大学物理下答案第六章

合集下载

大学物理第六章题解

大学物理第六章题解

第六章 经典质点系动力学6-1.如图,半圆柱立在光滑水平面上从静止开始到下,试判断质心C 的运动方向.解 建立如图x 轴,由于水平方向外力分量之和为零0ix F =∑,所以水平方向动量守恒x P C =.因初始时静止,故 0x Cx P mv == 由d 0d C Cx x v t ==,可知C x =常量,质心C 竖直向下运动. 6-2.如图,船的质量为5000kg ,当质量为1000kg 的汽车相对船静止时,船尾螺旋桨的转动可使船以加速度20.2m s 前进.在船行进中,汽车相对于船以加速度20.5m s 沿船前进的相反方向加速运动,求此时船的加速度的大小.解 将船与汽车作为质点系.当汽车相对于船静止时,船的加速度即为质点系质心的加速度,根据质心运动定理可知船尾螺旋桨转动时的推力()=(50001000)021200(N)e C F ma .=+⨯=在船的行进过程中,以船的行进方向为x 、x '轴正方向.设船相对于岸的速度、加速度用x 、x 表示,汽车相对于船的速度、加速度用x '、x '表示,则汽车相对于岸的速度、加速度为x x '+、x x '+.根据质点系的动量定理()d [()]d e m x m x x F t'++=船车 即 ()()]e m x m x x F '++=船车500010001000051200x x .+-⨯=可求出此时船的加速度的大小2028m s x .=.6-3.三只质量均为0m 的小船鱼贯而行,速率都是v ,中间一船同时以相对本船的速率u 沿水平方向把两个质量均为m 的物体抛到前后两只船上,求两物体落入船后三只船的速率(忽略水对船的阻力).解 以船行方向为速度正方向,设两物体落入船后三只船的速率为1v 、2v 、3v . 以中间船及两物体为质点系,因为在抛出物体的过程中水平方向不受外力,所以质点系水平方向动量守恒00222(2)()()m m v m v m v u m v u +=+++-所以 2v v =以前船与抛入物体为质点系,因为在抛入物体的过程中水平方向不受外力,所以质点系水平方向动量守恒001()()m v m v u m m v ++=+所以 10mu v v m m=++ 以后船与抛入物体为质点系,同样,根据质点系水平方向动量守恒003()()m v m v u m m v +-=+30mu v v m m =-+6-4.质量为70kg 的人和质量为210kg 的小船最初处于静止,后来人从船尾向船头走了3.2m ,不计船所受阻力,问船向那个方向运动,移动了几米?(用质心运动定理求解.)解 建立与地面固连的坐标系Ox ,x 轴的方向为从船尾指向船头.人视为质点1,坐标为1x ;船视为质点2,坐标为2x ;此二质点构成质点系.质点系所受合外力为零,由质心运动定理可知质点系质心加速度为零;由于质心速度为常量,质点系初始状态静止,所以质心速度为零,即质心位置保持不变 110220112201212C C m x m x m x m x x x m m m m ++===++ 11220m x m x ∆+∆=由于123.2x x ∆=+∆,代入上式得12123.2 3.2700.8(m)70210m x m m ⨯∆=-=-=-++ 即船向后移动了0.8米.6-5.试证明质量为m ,长为l 的匀质细杆对过杆中点且与杆垂直的轴的转动惯量为2112ml . 证明 以杆中心为原点,沿杆建立坐标系Oxy 如图.杆的线密度l m lρ=(即单位长度的质量). 用一系列与杆垂直的不同x 的面,把杆分割成无限多个无限小的质元,图中画出了在~d x x x +范围内的小质元.此小质元质量d d d l m m x x lρ==,到Oy 轴的距离为||x ,对Oy 轴的转动惯量为22d d d m I x m x x l==.则整个细杆对Oy 轴的转动惯量 /223/22/2/211d 312l l l l m m I x x x ml l l --===⎰6-6.如图,半径0.1m R =的定滑轮,可绕过轮心的z 轴转动,转动惯量为20.1kg m J =⋅.一不可伸长之轻绳无滑地跨过定滑轮,一端竖直地悬一质量1kg m =的重物,另一端a 受竖直向下的力F 作用,20.8N F =.试用质点系角动量定理求a 点加速度.解 用滑轮、绳、重物构成质点系,质点系所受外力为F 、重物重力mg 和轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理2d d ()()d d J Rmv J mR FR mgR t tωω+=+=- 所以2d d FR mgR t J mR ω-=+,a 点加速度为 22d d F mg a R i R i t J mR ω-==+ 220.819.80.01 1.0(m s )0.110.01i i -⨯==+⨯6-7.可利用阿特伍德机(例题6-3-4)测滑轮转动惯量.设10.46kg m =,20.50kg m =,滑轮半径0.05m R =.由静止开始释放重物测得2m 在5.0s 内下降0.75m .求滑轮转动惯量J .解 (因为不要求求出绳内张力,故可用质点系角动量定理求解.)用滑轮、绳、重物构成质点系,质点系所受外力为重物和滑轮的重力、以及轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理1122d ()d J Rm v Rm v t ω++ 21221d [()]d J m m R m gR m gR tω=++=- 所以21212()d d ()m m gR t J m m Rω-=++,2m 下降加速度的大小为 212212()d d m m g a R t m m J R ω-==++ 可见质点2m 作匀加速直线运动.由2212x a t ∆=,求出220.060m s a =.由上式可知 221122()[]m m g J R m m a -=-- 222(050046)98005[050046]13910kg m 006........--⨯=⨯--=⨯⋅6-8.匀质细杆长2l ,质量为0m ,杆上穿有两个质量均为m 的小球.初始时杆以角速度0ω绕过杆中点O 且与杆垂直的光滑竖直轴转动,两小球均位于距O 点2l 处.求当两个小球同时滑动到杆的两端点时杆的角速度的大小.解 将杆和两个小球作为质点系.由于竖直轴光滑,轴受到的约束力对竖直转动轴力矩为零;细杆和小球的重力与竖直转动轴平行,对竖直转动轴力矩为零.由于质点系所受外力对竖直转动轴合力矩为零,所以质点系对竖直转动轴角动量守恒,设末态角速度为ω,则002222l l J m J ml l ωωωω+⋅=+⋅ 由于220011(2)123J m l m l ==,所以000(23)2(6)m m m m ωω+=+.6-9.工程上常用摩擦啮合器使两个飞轮以相同的转速转动,如图,飞轮A 、B 可绕同一固定轴转动,C 为啮合器.设飞轮A 、B 对轴的转动惯量210kg m A J =⋅,220kg m B J =⋅,开始A 轮转速600r min A n =(转每分),B 轮静止,求两轮啮合后的转速.解 将二飞轮A 、B 作为质点系.由于二飞轮所受重力和支撑力对固定轴力矩均为零,飞轮所受外阻(动)力矩比二飞轮啮合时飞轮间的相互作用力矩小得多,故啮合过程中质点系对固定轴的角动量近似守恒,有2()2A A A B J n J J n ππ⋅=+10600200(r min )1020A A A B J n n J J ⨯===++6-10.有两根原长为0l 、劲度系数为k 的轻弹簧串接于O 点,另两端各系一质量为m 的滑块,置于光滑水平面上.现将两滑块拉开,使其相距2l (0l l >),从静止放手,求两弹簧恢复原长时,弹簧弹性力对两滑块做功之和.(用三种方法求解)解法一 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用弹簧弹性势能求解.弹簧弹性力对两滑块做功之和等于两弹簧弹性势能增量的负值220012[0()]()2W k l l k l l =-⨯--=- 解法二 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.在惯性系中积分求功.以弹簧自由伸长处为原点、沿弹簧建立x 轴,则00220012()d 2()()2l l W kx x k l l k l l -=⨯-=⨯-=-⎰ 解法三 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用求一对力做功之和的方法,在与一个滑块相对静止的参考系中积分求功.以一个滑块为原点、沿弹簧建立x 轴,当另一滑块位于x 处时,每个弹簧的伸长量为02x l - 00220022[()]d 2()d()222l l l l x x x W k l x k l =--=--⎰⎰ 022202012()|()22l l x k l k l l =--=-6-11.两个滑冰运动员质量均为70kg ,均以6.5m s 速率沿相反方向滑行,滑行路线间的垂直距离为10m .当彼此相错时,各抓住10m 长绳的一端,然后开始旋转.(1)在抓住绳端之前,各自对绳中点的角动量多大?抓住后又为多大?(2)他们各自收绳,到绳长5m 时,各自速率多大?(3)绳长5m 时绳内张力多大?(4)收绳过程中二人总动能如何变化?(5)二人共做多少功?解 (1)抓绳之前,每个运动员对绳中心角动量均为570 6.5L =⨯⨯22275(kg m s)=⋅. 抓绳之后,视两个运动员和绳为质点系,所受外力矢量和为零,所以质点系质心(绳中心)位置不变,绳中心仍为固定点,每个运动员对绳中心的角动量仍为22275kg m s ⋅.(2)绳的张力T F 为质点系内力.收绳过程中质点系所受外力对绳中心的力矩为零,所以质点系的角动量守恒,设收绳后运动员速率为v ,则 2 2.57022275v ⨯⨯⨯=⨯ 所以13m s v =.(3)当绳长5m 时,对每一个运动员,由牛顿第二定律可得2T 70134732(N)2.5F ⨯== (4)质点系总动能的增量等于组成质点系的每个质点动能增量之和22k k01270(13 6.5)8873(J)2E E -=⨯⨯⨯-= (5)根据质点系的动能定理,二运动员总共做功等于质点系动能增量,k k08873(J)W E E =-=6-12.匀质细杆长7m 5l =,质量为m ,可绕过其一端的光滑水平轴在竖直平面内转动,在杆自由下垂时有一质量为6m 的黏性小球沿水平方向飞来并黏附于杆的中点,使杆摆动的最大角度为60ο.求小球飞来时的速率.(210m g =)解 在小球与杆的碰撞过程中,以小球和杆为质点系.质点系所受外力中,杆的重力mg 和杆所受轴的支撑力N F 对轴O 的力矩为零;小球重力m g '对轴O 的力矩近似为零;所以质点系的角动量近似守恒221[()]262362l m l m l m v v ml ω'==+ 故92v l ω=.在小球和杆一起上摆的过程中,以小球和杆为质点系,仅有小球和杆所受重力做功,而重力为保守力,所以机械能守恒22211[()]()cos60236262m l m l ml m g ωο+=+ 因此2149g lω=.根据以上结果即可求出9146321(m s)292g v l gl l ===.6-13.在光滑水平桌面上,有一质量为m 的滑块,滑块与一弹簧相连,弹簧另一端固定于O 点,劲度系数为k .当弹簧处于原长0l 时,一质量为0m 的子弹以速度0v 垂直于弹簧地射入滑块,并嵌在其中.之后当滑块运动到B 点时,弹簧长度为l ,如图所示.求滑块于B 时的速度v .解 在子弹射入滑块的过程中,由子弹和滑块构成质点系.因质点系在0v 方向不受外力,故质点系沿0v 方向动量守恒000()m v m m v '=+所以000()v m v m m '=+.在子弹和滑块由A B →的过程中,视子弹和滑块为一个质点.由于过程中只有弹簧弹性力做功,弹簧弹性力为保守力,故质点机械能守恒;又因质点受力对过O 点的竖直轴力矩为零,所以质点对过O 点的竖直轴角动量守恒.222000111()()()222m m v m m v k l l '+=++- 000()()sin m m v l m m vl θ'+=+所以 22212000200()[]()m v k l l v m m m m -=-++ 000222120000arcsin [()()]m v l l m v m m k l l θ=-+-6-14.大容器内水的自由表面的高度为0h ,放在水平地面上,离自由表面h 深处有一小孔A ,小孔横截面积远小于容器横截面积.求:(1)由小孔A 流出的水流到达地面的水平射程x ;(2)与小孔A 在同一竖直线上,距自由表面多深处再开一孔,可使水流的水平射程与前者相等?(3)在多深处开孔,可使水流具有最大水平射程?最大水平射程是多少?解 (1)由于容器横截面积远大于小孔横截面积,水流稳定后可认为容器中水面高度不变.认为水是理想流体.水流稳定后,取一条从容器中水自由表面到小孔的流线,以容器底为重力势能零点,由伯努利方程200001()2gh p g h h v p ρρρ+=-++所以小孔流速2v gh =.流体微团从流出小孔到落地降落的高度2012h h gt -=,可知降落时间02()h h t g-=,因此水平射程02()x vt h h h ==-. (2)在h '深处另开一孔而水平射程相同,则由002()2()h h h h h h ''-=-可求出0h h h '=-.(略去h h '=.)(3)根据(1)02()x h h h =-,由002(2)d 0d 2()h h x h h h h -==-,有唯一极值点012h h =使水流具有最大射程.当012h h =时,max 0x x h ==.6-15.如图是测量液体流量的流量计原理图.已知细管和粗管的横截面积为1S 、2S ,使用时把它串接在水平液流管道中,稳定流动时两竖直管内液体自由表面高度差为h .求流量表达式.解 沿管道中心轴取一流线,对该流线上1、2两点,根据伯努利方程,因12h h =,故2211221122v p v p ρρ+=+ (1) 连续性方程 1122v S v S = (2) 1、2两点压强差 21p p gh ρ-= (3) 由(1)、(3)式,可得22122v v gh -=由(2)式,得1122v S v S =,代入上式 221122(1)2S v gh S -= ,即1222212gh v S S S =- 所以 11221222212gh Q v S v S S S S S ===-6-16.如图装置,出口处堵塞时,注满可视为理想流体的水.水平细管横截面积处处相等,其直径远小于大容器直径.打开塞子在水流稳定后,求两竖直细管内水面高度.解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点,根据伯努利方程22201223304111222p gh p v p v p v ρρρρ+=+=+=+ 因为234S S S ==,根据连续性方程223344S v S v S v ==可得 234v v v ==所以 230p p p ==两竖直细管内为静止流体,根据2002p p p gh ρ==+3003p p p gh ρ==+所以230h h ==.6-17.如题6-16图,若其中装有密度为31000kg m 的黏性流体,流动稳定后10.18m h =,20.1m h =,30.05m h =.求出口流速.(不计大容器内内能量损失)解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点.根据连续性方程,因为水平细管横截面处处相等,故水平细管中的2、3、4点流速相等,以v 表示其流速.根据不可压缩黏性流体作稳定流动时的功能关系式,对3、4点,有2230341122p v p v W ρρ+=++ 竖直细管内为静止流体,可知303p p gh ρ=+,所以 343W gh ρ=根据不可压缩黏性流体作稳定流动时的功能关系式,对1、4点,有20101412p gh p v W ρρ+=++ 由于水平细管横截面处处相等,不计大容器内内能量损失,故可知34143W W =,所以132(3)298(0183005)0767(m s)v g h h ....=-=⨯⨯-⨯=(第六章题解结束)。

大学物理课后习题答案第六章

大学物理课后习题答案第六章

x解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取 dq1dl , dq 在带电圆环轴线上x 处产生的场强大小为dEdq4(x R )根据电荷分布的对称性知,E y E z 0dE x dE cos1 xdq4(x 2 R 2)'2第6章 真空中的静电场 习题及答案1.电荷为 q 和 2q 的两个点电荷分别置于 x 1m 和x 1m 处。

一试验电荷置于 x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 0位于点电荷 q 的右侧,它受到的合力才可能为0,所以2qq o qq o2 24 n o (x 1)4 n o (x 1)故 x 3 2 22.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2这种平衡与三角形的边长有无关系 ?解:(1)以A 处点电荷为研究对象,由力平衡知, q 为负电荷,所以(2)与三角形边长无关。

3.如图所示,半径为 R 、电荷线密度为 1的一个均匀带电圆环,在其轴线上放一长为I 、电荷线密度为 2的均匀带电直线段, 该线段的一端处于圆环中心处。

求该直线段受到的电场力。

2% cos30 a1 qqa)24nE xsin d4n 0R 2n 0R式中:为dq 到场点的连线与x 轴负向的夹角。

---------------------------------- 3dq4 o (x 2 R 2) 2x 1 2 R 1R x40 (x 2 R 2)'2 2 0(x 2 R 2)'2下面求直线段受到的电场力。

在直线段上取 dq2dx , dq受到的电场力大小为dF E x dq1 2只 ------- x ———dx2 0(x 2 R 2),2方向沿x 轴正方向。

大学物理第六章稳恒磁场习题参考答案

大学物理第六章稳恒磁场习题参考答案

第六章稳恒磁场作业集第37讲毕奥-萨伐儿定律一、Ⅰ类作业:解:根据毕奥萨伐尔定律20sin d 4d r l I B θπμ=,方向由右手定则决定。

(1)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==方向垂直纸面向里(沿z 轴负向)。

(2)00sin d 4sin d 4d 2020=︒==L l I r l I B πμθπμ(3)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==,方向沿x 轴正向。

(4)因为2245sin sin ,2222=︒==+=θL L L r ,所以2020d 82sin d 4d Ll I r l I B πμθπμ==,方向垂直纸面向里(沿z 轴负向)。

37.2教材223页第6.2、6.4、6.6题解:(1)6.2:(2)6.4:(3)6.6:二、Ⅱ类作业:解:根据磁场叠加原理可知,中心点O 的磁感应强度是两根半无限长载流导线的B 和41载流圆弧的B 的矢量和。

即321B B B B ++=其中,半无限长载流导线在其延长线上的031==B B ,41载流圆弧的R I B 802μ=,方向垂直纸面向外。

所以RI B B 802μ==,方向垂直纸面向外第38讲磁场的性质一、Ⅰ类作业:38.1一块孤立的条形磁铁的磁感应线如图所示,其中的一条磁感线用L 标出,它的一部分在磁铁里面,你能根据安培环路定理判断磁铁里面是否有电流吗?如果有穿过L 的电流方向是怎样的?解:因为磁感应强度沿L 的线积分不为零,即环量不为零,根据安培环路定理,有电流穿过环路L 。

根据右手定则,电流是垂直纸面向里。

38.2教材229页6.7、6.9题二、Ⅱ类作业:38.3如图所示,有一根很长的同轴电缆,由两层厚度不计的共轴圆筒组成,内筒的半径为1r 1,外筒的半径为r 2,在这两导体中,载有大小相等而方向相反的电流I ,计算空间各点的磁感应强度.解:该电流产生的磁场具有轴对称性,可用安培环路定理计算磁感应强度。

大学物理第6章题解

大学物理第6章题解

第6章 光的干涉6.1 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为500D mm =,双缝的间距 1.2d mm =,求:⑴第4级明条纹到中心的距离;⑵第4级明条纹的宽度.解:(1)为明条纹的条件1222r r jλ-= (0,1, 2.....)j =±±12sin r r d j θλ-==由于00,sin /r d tg y r θθ==,y 表示观察点p 到0p 的距离 ,所以r y jdλ=,(0,1, 2.....)j =±± 第4级明条纹得到中心的距离:4/y D d λ=⨯3953450010589.3109.8101.210m ----⨯⨯⨯⨯==⨯⨯ (2):6.2 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为600D mm =,问⑴ 1.0,10d mm d mm ==两种情况相邻明条纹间距分别为多大?⑵若相邻条纹的最小分辨距离为0.065mm ,能分清干涉条纹的双缝间距最大是多少?解:(1)相邻两条强度最大值的条纹顶点间的距离为1i j r y y y dλ+∆=-=0600d r mm ==由此可知,当 1.0d mm =时39360010589.3101.010y ---⨯⨯⨯∆=⨯ 0.3538mm ≈当10d mm =时39360010589.3101010y ---⨯⨯⨯∆=⨯0.03538mm ≈(2)令能分清干涉条纹的双缝间距最大为d ,则有390360010589.310 5.440.06510r d mm y λ---⨯⨯⨯===∆⨯6.3 用白光作光源观察杨氏双缝干涉.设两缝的间距为d ,缝面与屏距离为D ,试求能观察到的清晰可见光谱的级次?解:白光波长在390~750范围,为明纹的条件为sin d k θλ=±在θ=0处,各种波长的光波程差均为零,所以各种波长的零级条纹在屏上0x =处重叠形成中央白色条纹.中央明纹两侧,由于波长不同,同一级次的明纹会错开,靠近中央明纹的两侧,观察到的各种色光形成的彩色条纹在远处会重叠成白色条纹最先发生重叠的是某一级的红光r λ ,和高一级的紫光v λ,因此从紫光到清晰可见光谱的级次可由下式求得:(1)r v k k λλ=+因而: 3901.08750390v r vk λλλ===--由于k 只能取整数,因此从紫光到红光排列清晰可见的光谱只有正负各一级6.4 在杨氏双缝干涉实验中,入射光的波长为λ,现在S2缝上放置一片厚度为d ,折射率为n 的透明介质,试问原来的零级明纹将如何移动?如果观测到零级明纹移到了原来的k 级明纹处,求该透明介质的厚度.解:(1)在小孔2s 未贴薄片时,从两小孔1s 和2s 到屏上0p 点的光程差为零,当小孔2s 被薄片贴住时,零光程差从0p 到p 点的光程差变化量为d y r δ'=,(其中d '为双缝间距) p 点的光程差的变化量等于2s 到p 的光程差的增加,即nd d δ=-,(透明介质的厚度) 00(1)dn d y r -=(1)n dr y d -='(2)如果观察到的零级条纹移动到了原来的k 级明纹处 说明p 离0p 的距离0k r y d λ='00(1)k r n dr d dλ-='' 1k n d λ-=6.5 在双缝干涉实验中,双缝间距0.20d mm =,缝屏间距 1.0D m =,若第二级明条纹离屏中心的距离为6.0mm ,试计算此单色光的波长.解:令单色光的波长为λ,由为明条纹需要满足的条件120sin y r r d j dr θλ-==≈ 可知,33600.210 6.0100.6106002 1.0y d nm r j λ---⨯⨯⨯≈==⨯=⨯6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度.解:由于油膜前后表面反射光都有半波损失,所以光程差为2nd δ=,而膜厚又是均匀的,因此干涉的效果不是产生条纹,而是增透或者是显色反射相消的条件是 : 2(21)2nd k λ=+1λ,2λ两波先后消失,1λ反射消失在k 级,2λ反射消失在1k +级则有 []122(21)2(1)122nd k k λλ=+=-+K =322122220,1, 2......)0.70 1.220.635r k r i n r ==±±===≈14(21)2 6.73102d k d mm nλ-=+=≈⨯6.7 利用等厚干涉可测量微小的角度.折射率 1.4n =的劈尖状板,在某单色光的垂直照射下,量出两相邻明条纹间距0.25l cm =,已知单色光在空气中的波长700nm λ=,求劈尖顶角θ.解:相长干涉的条件为022nd j λλ+=相邻两条纹对应的薄膜厚度差为02012d d d nλ'∆=-=对于劈尖板, 1.4n =,则02012 1.4d d d λ'∆=-=⨯条纹间距x ∆与相应的厚度变化之间的关系为02019422.870010102.80.2510d d d x l rad λθθθ---'∆=-=∆==⨯==⨯⨯6.8 用波长为680nm 的单色光,垂直照射0.12L m =长的两块玻璃片上,两玻璃片的一边互相接触,另一边夹着一块厚度为0.048h mm =云母片,形成一个空气劈尖.求: ⑴两玻璃片间的夹角?⑵相邻明条纹间空气膜的厚度差是多少?⑶相邻两暗条纹的间距是多少?⑷在这0.12m 内呈现多少条明纹?解:(1)两玻璃间的夹角为330.048100.4100.12tg θθ--⨯≈==⨯ (2)相邻两亮条纹对应的薄膜厚度差为002012d d d nλ∆=-=097020168010 3.410222d d d m n λλ--⨯∆=-====⨯(3)条纹间距与相应厚度变化之间的关系00201733.4100.850.410d d d xx mmθ--∆=-=∆⨯∆==⨯ (4)在这0.12m 内呈现的明条纹数为002222nd j nd j λλλλ+=+⇒=当00.048d mm =时J=142说明在这0.12 m 内呈现了142条明条纹6.9. 用500nm λ=的平行光垂直入射到劈形薄膜的上表面上,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面介质的折射率1n 大于薄膜的折射率 1.5n =.求:⑴膜下面介质的折射率2n 与n 的大小关系;⑵第10级暗纹处薄膜的厚度?⑶使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么样的变化?若 2.0e m μ∆=,原来的第10条暗纹处将被哪级暗纹占据?解:(1) (2)因为空气膜的上下都是玻璃,求反射光的光程差时应计入半波损失,0d =处(棱)反射光相消,是暗条纹,从棱算到地10条暗纹之间有9各整条纹间隔,膜厚是2λ的9倍, 9 2.252d um λ=⨯=(3)使膜的下表面向下平移一微小距离e ∆后,膜上表面向上平移,条纹疏密不变,整体向棱方向平移,原来地10条暗纹处的膜厚增加e ∆,干涉级增加 : /82k e λ∆=∆=因此原来的第10条暗纹倍第18条暗纹代替6.10. 白光垂直照射在空气中的厚度为0.40m μ的玻璃片上,玻璃的折射率为1.5.试问在可见光范围内(400700nm nm ),哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:(1)反射光加强的条件是2,(0,1, 2....)2nd k k λδλ=+==±±透射光加强的条件是2,(0,1, 2....)nd k k δλ===±±对于反射光中波长为λ的成分,在玻璃片表面反射光的光程差2,(0,1, 2....)2nd k k λδλ=+==±± 421ndk λ=- 当 14234254271,44 1.50.4 2.442, 1.50.40.8343, 1.50.40.48544, 1.50.40.3437k nd um umnd k um um nd k um umnd k um umλλλλ===⨯⨯====⨯⨯====⨯⨯====⨯⨯=在白光范围内22480,2(0,1, 2.....)2 1.50.41, 1.22,600,4003,400nd knm nd k j umkk umk nm nm knmλδλλλλλλ====±±⨯⨯=========2480,nm λ=反射光加强 对于透射光2nd k δλ==时,透射光加强22 1.50.4nd k um kλ⨯⨯==当 1, 1.22,6003,400k umk nm k nmλλλ======所以600,400nm nm λλ==时,透射光加强。

大学物理第6章(题库)含答案

大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。

2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。

4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。

5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。

6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。

7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。

理想气体做功为 500 J 。

补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。

8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。

9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。

(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

大学物理下答案第六章

大学物理下答案第六章
解:(1)
(2)
6-25声波是流体或固体中的压缩波,在讨论声波时,讨论声波中的压强(即压力)变化要比讨论声波中质元的位移更方便些,可以证明,当声波的位移波函数为 时,对应于压力变化的波函数为
是相对于为扰动时压力 的压强变化值, 是介质的体密度。
(1)人耳能够忍受的强声波中的最大压强变化pm约为28N/m2(正常的大气压强约为1.0×105N/m2)若这一强度波的频率为1000Hz,试求这声波所对应的最大位移。
此时系统做振幅为A,圆频率为w的简振动。
6-7有一鸟类学家,他在野外观察到一种少见的大鸟落在一棵大树的细枝上,他想测得这只鸟的质量,但不能捉住来称量,于是灵机一动,测得这鸟在数枝上在4s内来回摆动了6次,等鸟飞走以后,他又用1kg的砝码系在大鸟原来落得位置上,测出树枝弯下了12cm,于是很快算出了这只鸟的质量。你认为这位鸟类学家是怎样算的?你想到了这种方法了吗?这只鸟的质量是多少?
6-44试解释弦乐器的以下现象:
(1)较松的弦发生的音调较低,而较紧的弦则音调较高;
(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);
(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;
(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。(提示:音调高低与弦振动的频率成正比。此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。)
试据此推导(6.11)、(6.12)及(6.40)式。
6-42海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。试从能量角度分析其中的原因。

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理第六章课后习题答案马文蔚第五版

大学物理第六章课后习题答案马文蔚第五版

第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )d εqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理课后习题详解(第六章)中国石油大学

大学物理课后习题详解(第六章)中国石油大学

习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。

由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。

若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为( A )。

6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。

设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。

因而正 确答案为(A )。

6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理第六章练习答案

大学物理第六章练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。

解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。

解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。

大学物理第六章恒定磁场习题解劝答

大学物理第六章恒定磁场习题解劝答

大学物理第六章恒定磁场习题解劝答(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第6章 恒定磁场1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。

2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。

3. 磁场的高斯定理⎰⎰=⋅0S d B说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化( D ) (A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。

5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少 ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。

6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B后,作周期为T的匀速率圆周运动,若要使运动周期变为IT/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–B8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。

大学物理第六章课后习题答案(马文蔚第五版)

大学物理第六章课后习题答案(马文蔚第五版)

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理第六章课后习题答案(马文蔚第五版)汇总

大学物理第六章课后习题答案(马文蔚第五版)汇总

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

《大学物理》 第二版 课后习题答案 第六章

《大学物理》 第二版 课后习题答案 第六章

习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。

解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。

解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。

在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。

导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。

(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。

大学物理习题解答6第六章稳恒磁场

大学物理习题解答6第六章稳恒磁场

第六章 稳恒磁场本章提要1.毕奥—萨伐尔定律· 电流元激发的磁场0d d 4l e B rI rm p ´=其中真空磁导率7-20410N A m p -=醋· 几种典型磁场分布(1)无限长载流直导线激发的磁场02I B rm p =(2)载流长直螺线管内的磁场0B nI m =(3)运动电荷的磁场024rv e B q r m p ´=2.磁场高斯定理· 仿照电通量的概念引入磁通量,定义穿过磁场种某一面积S 的磁通量为d B S m sΦ=蝌则通过空间中任意封闭曲面的磁通量必为零,即有磁场高斯定理d 0S?òÑB S3.安培环路定理(适用于恒定电流)· 磁感应强度沿闭合回路的积分等于穿过该闭合回路的电流的代数和乘以真空磁导率。

0int d LI m ?åòÑB r4.安培力与洛仑兹力· 对于任意载流导线,若将其视为由无数个电流元组成的,则其在磁场中所受的安培力为d F l B lI =⨯⎰· 一个定向运动的电荷在磁场中所受的力即洛仑兹力为q =⨯f υB5.三种磁介质· 抗磁质(1r m <),抗磁质分子无固有磁距。

· 顺磁质(1r m >),顺磁质分子具有固有磁距。

· 铁磁质(1r m ?),有磁滞现象和居里点。

思考题6-1 为什么不能简单地定义B 的方向就是作用在运动电荷上的磁力方向? 答:运动电荷磁力的方向不仅与磁感应强度B 的方向有关,还与电荷的运动方向、电荷的正负有关;特别是如果电荷运动的方向与磁场方向在同一直线上,此时电荷受力为零。

因此不能定义B 的方向就是作用在运动电荷上的磁力方向。

6-2 在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把它们扭在一起。

为什么?答:可以将扭在一起的两条通电导线看成是交织在一起的两个螺线管。

大学物理习题答案解析第六章

大学物理习题答案解析第六章

第二篇第六章静电场中的导体与电介质6 - 1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。

由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 —2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则()(A)N上的负电荷入地(B)N上的正电荷入地(C)N上的所有电荷入地(D)N上所有的感应电荷入地^6-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为(A)。

6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d, 参见附图。

设无穷远处为零电势,则在导体球球心0点有()(A) E 0,V(B) E J,V J4 n%d 4 n(C) E 0,V 0(D) E J,V —4 n 电d 4 n R体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q 在球心0点激发的电势为零, 0点的电势等于点电荷q 在该处激发的电势。

因而正确答案为( A )。

6 —4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电 荷的代数和。

下列推论正确的是 () (A) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电 荷的分布有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)当经过的时间等于上述(3)中求出的2倍、3倍……时,求振幅的值。
解:(1)
(2)
(3)
(4)
6-15火车在铁轨上行驶,每经过铁轨接触即受一次震动,使装在弹簧上面的车厢上下振动。设每段铁轨长12.5cm,弹簧平均负重5.5×103kg,而弹簧每受到1.0×103kg力将压缩16mm。试问,火车速度多大时,振动特别强?
6-12假定有两个质量均为m的离子,它们之间的势能为
(1)试用a和b表示其平衡位置;
(2)试证明其振动角频率为
解:(1)保守力平衡点f=0。
(2)作微振动f可写成
将f一级近似
6-13质量m=1.0×10-2kg的小球与轻质弹簧组成的振动系统,按 的规律振动,式子各量均为SI单位,求:
(1)振动的角频率、周期、振幅和初始相位;
解:仍是谐振动
6-18一待测量频率的音叉与一频率为440Hz的标准音叉并排放置,并同时振动,声音响度有周期性的起伏,每隔0.5s听到一次最大响度的音(即拍声),问拍频是多少?音叉的频率可能是多少?为了进一步唯一确定其值,可以在待测音叉上滴下一滴石蜡,重做上述实验,若此时拍品变低,则说明待测音叉的频率是多少?
解:固有振动周期等于强迫力周期时发生共振。
6-16已知两个方向的简谐振动
(1)求它们合振动的振幅和初始相位;
(2) 另有一个同反向的简谐振动x3=0.07cos(10t+φ),问φ为何值的时候,x1+x3振幅为最大?φ为何值的时候,x2+x3的振幅为最小?(各量皆用SI单位。)
解:
A最大时
A最小时
6-17一质点同时受到两个同频率的和同方向的简谐振动的作用,它们的运动方程分别为x1=1.7×10-2cos(2t+ )和x2=0.6×10-2cos(2t+ ),试写出质点的运动方程。
(2)振动的速度和加速度(函数式);
(3)振动的总能量E;
(4)振动的平均动能和平均势能;
(5) t=1.0s、10s等时刻的相位。
解:与振动表达式
比较可以直接得到
6-14在阻尼振动系统中,量 叫做弛豫时间。
(1)证明的量纲是时间;
(2)经过时间后,这振动的振幅变为多少?能量的最大值变为多少?
(3)把振动减小到其初值的一半所需要的时间(用表示);
解:
6-27如图所示,设B点发出的平面横波在B点的振动表达式为
沿BP方向传播;C点发出的平面横波在C点的振动表达式为
沿CP方向传播,两式中各量均为SI单位,设BP=0.4m,CP=0.5m,波速为0.2m/s,求:(1)两列波传达到P处时的相位差;(2)如果这两列波的振动方向相同,求P点的合成振幅;(3)如果这两列波的振动方向垂直,则合成振动的振幅如何?
解:复摆(物理摆)小角度振动时方程为:
题6-2图
6-3有一立方形的木块浮在静止水中,静止时浸入水中的部分高度为a。若用力稍稍压下,使其浸入水中部分的高度为b,如题6-3图所示,然后松手,任其做自由振动。试证,如果不计水的粘度阻力,木块将做简谐振动,并求振动的周期和振幅。
解:浮力与重力相等处于平衡状态有:
(2)在频率为1000Hz的声波中,可以听得出最微弱的声音的压强振幅约为2.0×10-5N/m2,试求相应的位移振幅,设 =1.29kg/m3,v=321m/s。
解:(1)最大位移:
(2)最小位移:
6-26无线电波以3.0×108m/s的速度传播,有一无线电波的波源功率为50kW,假设该波源在各向同性介质中发射球面波,求离波源200km远处无线电波的能量密度。
解:
X点比原点位相超前 , 与X反向

6-21题6-21图中的曲线(a)和(b)分别表示t=0s和t=2.0s的某一平面简谐波的波形图,试写出此平面简谐波的表达式。
解:从曲线(a)可以看出A=2, ,用余弦函数表示时
6-22设在某一时刻,一个向右传播的平面简谐波的波形曲线如图所示,试分别说明图中A、B、C、D等各点在该时刻的振动方向,并做出T/4前和T/4后的波形图。
解法一:极大为波腹,极小为波节,相邻波腹波节间距:
解法二:D处干涉极大,极小取决于波程差,相邻极大和极小只差半个波长,
故有
题6-28图
6-29在同一介质中的两个相干波源位于AB两点,其振动方向相同,振幅皆为5cm/s,频率皆为100Hz,但A点为波峰时,B点为波谷,且在此介质中波速为10m/s,设AB相距20m,经过A点做一条垂线,在此垂线上取一点P,AP=15cm,
解:设平衡点为弹簧原长时,又弹簧质量不计,对圆柱体在运动中受力有:
6-10如题6-10图所示,弹簧的劲度系数为k,定滑轮的质量为m/,半径为R,转动惯量为,物体的质量为m。轴处摩擦不计,弹簧和绳的质量也不计,绳与滑轮间无相对滑动。
(1)试求这一振动系统的振动频率。
(2)如果在弹簧处于原厂时由静止释放物体m,m向下具有最大速度时开始计时,并令m向下运动为x的正坐标,试写出m的振动表达式。
解:(1)设弹簧原长平衡时,伸长x kx0=mg以伸长时m所在点为坐标原点,运动中,有:
对于m有:
联立两式子有:
设弹簧原长时,释放m
振动表达式为:
6-11在LC电路中,电容极板上的电荷量若为q,电容器将储存能 ,流经电感中的电流若为i,电感中将储存磁能 , 且 常量,试求LC电路的固有振荡频率。
解:
解:(1)波源初相位是0,是恰好在正的最大位移处开始计时,若X与 同向,波函数为
(2)如下图所示又因为
(3)若波源在X0点,若X与 同向,任意X的振动要比X0点落后X点t时刻的振动是X0点在 时刻的振动
其中
6-20一沿很长弦线行进的横波波函数为 式中各量均为国际单位。试求振幅、波长、频率波速、波的传播方向和波线上质远的最大横向振动频率。
解:(1)
(2)
6-25声波是流体或固体中的压缩波,在讨论声波时,讨论声波中的压强(即压力)变化要比讨论声波中质元的位移更方便些,可以证明,当声波的位移波函数为 时,对应于压力变化的波函数为
是相对于为扰动时压力 的压强变化值, 是介质的体密度。
(1)人耳能够忍受的强声波中的最大压强变化pm约为28N/m2(正常的大气压强约为1.0×105N/m2)若这一强度波的频率为1000Hz,试求这声波所对应的最大位移。
6-44试解释弦乐器的以下现象:
(1)较松的弦发生的音调较低,而较紧的弦则音调较高;
(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);
(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;
(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。(提示:音调高低与弦振动的频率成正比。此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。)
6-38若以一装满水的空心球作为单摆的摆钟,并让水从球体缓慢流出,试描述其摆动周期的变化情况。
6-39利用受迫振动的稳定解(6.19)式说明为什么恒力不能导致受迫振动。(提示:恒力的频率ω可视为零)
6-40在太空中能听到声音吗?为什么?
6-41在较长时间间隔(Δt>>T)内,任意以t为变量的正弦(或余弦)型函数的平均值均为零,例如:<cos αt>=<sin αt>=0,其中α是任意常数。
解:
6-5如题6-5图所示,一重力作用下的弹簧振子,振子静止时弹簧伸长ɭ=10cm;将振子向下拉一段距离d=2.0cm,并将位移方向给它一个向下的初速度v0=10cm/s,任其运动,不计空气阻力,试求:
(1)振动频率
(2)振பைடு நூலகம்A
(3)初始相位φ
(4)振动表达式。(取10m/s2)
解:(1)振动频率
(2)振幅
解:
(1)因为是两个同频率的波
所以
(2)如果振动方向也相同,得到两相干波
(3)如果振动方向垂直又同相,合成后仍是谐振动,
6-28题6-28图表示一个声学干涉仪,它是用来演示声波的干涉,S是电磁铁作用下的振动膜片,D是声波探测器,例如耳朵或传声器,路程SBD的长度可以改变,但路径SAD却是固定的,干涉仪内充有空气,实验中发现,当B在某一位置时声强有最小值(100单位),而从这个位置向右拉1.65cm到第二个位置时声强就渐渐上升到最大值(900单位)。试求:(1)由声源发出的声波的频率以及(2)当B在上述两个位置时到达探测器的两个波的相对振幅和(3)到达D处时二路声波的分振幅之比(已知声速为340m/s)。
试据此推导(6.11)、(6.12)及(6.40)式。
6-42海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。试从能量角度分析其中的原因。
6-43描述机械波时间周期性的物理量由周期T、频率v和圆频率ω给出。类似地,我们可以用 、 、 描述波的空间周期性,试说明这三个量对应的物理意义。
习题
6-1如题6-1图所示,用一根金属丝把一均匀圆盘悬挂起来,悬线oc通过圆盘质心,圆盘呈水平状态,这个装置称为扭摆,当使圆盘转过一个角度时,金属丝受到扭转,从而产生一个扭转的恢复力矩。若扭转角度很小,圆盘对oc周的转动惯量为I,扭转力矩可表示为M=-kθ,求扭摆的振动周期。
解:由转动方程
6-2一质量为m的细杆状的1m长的直尺,如果以其一端点为轴悬挂起来,轴处摩擦不计,求其振动周期。
此时系统做振幅为A,圆频率为w的简振动。
6-7有一鸟类学家,他在野外观察到一种少见的大鸟落在一棵大树的细枝上,他想测得这只鸟的质量,但不能捉住来称量,于是灵机一动,测得这鸟在数枝上在4s内来回摆动了6次,等鸟飞走以后,他又用1kg的砝码系在大鸟原来落得位置上,测出树枝弯下了12cm,于是很快算出了这只鸟的质量。你认为这位鸟类学家是怎样算的?你想到了这种方法了吗?这只鸟的质量是多少?
相关文档
最新文档