实验报告:动态规划---0-1背包问题)
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题实验报告
背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。
在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。
1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。
在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。
2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。
下面将对每种算法的具体步骤进行介绍。
2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。
在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。
2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。
在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。
2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。
在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。
3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。
下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。
【优质】背包问题实验报告-范文word版 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
实验报告:动态规划01背包问题)范文(最终五篇)
实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
背包问题实验报告
背包问题实验报告《背包问题实验报告》背包问题是一个经典的组合优化问题,它在计算机科学和运筹学领域被广泛应用。
在这个问题中,我们需要从一组物品中选择一些放入背包,使得它们的总重量不超过背包的承载能力,同时价值最大化。
在本实验中,我们将探讨不同算法在解决背包问题时的表现,并分析它们的优缺点。
首先,我们使用了贪心算法来解决背包问题。
贪心算法的基本思想是每次选择当前最有利的物品放入背包,直到背包装满或者没有物品可选。
虽然贪心算法在一些情况下能够得到较好的解,但它并不保证能够得到最优解,因为它只考虑了局部最优解而没有综合考虑所有可能的选择。
接着,我们使用了动态规划算法来解决背包问题。
动态规划算法通过将问题分解成子问题,并保存子问题的解来避免重复计算,从而得到最优解。
动态规划算法在解决背包问题时能够得到最优解,但它需要额外的空间来保存子问题的解,因此在处理大规模问题时可能会消耗较多的内存。
最后,我们使用了回溯算法来解决背包问题。
回溯算法通过不断尝试所有可能的选择,并在满足条件时继续向下搜索,直到找到解或者搜索完所有可能的选择。
回溯算法能够得到最优解,但它的时间复杂度较高,因为它需要尝试所有可能的选择。
通过实验我们发现,不同算法在解决背包问题时有各自的优缺点。
贪心算法简单快速,但不能保证得到最优解;动态规划算法能够得到最优解,但需要额外的空间;回溯算法能够得到最优解,但时间复杂度较高。
因此,在实际应用中需要根据具体情况选择合适的算法来解决背包问题。
综上所述,通过本实验我们对背包问题的解决算法有了更深入的了解,并且能够根据具体情况选择合适的算法来解决实际问题。
希望本实验能够对相关领域的研究和应用有所帮助。
动态规划之-0-1背包问题及改进
动态规划之-0-1背包问题及改进有N件物品和一个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。
形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。
数学描述为:求解最优值:设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。
所以原问题的解为m(1,C)将原问题分解为其子结构来求解。
要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。
最后求出的值即为最优值m(1,C)。
若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。
对于此时背包剩余容量j=0,1,2,3……C,分两种情况:(1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j)(2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。
若不放入物品i,则此时m(i,j)=m(i+1,j)若放入物品i,此时背包剩余容量为 j-w[i],在子结构中已求出当容量k=0,1,2……C 时的最优值m(i+1,k)。
所以此时m(i,j)=m(i+1,j-w[i])+v[i]。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
5.5动态规划求解01背包问题
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
0-1背包问题动态规划和贪心法实现
算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。
二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。
三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
0 1背包实验报告
0 1背包实验报告0-1背包实验报告引言:0-1背包问题是在计算机科学中经典的组合优化问题之一。
该问题的目标是在给定一组物品和一个固定容量的背包下,选择一些物品放入背包中,使得放入的物品总价值最大化,同时不能超过背包的容量限制。
本实验旨在通过实际操作和数据分析,深入理解0-1背包问题的求解方法和优化策略。
实验设计:本实验采用Python编程语言进行0-1背包问题的求解。
首先,我们设计了一个物品类(Item),每个物品具有重量(weight)和价值(value)两个属性。
然后,我们生成了一组具有不同重量和价值的物品,这些物品将作为输入数据用于求解0-1背包问题。
接下来,我们实现了两种常见的求解方法:动态规划和贪心算法,并对它们的性能进行了对比分析。
实验过程:1. 生成输入数据:我们使用随机数生成器生成了一组具有不同重量和价值的物品。
为了方便观察和分析,我们限定了物品的数量为10个,重量范围为1到10,价值范围为1到100。
2. 动态规划求解:动态规划是解决0-1背包问题的经典方法之一。
我们设计了一个动态规划函数,通过填充一个二维数组来求解最优解。
具体步骤如下:- 初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中选择总重量不超过j的物品的最大总价值。
- 通过递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])求解dp数组。
- 根据dp数组的最后一行最后一列的值,反推出背包中放入的物品。
3. 贪心算法求解:贪心算法是另一种常见的求解0-1背包问题的方法。
它的基本思想是每次选择具有最大单位价值的物品放入背包中,直到背包无法再放入任何物品为止。
具体步骤如下:- 计算每个物品的单位价值(value/weight)。
- 按照单位价值从大到小的顺序对物品进行排序。
- 依次选择单位价值最大的物品放入背包中,直到背包无法再放入任何物品。
完全背包问题和0-1背包问题
1.实验目的(结出本次实验所涉及并要求掌握的知识点)利用动态规划策略解决0-1背包和完全背包问题2.实验内容(结出实验内容具体描述)(1)0-1 Knapsack Problem和Unbounded Knapsack Problem的算法进行实现(2)对0-1Knapsack Problem的算法进行空间优化,使其空间复杂度达到O(W)3.算法描述及实验步骤(用适当的形式表达算法设计思想与算法实现步骤)1. 二维数组的0-1背包空间O(nW)int record[100][100]; // 0-1 背包的二维表void ZO_knapsack_1(int num,int room){// 针对每一个物品进行筛选,看他是否是构成最终max的组成int i,j;for(i=0;i<=num;i++)for(j=0;j<=room;j++)record[i][j]=0; // 初始化record表for(i=1;i<=num;i++){for(j=0;j<=room;j++){if(a[i][0]>j)record[i][j]=record[i-1][j];else{if(record[i-1][j-a[i][0]]+a[i][1]>record[i-1][j])record[i][j]=record[i-1][j-a[i][0]]+a[i][1];elserecord[i][j]=record[i-1][j];}}}}int arry[100]; // 一维记录表int carry[100]; // 是否拿走该物品记录void ZO_knapsack_2(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=room;j>=a[i][0];j--){ //逆序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}3. 一维数组实现完全背包空间:O(W)void UNbounded(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=a[i][0];j<=room;j++){ //顺序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}}4.调试过程及运行结果(详细记录在调试过程中出现的问题及解决方法。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题实验报告
一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。
背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。
背包问题分为0-1背包问题、完全背包问题、多重背包问题等。
本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。
二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。
五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为198。
(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据回溯法,得到最优解价值为198。
2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为300。
实验报告动态规划背包问题
实验报告动态规划背包问题
XXXX⼤学计算机学院实验报告
计算机学院 2017 级软件⼯程专业 5 班指导教师学号姓名 2019年 10 ⽉ 21 ⽇成绩
上机调试程序、程
序运⾏结果
实
int n = ;包问题的算法思想:将前i个物品放⼊容量为w的背包中的最⼤价值。
有如下两种情况:
①若当前物品的重量⼩于当前可放⼊的重量,便可考虑是否要将本件物品放⼊背包中或者将背包中的某些物品拿出来再将当前物品放进去;放进去前需要⽐较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最⾼价值),如果超过之前的价值,可以直接放进去,反之不放。
②若当前物品的重量⼤于当前可放⼊的重量,则不放⼊
背包问题利⽤动态规划的思路可以这样理解:阶段是“物品的件数”,状态就是“背包剩下的容量”,f[i,v]表⽰设从前i件物品中选择放⼊容量为V的背包的最⼤价值。
那么状态转移的⽅法为:
f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}
这个⽅程可以理解为:只考虑⼦问题“将前i个物品放⼊容量为v的背包中的最⼤价值”那么可以考虑不放⼊i,最⼤价值就和i⽆关,就是f[i-1][v],如果放⼊第i个物品,价值就是
f[i-1][v-w[i]]+value[i],只取最⼤值即可。
动态背包问题实验报告
一、实验背景动态背包问题(Dynamic Knapsack Problem)是组合优化领域中的一个经典问题。
该问题源于现实生活中的背包问题,即在一个有限容量的背包中,如何选择物品以使背包的总价值最大化。
动态背包问题通常分为0-1背包问题、完全背包问题、多重背包问题等不同类型。
本实验主要针对0-1背包问题进行探讨。
二、实验目的1. 理解动态背包问题的基本原理和解决方法。
2. 掌握动态规划算法在解决背包问题中的应用。
3. 分析0-1背包问题的特点,提高解决实际问题的能力。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm四、实验内容1. 0-1背包问题介绍0-1背包问题:给定N件物品和一个容量为V的背包,每件物品只能使用一次。
物品的体积和质量分别是c[i]和w[i]。
目标是找出哪些物品可以使背包内物品的总体积不超过V,且总价值最大。
2. 动态规划算法实现(1)状态定义定义dp[i][j]为前i件物品放入容量为j的背包中所能获得的最大价值。
(2)状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i]),其中1 ≤ i ≤ N,0 ≤ j ≤ V。
(3)初始化dp[0][j] = 0,其中0 ≤ j ≤ V。
(4)结果输出输出dp[N][V]即为所求的最大价值。
3. 代码实现```pythondef knapsack(c, w, V):N = len(c)dp = [[0] (V + 1) for _ in range(N + 1)]for i in range(1, N + 1):for j in range(1, V + 1):if j >= c[i - 1]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])else:dp[i][j] = dp[i - 1][j]return dp[N][V]c = [2, 3, 4, 5] # 物品重量数组w = [3, 4, 5, 8] # 物品价值数组V = 8 # 背包容量max_value = knapsack(c, w, V)print("最大价值为:", max_value)```五、实验结果与分析1. 通过实验,我们成功实现了0-1背包问题的动态规划算法,并得到了最大价值为15。
01背包实验报告
01背包实验报告01背包实验报告引言:01背包问题是一种经典的动态规划问题,它的解决方案可以应用于许多实际场景中。
本实验旨在通过实际操作和数据分析,深入理解01背包问题的解决思路和算法效率。
实验目的:1. 理解01背包问题的定义和解决思路;2. 掌握动态规划算法的基本原理;3. 分析不同算法对于不同规模问题的效率差异。
实验过程:1. 实验环境准备:在实验开始之前,我们需要准备一台配置合适的计算机,安装好编程环境和所需的编程语言。
本实验选择使用Python作为编程语言。
2. 实验步骤:a. 定义问题:我们首先需要明确01背包问题的定义。
假设有一个背包,它的容量为C。
有n个物品,每个物品有两个属性:重量w和价值v。
我们的目标是在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。
b. 动态规划算法实现:为了解决01背包问题,我们可以使用动态规划算法。
具体实现步骤如下: - 创建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值;- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时,最大总价值为0;- 对于每个物品i,遍历背包容量j,根据以下递推关系更新dp数组的值:- 如果物品i的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择物品i;- 如果物品i的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),即选择物品i或不选择物品i中的最大值;- 最终,dp[n][C]即为所求的最大总价值。
c. 实验数据生成:为了验证算法的正确性和效率,我们需要生成一些测试数据。
我们可以使用随机数生成器生成一定规模的测试数据,包括背包容量、物品重量和价值等。
d. 算法效率分析:在实验中,我们可以通过分析不同规模问题的求解时间来评估算法的效率。
我们可以使用计时器来记录算法执行的时间,并绘制出不同规模问题的求解时间与问题规模的关系图。
连续背包问题实验报告
一、实验背景连续背包问题(Knapsack Problem)是一种经典的组合优化问题,其基本模型是在一个容量有限的背包中,如何从n种物品中选择若干种物品,使得所选物品的总重量不超过背包的容量,且所选物品的总价值最大。
连续背包问题与0-1背包问题不同之处在于,连续背包问题要求选中的物品必须连续放置在背包中。
二、实验目的1. 了解连续背包问题的基本概念和解决方法。
2. 通过实验验证不同算法在连续背包问题上的性能。
3. 分析算法的优缺点,为实际应用提供参考。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 背包容量:1004. 物品数量:505. 物品重量和价值的随机生成四、实验方法1. 生成实验数据:随机生成50种物品,每种物品的重量和价值在1到100之间。
2. 设计算法:分别采用动态规划、贪心算法和遗传算法解决连续背包问题。
3. 实验步骤:a. 使用动态规划算法求解连续背包问题。
b. 使用贪心算法求解连续背包问题。
c. 使用遗传算法求解连续背包问题。
d. 比较三种算法的求解结果和运行时间。
五、实验结果与分析1. 动态规划算法动态规划算法是一种常用的解决连续背包问题的方法。
通过构建一个二维数组dp,其中dp[i][j]表示在背包容量为j的情况下,前i种物品的最大价值。
动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。
实验结果显示,动态规划算法在连续背包问题上的求解结果较为理想,但运行时间较长。
2. 贪心算法贪心算法是一种启发式算法,其基本思想是在每次选择物品时,优先选择价值最大的物品。
贪心算法的时间复杂度为O(nlogn),其中n为物品数量。
实验结果显示,贪心算法在连续背包问题上的求解结果较差,且运行时间较短。
3. 遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
通过初始化种群、选择、交叉和变异等操作,不断优化求解结果。
遗传算法的时间复杂度为O(GF),其中G为迭代次数,F为每个个体的编码长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学计算机学院实验报告计算机学院2017级软件工程专业 5 班指导教师
学号姓名2019年10 月21 日成绩
实验内容、上机调试程序、程序运行结果
System.out.println("选中的物品是第");
for(int i=1;i<=n;i++){
for(int j=1;j<=maxweight;j++){
//当前最大价值等于放前一件的最大价值
maxvalue[i][j] = maxvalue[i-1][j];
//如果当前物品的重量小于总重量,可以放进去或者拿出别的东西再放进去
if(weight[i-1] <= j){
//比较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最高价值)
if(maxvalue[i-1][j-weight[i-1]] + value[i - 1] > maxvalue[i-1][j]){
maxvalue[i][j] = maxvalue[i-1][j-weight[i-1]] + value[i - 1];
} }
} }
return maxvalue[n][maxweight]; }
public static void main(String[] args) {
int weight[] = {2,3,4,5};
int value[] = {3,4,5,7};
int maxweight = 8;
System.out.println(knapsack(weight,value,maxweight));
} }
完成效果:。