继电器常用自锁电路

合集下载

继电器与控制电路

继电器与控制电路

0.2.4.2 双重连锁的正反转控制电路
这个正、反转控 制电路有何不足?
正转时要想反转 必须先按停止按 钮,再按反向起 动按钮,反之亦 然。有时候这会 带来不方便。 如何改进 控制电路, 实现一步 操作,能 立即反转?
按钮互锁:将SB2的常闭按钮串联在KM2的线圈电路中,按下SB2时就会先停止KM2, 稍后接通KM1,实现停KM2和开KM1的一次操作;将SB3的常闭按钮串联在KM1的线 圈电路中,就能实现停KM1和开KM2的一次操作。这样就实现了正、反转立即转换。
L1
L2
去控制
L3
电路
N
KM1
KM2
KM3
KM4
FR1
FR2
FR3
FR4
3~
3~
3~
3~
M1
M2
M3
M4
原液A泵
原液B泵
搅拌机
出液
FU SB1 KM1 KT1 KM2 KT2 KM3 KT3 KM4
KT1
KT2
KT3
KT4
KM1 KT1 KM2 KT2 KM3 KT3 KM4 KT4
时间继电器应用例2 用定时控制实现程序自动控制 (动作顺序:起动-加 液-加 液-搅拌-出液-停)
如何改进控 制电路,从 而避免上述 情况发生?
课件
FLAS H课 件
互锁:将KM1的常闭触点串联在KM2线圈的电路中,实现KM1 吸合时KM2不可能吸合的自动控制;将KM2的常闭触点串联在 KM1线圈的电路中,实现KM2吸合时KM1不可能吸合的自动控 制。这样就可以完全避免KM1、KM2同时吸合造成电源短路。
继电器控制系统
简介 · 复习
0.1 常用控制电器

点动、自锁控制线路

点动、自锁控制线路

交流 接触器
电机 停转
KM
工作原理: 启动: 按下SB2——KM线圈得电——KM主触头闭合 KM辅助常开触点闭合——电 动机启动连续运转 停止:
按下SB1——KM线圈失电——KM主触头断开
KM 辅助常开触头断开—— 电动机失电停止转动
分析: 当松开启动按钮SB2后,SB2的常开触头虽然处于 断开状态,但接触器KM的辅助常开触头闭合时已 经将SB2短路,使控制电路仍然保持接通,接触器 KM继续得电,电动机M实现了连续运转。 自锁:当启动按钮松开后,接触器通过自身的辅助 常开触头使其线圈保持得电的作用。 位置:与启动按钮并联
正。
比较电路
1、三相笼型异步电动机单向直接启动电路
(2) 接触器控制
L1 L2 L3 FU2 QS FU1 FR
停车 按钮
起动 按钮
SB1
KM
SB2
KM
自保持
FR U V M 3~ W FU2 KM
热继电器
FR
单向直接启动接触器控制线路
1、三相笼型异步电动机单向直接启动电路 3~ 停车按钮 开关QS
思考:
当按下图中的停止按 钮SB1,电动机失电 停转后,松开SB1使 其触头回复闭合,电 动机会不会自动重新 启动?为什么?
答案:
在按下停止按钮SB1切断电路时,接触器KM失 电,其自锁触头已经断开解除了自锁,而这时 SB2也是断开的,所以当松开SB1按钮使其常闭 触头恢复闭合后,接触器也不会自行得电,电动
思考与练习 1、用两个复合式按钮设计电动机“正反转” 控制电路。
2、如何实现电机的自动往复运动?
计与调试 2.3 电动机“Y-△转换”控制线路的设
知识点: ★三相异步电动机“Y-△转换”控制线路的工作原理 ★时间继电器的工作原理 技能点: ★三相异步电动机“Y-△转换”控制线路的接线、安装、调试 ★时间继电器的使用和接线方法

《自锁控制电路》课件

《自锁控制电路》课件

优化电源设计
采用高效的电源设计方案,提高 电源转换效率,降低能耗。
引入节能控制技术
通过引入节能控制技术,如智能 控制、PWM控制等,根据实际 需求调整电路工作状态,实现节
能目的。
06
自锁控制电路的发展趋势与展 望
技术发展趋势
高效能
随着科技的发展,自锁控制电路在效率和性能方面将不断提升, 实现更快速、更精确的控制。
反馈部分通常由传感器、测量仪表等元件组成。
通过反馈信号,控制部分可以实时了解系统的运行状态 ,并根据需要进行调整和控制。
03 自锁控制电路的工作流程
启动阶段
01
02
03
启动信号触发
当按下启动按钮或接收到 启动信号时,自锁控制电 路开始工作。
继电器吸合
在启动信号的作用下,继 电器开始吸合,电路进入 工作状态。
THANKS
控制故障
总结词
控制故障可能导致自锁控制电路无法按照预期进行工作。
详细描述
控制故障可能由控制电路元件损坏、控制逻辑错误、控制信 号传输问题等原因引起。排除控制故障需要检查控制电路元 件是否正常,控制逻辑是否正确,控制信号传输是否畅通, 并采取相应措施进行修复或更换。
执行故障
总结词
执行故障可能导致自锁控制电路的执行机构无法正常工作。
智能化
随着人工智能和物联网技术的普及,自锁控制电路将逐渐实现智能 化,具备自主学习和决策的能力。
集成化
未来自锁控制电路将更加集成化,体积更小、重量更轻,方便携带 和应用。
应用领域拓展
工业自动化
01
随着工业自动化程度的提高,自锁控制电路将在智能制造、机
器人等领域得到广泛应用。ቤተ መጻሕፍቲ ባይዱ

继电器控制电路

继电器控制电路

山东亨达煤业电工培训班
时间继电器触头类型 瞬动开关
常开触点 常闭触点
常开触点 通电延时闭合, 通电延时闭合,断电瞬间打开
延 时 常开触点 开 通电瞬间闭合,断电延时打开 通电瞬间闭合, 关
常闭触点 通电瞬间打开, 通电瞬间打开,断电延时闭合 常闭触点 通电延时断开, 通电延时断开,断电瞬间闭合
4. 热继电器
M 3~
M 3~
山东亨达煤业电工培训班
1.按钮 手动切换电器 按钮(手动切换电器 按钮 手动切换电器)
按钮常用于接通和断开控制电路。 按钮常用于接通和断开控制电路。 按钮的外形图和结构如图所示。 按钮的外形图和结构如图所示。
常闭触点
(a) 外形图
常开触点
(b) 结构
山东亨达煤业电工培训班
按钮开关的结构和符号
山东亨达煤业电工培训班
(3) 电子式时间继电器
电子式时间继电器具有体积小、重量轻、结构紧凑、 电子式时间继电器具有体积小、重量轻、结构紧凑、延时范围 延时精度高、可靠性好、寿命长等特点, 广、延时精度高、可靠性好、寿命长等特点,在启动柜自动控 制场合作延时控制元件。我矿在很多启动柜及部分80开关中用 制场合作延时控制元件。我矿在很多启动柜及部分 开关中用 到。
主触点
M 3~
辅助触点
电机
山东亨达煤业电工培训班
2.2 真空交流接触器
用于频繁地接通和断开大电流电路的开关电器。 用于频繁地接通和断开大电流电路的开关电器。灭 弧能力强,主触点电火花不外露,使用于煤矿井下, 弧能力强,主触点电火花不外露,使用于煤矿井下, 我矿的高低压馈电开关、120、80开关均为此 开关均为此。 我矿的高低压馈电开关、120、80开关均为此。 弹簧 线圈 铁心 主触点

低压电工电动机自锁接线方法

低压电工电动机自锁接线方法

低压电工电动机自锁接线方法
电动机自锁的接线方法主要涉及控制电路的连接。

以下是具体的步骤:
1. 选择好交流接触器的电压,如果是380V可以直接从三根相线中抽出两根控制,如果是220V电压的交流接触器,那就需要另外一根零线。

2. 准备两个交流接触器,一根相线进入热继电器的常闭触点以后,然后再连接停止按钮,分别进入两个启动按钮。

3. 两个启动按钮上并联各个交流接触器的常开触点,然后回到交流接触器线圈,回到另外一根相线(零线),这就是自锁电路。

此外,为了防止两相电源短路事故,接触器K M 1和K M 2的主触头决不允许同时闭合。

这就是所谓的互锁环节,在电路中起到安全保护作用。

以上方法仅供参考,由于存在一定的危险性,所以建议非专业人士不要自行操作,应寻求专业电工的帮助。

电工中的自锁互锁联锁的概念

电工中的自锁互锁联锁的概念

电工中的自锁互锁联锁的概念本文主要是关于自锁互锁联锁的相关介绍,并着重对自锁互锁联锁的原理及其应用进行了详尽的阐述。

自锁互锁在接触器线圈得电后,利用自身的常开辅助触点保持回路的接通状态,一般对象是对自身回路的控制。

如把常开辅助触点与启动按钮并联,这样,当启动按钮按下,接触器动作,辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。

一般来说,在启动按钮和辅助触点并联之外,还要在串联一个按钮,起停止作用。

点动开关中作启动用的选择常开触点,做停止用的选常闭触点。

主电路从三相电源端点L1,L2,L3引来,经电源开关QS,熔断器FU和接触器KM的三对主触点KM到电动机M。

控制电路(或称辅助电路)由按钮SR和接触器线圈KY组成。

I.工作原理合上电源开关QS,按启动按钮SBl*接触器KM的线圈通电*在主电路中的三对主触头闭合一电动机获电而启动;与此同时,接触器KM的常开辅助触点闭合,将按钮SBI 的常开触点短接。

从按钮SB1接通到接触器KM常开触点闭合只需数十毫秒的时间,因此手松开启动按钮后线圈KM已完全可以通过辅助触头KM (1 -2)而维持自己的导电通路,不再受启动按钮SB1控制,也就确保了松开启动按钮SB1后电动机的继续运行。

把与启动按钮SBI并联的常开辅助触头KM (1一2)叫接触器KM的门锁触头,又叫自保触头。

因接触器的释放时间比吸合时间还短,所以只需按一下停止按钮SB2,接触器KM线圈断电便立即释放,其常开辅助触头断开,主触头也断开,电动机就停止运行。

互锁,说的是几个回路之间,利用某一回路的辅助触点,去控制对方的线圈回路,进行状态保持或功能限制。

一般对象是对其他回路的控制。

联锁,就是设定的条件没有满足,或内外部触发条件变化引起相关联的电气、工艺控制设备工作状态、控制方式的改变。

“在一个回路中,即有自锁又有互锁的就叫做“联锁””这种说法并不科学,也不全面。

原理。

点动自锁的控制原理

点动自锁的控制原理

点动自锁的控制原理
点动自锁是一种常用的电气控制原理,广泛应用于电气设备和系统中。

点动自锁的控制原理如下:
1. 控制电路中引入一个称为自锁接触器或自锁继电器的元件。

该元件有两个接点,一个是控制接点,通过外部控制信号控制开闭;另一个是自锁接点,通过自身的动作状态来控制开闭。

2. 在正常情况下,自锁接触器的控制接点是闭合的,自锁接点是断开的。

3. 当外部控制信号到达,控制接点闭合,使得自锁接触器的线圈通电,电动机等负载开始运行。

4. 同时,自锁线圈通电后,自锁接点也将闭合。

此时,即使释放外部控制信号,控制接点打开,自锁接触器仍能保持闭合状态,电动机继续运转。

5. 如果需要停止运行,可以通过一个额外的断开按钮,使得自锁接触器的线圈失去电源,自锁接点断开,电动机停止运行。

电工都必须掌握的基础知识-自锁与互锁的含义_自锁与互锁的作用原理图解

电工都必须掌握的基础知识-自锁与互锁的含义_自锁与互锁的作用原理图解

电工都必须掌握的基础知识:自锁与互锁的含义_自锁与互锁的作用原理图解自锁与互锁,是每个电工都必须掌握的基础知识,但往往新手电工对此比较容易混淆。

自锁与互锁的含义自锁与互锁需要用到的元件一般来说,最常用的元件是接触器和继电器(二者原理相同)。

自锁与互锁的作用自锁与互锁均对电路有一定的保护作用,主要目的是为了防止电路失压,维护电路的正常运行。

自锁与互锁的定义自锁:依靠接触器自身辅助触头而保持接触器线圈通电的现象。

互锁:利用接触器常闭辅助触头作为相互制约的控制关系。

自锁与互锁的作用原理图解自锁:一般利用接触器线圈、接触器常开触点以及按钮使用,如下图:图中,按钮SB2,接触器线圈KM和接触器常开触点KM共同组成了自锁装置。

该装置可以保证按下按钮SB2时电路可以持续供电。

工作过程:按下按钮SB2后,电路中通电,接触器线圈KM得电,且接触器常开触点KM闭合(接触器特性),整个电路拥有持续电流。

松开按钮SB2后,按钮SB2断开(按钮特性),由于接触器常开触点KM已经闭合,电路依然可以正常供电。

如果没有自锁——如果没有接触器KM接入电路,则按下按钮SB2后整个电路得电,松开按钮SB2后,电路断开。

互锁:用于两个支路相互制约,一般由两个接触器的线圈和常闭触点配合使用,如下图:图中自锁与互锁并存,以SB1所在支路为例,接触器KM1的线圈、常闭触点和SB1相互配合,共同制约SB2所在支路。

工作过程:按下SB1,支路自锁,接触器常开触点KM1闭合。

同时,接触器KM1常闭触点KM1断开。

此时再按下SB2,电路无反应。

如果没有互锁——如果没有接触器常闭触点KM1和KM2,且同时按下SB1和SB2或在SB1自锁后再按下SB2,会导致两个支路同时供电。

若两个支路不能同时供电,如电动机正反转电路,则会造成危险。

常用继电器-接触器控制电路解析

常用继电器-接触器控制电路解析

常用继电器-接触器控制电路解析1.利用速度继电器对三相异步电动机反接制动原理:SB2按下→KM1有电且自锁→电机全压启动,转速很快达到120r/min,此时速度继电器触点动作,为反接制动做好准备→当SB1按下→KM1失电,同时KM2得电并自锁保持,串接制动电阻R反接制动(将电流消耗到电阻R上)→转速迅速下降,当转速小于100r/min时,速度继电器的触点复位→切断KM2,使其失电,制动过程结束。

2.三相异步电动机Y-∆起动原理:SB1(起动按钮)按下→KM1得电并且自锁,同时时间继电器KT得电(开始计时),KM3得电→KM1,KM3得电,三相异步电动机接成Y型起动→当设定的时间到达后,延时继电器KT的延时断开触点使KM3失电,延时继电器KT的延时接通触点使KM2得电→此时KM1得电,KM2得电,KM3失电→三相异步电动机接成∆起动。

3.定子串电阻降压启动原理:SB1按下→KM2得电,并且自锁,同时时间继电器,KT得电开始计时→KM2得电,定子串接电阻R降压启动→当设定的时间到后,KT的延时接通触点使KM1得电,并且自锁→KM1得电,在主电路中相当于短接了电阻R,三相异步电动机全压运行。

4.自耦变压器降压启动(带指示灯)原理:SB2按下→KM1得电并且自锁,同时KT得电(开始计时)→KM1有电,在主电路中,自耦变压器抽头降压启动→当设定时间到后,延时继电器常开触点闭合,中间继电器K得电并自锁→使得KM1断电,KM2得电→三相异步电动机全压工作。

控制电路中的变压器使指示灯工作在安全电压下(一般,交流36V)→HL3为上电指示灯(K和KM1均不得电);HL2为降压启动指示灯(K失电,但KM1得电);HL3为全压工作指示灯(KM2得电)。

5.转子绕组串电阻启动(针对于绕线式异步电动机)原理:合上QS,SB2按下→KM4得电,并自锁保持(此时,电动机转子串接全部电阻降压启动)→中间继电器KA4得电,为KM1,KM2,KM3的得电做好准备,由于刚启动时电流很大,KA1-KA3吸和电流相同,因此同时得电吸和,其常闭触点都断开,使KM1-KM3处于失电状态,转子电阻全部串入,达到限流和提高转矩的目的。

继电器控制部分优秀课件

继电器控制部分优秀课件
如:自锁控制、互锁控制、正常工作与点动的联锁控制。
顺序启动、同时停止控制线路:图 3-6(A)
只有KM1线圈通电后,KM2线圈才 有可能通电;
按下SB1,两台电机(KM1、KM2) 停止。
继电器控制部分优秀课件
顺序启动、逆序停止控制线路:图 3-6(B)
启动:SB2按下---KM1得电---M1启动 KM1自锁、KM1使KM2可能接通 SB4按下—KM2得电---M2启动、
ห้องสมุดไป่ตู้
带中间继电器点动控制电路:
增加中间继电器和SB2按钮。 按下SB2,KA的的常开触点使KM得电,电 机启动; 继电器控制松部分开优S秀B课2,件 KM失电,电机停止。
三、多地控制线路
需要多地控制时,启动按 钮并联,停止按钮串联。
继电器控制部分优秀课件
四、可逆运行控制线路
电动机“正--停--反”可逆控制线路: 正转:SB2按下---接触器KM1主触点闭
先动作优先电路:图 3-5(A) 后动作优先电路:图 3-5(B)
无论哪一台设备先动作,其他设备
多台设备,任一台工作,前所有
则不能动作。
已动作的设备自动停止工作。
继电器控制部分优秀课件
第二节 按联锁控制的规律
按联锁控制的规律:在生产线上某些环节或一台设备的某些 部件之间具有相互制约或相互配合的控制,均称为联锁控制。
合----电机正转(KM1常开辅助 触点自锁,KM1常闭辅助触点互 锁) 停止:SB1按下 反转:SB3按下---接触器KM2主触点闭 合----电机反转(KM2常开辅助 触点自锁,KM2常闭辅助触点互 锁)
电动机“正---反---停”可逆控制线路:
正转:SB2按下---接触器KM1主触点闭合----电机正转

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理电气控制回路要先将分别控制正反转停止的两个按钮串联接好,随后将两个分别控制正反转启动的两个按钮并联接好后与停钮的一端接好,停钮的另一端准备与电源连接,然后再把分别正转反转主接触器的常开辅助接点分别并联在各自相对应的启动按钮两端,之后再将各自主接触器的常闭辅助接点串联到对方的启动回路中,也就是说正转的常闭串接在反转启动按钮的一端,相对应反转的常闭接点要与正转的启动按钮一端串联,起到互锁的作用,(就是说正转运行时期接触器常闭辅助接点会将反转的启动回路断开,反之则依然是这个道理,为的是防止同时期按下下按钮会造成一次回路的相间短路,这个待会再解释),然后将两个常闭接点的另一端分别与所对应的启动回路的主接触器的线圈一段进行连接(就是说控制正转地启动的回路就串接正转接触器的线圈一段,反转起动控制回路就与反转的主接触器线圈一端串接,不要弄混了)将两个线圈的另一端并联接在一起后接入热继电器的常闭接点的一端,热继电器常闭接点的另一端准备与中性点N或另一相线连接,这要看主接触器线圈的电压(220V就与中性点N连接,380v的话就接另外一相线),还需要在控制回路的最前端即停止按钮准备接电源的一端在接相线制前要经过一个控制保险,现在只能说控制回路接好了。

下面就接主回路,主回路需要2个接触器,分别用于正转和反转时接通主回路,所以将两个接触器主触头的上端分别与三相交流电源的3条相线连接,而主触头的下端对应的触头上则要将其中任意两条线互换一下,然后按照互换以后的顺序接入电动机绕组连接好以后的3个连接片上(比如说三相电源ABC顺序接到一个接触器上口,并在此处按照相同的顺序与另外一个接触器上口并联,然后其中一个接触器的下口还按照ABC的顺序引出线接到电机绕组连接片,而同时要按照ACB或BAC或CBA的顺序将引出线接到另外一个接触器的下口),另外还要在接触器到电机接线盒接线处之间先行串接热继电器的主接点,同时还要在电源引线与接触器上口之间串接熔断器。

磁保持继电器应用电路

磁保持继电器应用电路

磁保持继电器应用电路磁保持继电器应用电路1. 简介磁保持继电器是一种特殊类型的继电器,其独特的设计可使继电器在停电或控制信号消失后保持原状态。

这种继电器常被应用于需要长时间保持状态或需要手动复位的电路中。

本文将深入探讨磁保持继电器应用电路,从基础的概念开始逐步展开。

2. 基本工作原理磁保持继电器的基本工作原理是利用电磁吸引力来保持继电器的状态。

当控制电路通电时,继电器的线圈产生强磁场,使得可动接点吸引到线圈上的磁铁上,完成闭合或断开电路的操作。

一旦控制电路断电,继电器的线圈磁场消失,但由于可动接点与磁铁之间的吸引力,继电器可保持原来的状态。

3. 磁保持继电器的应用场景磁保持继电器广泛应用于需要长时间保持状态的电路中,如电气控制系统、机械设备和自动化系统等。

具体应用场景包括:3.1 冷冻设备控制冷冻设备需要在停电后保持关闭状态以避免冷空气的浪费。

磁保持继电器可用于控制电源供应,一旦停电,继电器将保持冷冻设备的关闭状态,并在电源恢复时自动恢复。

3.2 电动机控制电动机通常需要通过继电器启动和停止。

在停电后,磁保持继电器可保持电动机运行状态,以免重新启动时造成过大的启动电流冲击。

3.3 电源切换在一些场景中,需要实现电源切换以确保连续供电。

磁保持继电器可用于切换电源,保持切换后的状态,同时避免因电源波动而导致系统故障。

4. 优点和缺点磁保持继电器在特定的应用场景中具有一些优点,但也存在一些缺点。

4.1 优点4.1.1 高稳定性:磁保持继电器的状态保持时间长,可靠性高,具有很好的稳定性。

4.1.2 低功耗:磁保持继电器工作时消耗的电流较小,能够降低系统的功耗。

4.1.3 耐高温:磁保持继电器可在高温环境下工作,对温度的适应性较强。

4.2 缺点4.2.1 较大体积:磁保持继电器相对于其他类型的继电器来说,体积较大,占据的空间较多。

4.2.2 价格较高:相较于普通继电器,磁保持继电器的价格较高,增加了系统成本。

点动、自锁控制线路 PPT

点动、自锁控制线路 PPT

问:热继电器为什么只能作过载保护,不能作短路保护? 因为热继电器的热惯性大,即热继电器的双金属片受热
膨胀弯曲需要一定的时间。当电动机发生短路时,由于短 路电流很大,热继电器还没来得及动作,供电线路和电源 设备可能就已经损坏。而在电动机启动时,由于启动时间 很短。热继电器还没来得及动作,电动机启动已经完毕。 满足电动机启动电流要求。所以,短路保护和过载保护不 能互相代替使用。
电动机在运行的过程中,如果长时间负载过大,或缺相运行, 都可能使电动机定子绕组的电流增大,超过其额定值。在这 种情况下,熔断器往往并不熔断,从而引起定子绕组过热, 使温度升高。若温度超过允许温度,就会造成绝缘损坏,缩 短电动机的使用寿命,严重时甚至会烧毁电动机的定子绕组。 因此必须对电动机采取过载保护。
交流
M
接触器
3~
KM
开关QS
熔断器FU 直 接 起 动 控 制 电 路
热继电器
FR
3~
停车按钮
SB2
起动按钮
SB1
松开 SB1
电机连
续运转
交流
M
接触器
3~
KM
开关QS
熔断器FU 直 接 起 动 控 制 电 路
热继电器
FR
3~
停车按钮
SB2
起动按钮
SB1
按SB2
电机
停转
交流
M
接触器
3~
KM
工作原理:
自锁:当启动按钮松开后,接触器通过自身的辅助 常开触头使其线圈保持得电的作用。
位置:与启动按钮并联
思考:
当按下图中的停止按 钮SB1,电动机失电 停转后,松开SB1使 其触头回复闭合,电 动机会不会自动重新 启动?为什么?

【熟视无睹】电气互锁、电气自锁、电气闭锁

【熟视无睹】电气互锁、电气自锁、电气闭锁

【熟视无睹】电气互锁、电气自锁、电气闭锁奥科远电器电气自锁与电气互锁作为电气最基础的二次线保护方式,是每个电工都必须学会并且熟练运用的,而电气闭锁是一种装置,但人们常常把电气闭锁和电气互锁混淆了……接下来我们一起了解一下这三个名词的一点相关知识。

首先对自锁和互锁的概念要清楚:自锁:依靠断路器、接触器自身辅助触头而保持接触器线圈通电的现象。

互锁:利用断路器、接触器常闭辅助触头作为相互制约的控制关系。

一、电气互锁电气互锁:(电气人常说的“电气闭锁”)指的是常用电源工作的时候,备用电源不得投入运行,常用电源停止工作后,备用电源自动投入运行。

常用电源恢复供电后可以自动切换到常用电源(当然也可以不切换),电气实现这种功能称为电气互锁,也可以叫电气联锁的。

电气控制中互锁主要是为保证电器安全运行而设置的,它主要是由两电器件互相控制而形成互锁的。

1主要手段它实现的手段主要有三个:一个是电气互锁;二是机械互锁;三是电气机械联动互锁;2互锁原理将两个继电器的常闭触电接入另一个继电器的线圈控制回路里。

这样,一个继电器得电动作,另一个继电器线圈上就不可能形成闭合回路。

但也可以用机械联杆实现这一动作。

三是电气机械联动互锁。

如高压柜内的仃电,不断开开关,隔离开关就拉不开,上述都拉不开就合不上接地刀闸,拉不接地开刀闸,就打不开高压柜门,就不能进行开关的检查等到工作。

电气互锁就是通过继电器、接触器的触点实现互锁,比如电动机正转时,正转接触器的触点切断反转按钮和反转接触器的电气通路。

机械互锁就是通过机械部件实现互锁,比如两个开关不能同时合上,可以通过机械杠杆,使得一个开关合上时,另一个开关被机械卡住无法合上。

电气互锁比较容易实现、灵活简单,互锁的两个装置可在不同位置安装,但可靠性较差。

机械互锁可靠性高,但比较复杂,有时甚至无法实现。

通常互锁的两个装置要在近邻位置安装。

二、电气自锁自锁电路是电路中的一种,一旦按下开关,电路就能够自动保持持续通电,直到按下其它开关使之断路为止。

常见自锁电路有哪些 如何实现自锁

常见自锁电路有哪些 如何实现自锁

常见自锁电路有哪些如何实现自锁本文主要是关于自锁电路的相关介绍,并着重对自锁电路的原理及其应用进行了详尽的阐述。

自锁电路自锁电路是电路中的一种,一旦按下开关,电路就能够自动保持持续通电,直到按下其它开关使之断路为止。

在通常的电路中,按下开关,电路通电;松开开关,电路断开。

工作原理:启动。

电机启动时,合上电源开关QS,接通整个控制电路电源。

按下启动按钮其常开点闭合,接触器线圈KM得电可吸合,并接在两端的辅助常开同时闭合,主回路中:主触头闭合使电动机接入三相交流电源启动旋转。

二次回路中:按钮按下后把电送到KM线圈,KM辅助触点接通后也为KM线圈供电,这样就形成了两路供电。

松开启动按钮时,虽然一路已经断开,但KM线圈仍通过自身的辅助触点这一通路保持给线圈通电,从而确保电机继续运转。

这种依靠接触器自身常开辅助触点而使其线圈保持通电的方式,称为接触器自锁,也叫电气自锁。

这对起自锁作用的辅助常开触点称为自锁触点,这段电路称为自锁电路。

自锁电路外文名Self-locking circuit。

按下开关电路能自动保持持续通电的电路。

所属学科电气工程。

继电器电路可以将开关串联在继电器的主触点(继电器线圈)上。

与此同时,将继电器的一个空余的副触点(常开触点)与开关并联(并且与主触点接通)。

这样一来,按下开关,副触点(常开触点)吸合,电路通电;松开开关之后,由于副触点已经吸合,并向继电器主触点的线圈供电,线圈反过来又保持副触点吸合。

再将线路从继电器输出端引出,电路就可以保持持续的通电了。

过流保护电路在电力电子器件驱动电路中,当做器件过流保护时需要加入自锁电路,防止进一步烧坏功率器件。

如果驱动IC没有自锁功能就需要加入自锁电路。

常用的最简单的自锁电路可以用两个三极管来实现,也已经被广泛使用。

常见自锁电路有哪些电气控制中互锁主要是为保证电器安全运行而设置的。

它主要是由两电器件互相控制而形成互锁的。

它实现的手段主要有三个,一个是电气互锁。

自锁电路图的工作原理

自锁电路图的工作原理

自锁电路图的工作原理自锁电路是一种常见的电子电路,它具有自动保持状态的特性,在实际应用中有着广泛的用途。

自锁电路通常由几个基本元件组成,包括触发器、门电路等,通过它们的相互作用,实现了电路的自锁功能。

下面我们将详细介绍自锁电路的工作原理。

首先,让我们来了解一下自锁电路的基本组成部分。

自锁电路通常由两个或多个触发器组成,这些触发器可以是RS触发器、D触发器、JK触发器等。

此外,还需要使用门电路来实现自锁的功能,常见的门电路有与门、或门、非门等。

这些元件的相互作用构成了自锁电路的基本结构。

自锁电路的工作原理可以简单概括为,当输入信号满足一定条件时,电路将自动保持当前状态,直到满足另一条件才会改变状态。

这种自动保持状态的特性使得自锁电路在实际应用中具有很大的灵活性和便利性。

在自锁电路中,触发器起着至关重要的作用。

触发器是一种能够存储信息的元件,它可以在接收到触发信号时改变输出状态,并且可以一直保持这个状态直到下一次接收触发信号。

通过合理地配置触发器的输入和输出,可以实现各种各样的自锁功能。

除了触发器,门电路也是自锁电路中不可或缺的部分。

门电路可以对输入信号进行逻辑运算,并输出相应的结果。

在自锁电路中,门电路常常用来控制触发器的输入信号,从而实现自锁功能。

不同类型的门电路可以实现不同的逻辑运算,因此可以根据实际需求选择合适的门电路。

自锁电路的工作原理还涉及到触发条件和保持条件的概念。

触发条件是指当输入信号满足一定条件时,电路将改变状态;而保持条件是指电路在改变状态后可以自动保持当前状态。

通过合理地设计触发条件和保持条件,可以实现各种不同的自锁功能,满足不同的应用需求。

总的来说,自锁电路通过触发器和门电路的相互作用,实现了自动保持状态的功能。

在实际应用中,可以根据具体的需求选择合适的触发器和门电路,设计出符合要求的自锁电路。

自锁电路的工作原理相对简单,但在实际应用中有着广泛的用途,是电子电路中的重要组成部分。

中间继电器常用用法

中间继电器常用用法

中间继电器的常用用法包括以下几种:
1. 代替小型接触器:中间继电器的触点具有一定的带负荷能力,当负载容量较小时,可以用来替代小型接触器,如电动卷闸门和一些小家电的控制。

2. 增加接点数量:在电路控制系统中,一个接触器的接点需要控制多个接触器或其他元件时,可以在线路中增加一个中间继电器。

3. 增加接点容量:虽然中间继电器的接点容量不大,但具有一定的带负载能力,同时其驱动所需要的电流又很小,因此可以用中间继电器来扩大接点容量。

4. 转换触点状态:将常开触点转换为常闭触点时,可以用一个中间继电器进行触点的转换。

5. 传递故障信号:中间继电器由马达保护器的故障点启动,并且还自带自锁的电路,用于传递故障信号。

这种电路通常会有一个复位按钮来复位中间继电器。

6. 扩展运行信号:一个中间继电器由主接触器的常开触点控制,其作用是为主接触器扩展触点,也可以理解成运行信号的扩展。

7. 控制电磁阀动作:当PLC输出点为24VDC,需要控制一个220VAC 的电磁阀时,可以从电气角度考虑加一个24VDC的中间继电器,由中间继电器来控制电磁阀的动作。

请注意,以上信息仅供参考,如有需要,建议咨询专业技术人员。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档