价值是多少?[对于每个物品不可以取多次,最多只能取⼀次,之所以叫做01背包,0表⽰不取,1表⽰取]为了⽤⼀种⽣动⼜更形象的⽅式来讲解此题,我把此题⽤另⼀种⽅式来描述,如下:有⼀个国家,所有的国民都⾮常⽼实憨厚,某天他们在⾃⼰的国家发现了⼗座⾦矿,并且这⼗座⾦矿在地图上排成⼀条直线,国王知道这个消息后⾮常⾼兴,他希望能够把这些⾦⼦都挖出来造福国民,⾸先他把这些⾦矿按照在地图上的位置从西⾄东进⾏编号,依次为0、1、2、3、4、5、6、7、8、9,然后他命令他的⼿下去对每⼀座⾦矿进⾏勘测,以便知道挖取每⼀座⾦矿需要多少⼈⼒以及每座⾦矿能够挖出多少⾦⼦,然后动员国民都来挖⾦⼦。

题⽬补充1:挖每⼀座⾦矿需要的⼈数是固定的,多⼀个⼈少⼀个⼈都不⾏。

国王知道每个⾦矿各需要多少⼈⼿,⾦矿i需要的⼈数为peopleNeeded[i]。

题⽬补充2:每⼀座⾦矿所挖出来的⾦⼦数是固定的,当第i座⾦矿有peopleNeeded[i]⼈去挖的话,就⼀定能恰好挖出gold[i]个⾦⼦。

否则⼀个⾦⼦都挖不出来。

题⽬补充3:开采⼀座⾦矿的⼈完成开采⼯作后,他们不会再次去开采其它⾦矿,因此⼀个⼈最多只能使⽤⼀次。

题⽬补充4:国王在全国范围内仅招募到了10000名愿意为了国家去挖⾦⼦的⼈,因此这些⼈可能不够把所有的⾦⼦都挖出来,但是国王希望挖到的⾦⼦越多越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }
f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。

Pi表示第i件物品的价值。

决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗?
题目描述:
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最
首先要明确这张表是从右到左,至底向上生成的。

为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。

然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0,
对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。

对于承重为9的背包,d9=10,是怎么得出的呢?
根据01背包的状态转换方程,需要考察两个值,
一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi;
在这里,
f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值
f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值
f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4
由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.。

相关文档
最新文档