八年级数学下册总复习题

合集下载

数学八年级下《一元二次方程》复习测试题(附答案)

数学八年级下《一元二次方程》复习测试题(附答案)
.有一个一元二次方程的未知数为y,二次项系数为-1,一次项系数为 3,常数项为-6,请你写出它的一般形式______________。 15.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于__ _. 16.若某食品连续两次涨价10%后价格是a元,则原价是_______ __. 17.若一元二次方程(x-1)(x-2)=0的两个根为x1和x2满足x1>x2,则x1 -2x2= 18.已知一个正方体的表面积是384cm2,求它的棱长。设这个正方体的棱 长是xcm,根据题意列方程得 ,解得x= . 19.用两边开平方的方法解下列方程: ⑴方程x2=49的根是 ; ⑵方程9x2-16=0的根是 ; ⑶方程(x-3)2=9的根是 。 20.长方形铁片四角各截去一个边长为5cm的正方形,而后折起来做一个 没盖的盒子,铁片的长是宽的2倍,作成的盒子容积为1.5立方分米, 则铁片的长等于________,宽等于________. 三、解答题:(每题7分,共21分) 21. 解下列方程: ⑴3x2-7x=O; ⑵2x(x+3)=6(x+3) ⑶3x2+2x-4=O; ⑷2x2-7x+7=0; ⑸(3x+5)(3x-5)+6x=-26 ⑹(2y+1)2+2(2y+1)-3=0; 22. 阅读材料: 解方程(x2-1)2-5(x2-1)+4=0时,我们可以将x2-1视为一个整 体,然后设x2-l=y,则(x2-1) 2=y2, ∴原方程化为y2-5y+4=0.(※) 解得y1=1,y2=4 当y=1时,x2-1=1.∴x2=2.∴x=±; 当y=4时,x2-1=4,∴x2=5,∴x=±。 ∴原方程的解为x1=,x2=-,x3=,x4=- 解答问题: ⑴在由原方程得到方程(※)的过程中,利用 法达到了降次 的目的,体现了 的数学思想.

人教版数学八年级下册总复习题(基础型)

人教版数学八年级下册总复习题(基础型)

人教版数学八年级下册总复习题(基础型)一.选择题1.为使二次根式有意义,则x的取值范围为()A.x≤﹣1 B.x>﹣1 C.x≥﹣1 D.x<﹣1 2.下列各式,化简后能与合并的是()A.B.C.D.3.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A.y1 =y2B.y1<y2C.y1>y2D.y1≥y24.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12 B.10 C.8 D.65.要使四边形ABCD是平行四边形,则∠A:∠B:∠C:∠D可能为()A.2:3:6:7 B.3:4:5:6 C.3:3:5:5 D.4:5:4:5 6.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA +S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA +S△CDE+S△CEB=S四边形ABCD7.计算:(3+2)(3﹣2)= .8.如图,在数轴上点A 表示的数与的和是 .9.如图,函数y 1=﹣2x 和y 2=ax +3的图象相交于点A (﹣1,m ),则关于x 的不等式﹣2x ≥ax +3的解集是 .10.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 11.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要 元钱.12.若直线y =kx +b 与x 轴的交点坐标为(﹣3,0),则关于x 的方程kx +b =0的解是 . 13.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为 .14.如图,在△ABC 中,AC =BC ,∠C =90°,D 为AB 的中点,F 是AC 上任意一点,四边形DEFG (按逆时针方向)是正方形,过点G 作GN ∥AB 交AC 于点N ,若AB =6,CF =AN ,则正方形DEFG 的边长为 .15.计算:(1)(2).16.计算:(1)×(+3﹣);(2)(﹣1)2+×(﹣)+.17.已知a=+2,b=﹣2,求下列代数式的值:(1)a2﹣2ab+b2;(2)a2﹣b2.18.小颖根据学习函数的经验,对函数y=1﹣|x﹣1|的图象与性质进行了探究下面是小颖的探究过程,请你补充完整(1)列表:x…﹣2 ﹣1 0 1 2 3 4 …y…﹣2 ﹣1 0 1 0 ﹣1 k…①k=②若A(8,﹣6),B(m,﹣6)为该函数图象上不同的两点,则m=(2)描点并画出该函数的图象(3)①根据函数图象可得:该函数的最大值为②观察函数y=1﹣|x﹣1|的图象,写出该图象的两条性质:;③已知直线y1=x﹣1与函数y=1﹣|x﹣1|的图象相交,则当y1<y时x的取值范围为是19.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.20.外线投篮是篮球队常规训练的重要项目之一,下列图表中数据是甲、乙、丙三人每人十次投篮测试的成绩.测试规则为连续投篮十个球为一次,投进篮筐一个球记为1分.(1)写出运动员乙测试成绩的众数和中位数;(2)在他们三人中选择一位投篮成绩优秀且较为稳定的选手作为中锋,你认为选谁更合适?为什么?21.如图,在平面直角坐标系xOy中,一次函数y=k1x+6与x轴、y轴分别交于点A、B两点,与正比例函数y=k2x交于点D(2,2)(1)求一次函数和正比例函数的表达式;(2)若点P为直线y=k2x上的一个动点(点P不与点D重合),点Q在一次函数y=k1x+6的图象上,PQ∥y轴,当PQ=OA时,求点p的坐标.22.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.五.解答题23.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24.已知:如图所示,在△ABC中,D、E、F分别是AB、BC、AC边上的中点.(1)求证:四边形ADEF是平行四边形.(2)若AB=AC,求证:四边形ADEF是菱形.六.解答题25.在平面直角坐标系中,直线1垂直于x轴,垂足为M(m,0),点A(﹣1.0)关于直线的对称点为A′.探究:(1)当m=0时,A′的坐标为;(2)当m=1时,A′的坐标为;(3)当m=2时,A′的坐标为;发现:对于任意的m,A′的坐标为.解决问题:若A(﹣1,0)B(﹣5,0),C(6,0),D(15,0),将线段AB沿直线l 翻折得到线段A′B′,若线段A′B′与线段CD重合部分的长为2,求m的值.26.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设DN=x.①求证四边形AFGD为菱形;②是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.参考答案一.选择题1. B . 2. C . 3. C . 4. B . 5. D . 6. D . 二.填空题 7. 1. 8. 0. 9. x ≤﹣1. 10. y 1<y 2. 11. 612. 12. x =﹣3. 13. DH =4.8cm . 14. .三.解答题 15.解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2+2+1﹣=3+2﹣10=3﹣8.16.解:(1)×(+3﹣=×(5)=12; (2)(﹣1)2+×(﹣)+=2﹣2+1+3﹣3+2=6﹣3.17.解:∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,(1)a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=2×4=8.18.解:(1)①把x=4代入y=1﹣|x﹣1|得k=﹣2;②把B(m,﹣6)代入y=1﹣|x﹣1|得,﹣6=1﹣|m﹣1|,解得:m=8或m=﹣6,∵A(8,﹣6),B(m,﹣6)为该函数图象上不同的两点,∴m=﹣6;(2)该函数的图象如图所示,(3)根据函数的图象知,①该函数的最大值为1;②性质:该函数的图象是轴对称图形;当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小等;③如图,当y<y时x的取值范围为﹣2<x<2.1故答案为:﹣2,﹣6,1,该函数的图象是轴对称图形;当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小等,﹣2<x<2.四.解答题19.解:(1)如图①所示:(2)如图②所示.20.解:(1)乙运动员测试成绩的众数和中位数都是7,(2)=7,=7=6.3∴S2甲=0.8S2乙=0.4S2丙=0.76∴0.8>0.76>0.4,∴选乙运动员更合适21.解:(1)把(2,2)分别代入y=k1x+6与y=k2x得,k 1=﹣2,k2=1,∴一次函数和正比例函数的表达式分别为:y=﹣2x+6,y=x;(2)由y=﹣2x+6,当y=0时,得x=3,∴A(3,0),∴OA=3,∵点P(m,n),∴Q(m,﹣2m+6),当PQ=OA时,PQ=m﹣(﹣2m+6)=×3,或PQ=﹣2m+6﹣m=×3,解得:m=或m=.22.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.五.解答题23.解:(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4;当30x﹣30﹣(10x+100)=50时,解得:x=9;当300﹣(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.24.证明:(1)∵D、E、F分别是AB、BC、AC的中点,∴EF∥AB,DE∥AC(三角形的中位线平行于第三边),∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形∴EF=AB,DE=AC,且AB=BC∴DE=EF∴四边形ADEF是菱形.六.解答题25.解:探究:∵点A和A′关于直线l对称,∴M为线段AA′的中点,设A′坐标为(t,0),且M(m,0),A(﹣1,0),∴AM=A′M,即m﹣(﹣1)=t﹣m,∴t=2m+1,(1)当m=0时,t=1,则A'的坐标为(1,0),故答案为:(1,0);(2)当m=1时,t=2×1+1=3,则A'的坐标为(3,0),故答案为:(3,0);(3)当m=2时,t=2×2+1=5,则A'的坐标为(5,0),故答案为:(5,0);发现:由探究可知,对于任意的m,t=2m+1,则A'的坐标为(2m+1,0),故答案为:(2m+1,0);解决问题:∵A(﹣1,0)B(﹣5,0),∴A′(2m+1,0),B′(2m+5,0),当B′在点C、D之间时,则重合部分为线段CB′,且C(6,0),∴2m+5﹣6=2,解得m=;当A′在点C、D之间时,则重合部分为线段A′D,且D(15,0),∴15﹣(2m+1)=2,解得m=6;综上可知m的值为或6.26.(1)解:如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①证明:如图2中,∵四边形ABCD是矩形,∴AD∥BG,∴∠DAG=∠AGB,∵∠DAG=∠GAF,∴∠GAF=∠AGF,∴AF=FG,∵AD=AF,∴AD=FG,∵AD∥FG,∴四边形AFGD是平行四边形,∵FA=FG,∴四边形AFGD是菱形.②或2.。

北师大版八年级数学下册总复习专项测试题附答案解析(三)

北师大版八年级数学下册总复习专项测试题附答案解析(三)

总复习专项测试题(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式中,属于一元一次不等式的是().2、下列度数可能成为某个多边形的内角和的是().3)4)5、下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;( ).6、命题“同角的余角相等”的题设是( )A. 两个角是同一个角B. 两个角是余角C. 两个角是同一个角的余角D. 两个角相等)8)9、下列描述中心对称的特征的语句中,其中正确的是()A. 成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B. 成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C. 成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D. 成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分10)1112)13、下面说法中,正确的是()A. 分式方程一定有解B. 分式方程就是含有分母的方程C. 分式方程中,分母中一定含有未知数D.14)15)二、填空题(本大题共有5小题,每小题5分,共25分)16.171819.三、解答题(本大题共有3小题,每小题10分,共30分)21求证:这个三角形是直角三角形.2223总复习专项测试题(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式中,属于一元一次不等式的是().【答案】B2、下列度数可能成为某个多边形的内角和的是().【答案】C3)【答案】C4)【答案】D5、下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;( ).【答案】D【解析】解:数轴上除了可以表示有理数,还可以表示无理数,故①错误;6、命题“同角的余角相等”的题设是( )A. 两个角是同一个角B. 两个角是余角C. 两个角是同一个角的余角D. 两个角相等【答案】C【解析】解:命题“同角的余角相等”,写出“如果……,那么……”的形式为如果两个角是同一个角的余角,那么这两个角相等.因此命题的题设是两个角是同一个角的余角.故答案为:两个角是同一个角的余角.7)【答案】A8)【答案】D9、下列描述中心对称的特征的语句中,其中正确的是()A. 成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B. 成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C. 成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D. 成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分【答案】D【解析】解:成中心对称的两个图形中,连接对称点的线段一定经过对称中心;成中心对称的两个图形中,对称中心一定平分连接对称点的线段;成中心对称的两个图形中,对称点的连线一定经过对称中心,一定被对称中心平分;成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分.10)【答案】C 【解析】解:故正确的图像为11【答案】C12【答案】C代入分母不为零,故成立.13、下面说法中,正确的是()A. 分式方程一定有解B. 分式方程就是含有分母的方程C. 分式方程中,分母中一定含有未知数D. 把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解【答案】C【解析】分式方程不一定有解;方程必须具备两个条件:①含有未知数;②是等式;把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解;答案中正确的只有:分式方程中,分母中一定含有未知数.14)【答案】C15)【答案】A二、填空题(本大题共有5小题,每小题5分,共25分)16.【答案】115、6517【答案】【解析】解:18【答案】-819【答案】2【解析】解:20.三、解答题(本大题共有3小题,每小题10分,共30分)21求证:这个三角形是直角三角形.∴由勾股定理逆定理可知,这个三角形是直角三角形.22。

新人教版八年级数学(下册)期末复习题及答案

新人教版八年级数学(下册)期末复习题及答案

新人教版八年级数学(下册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或715 )A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.3x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。

初中数学八年级下期末知识点复习(含答案解析)(1)

初中数学八年级下期末知识点复习(含答案解析)(1)

一、选择题1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,245.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差9.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A.20B.16C.12D.810.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-214.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD15.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.18.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____.19.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.20.(0分)[ID :10299]已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.21.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.22.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.23.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.24.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______25.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.三、解答题26.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.28.(0分)[ID:10342]已知:如图,在▱ABCD中,设BA=a,BC=b.(1)填空:CA=(用a、b的式子表示)(2)在图中求作a+b.(不要求写出作法,只需写出结论即可)29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.∆中,D是BC边上一点,E是AD的中点,过30.(0分)[ID:10335]如图所示,ABC=,连接BF.点A作BC的平行线交CE的延长线于F,且AF BD(1)求证:D是BC的中点;=,试判断四边形AFBD的形状,并证明你的结论.(2)若AB AC【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.A5.B6.B7.B8.D9.D10.D11.B12.B13.D14.D15.C二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解18.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及19.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤320.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键21.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方22.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.A解析:A【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

人教版数学八年级下册教材习题课件-复习题19(含答案)

人教版数学八年级下册教材习题课件-复习题19(含答案)
y
y=x+3 3
2 1
–6 –5 –4 –3 –2 –1O 1 2 x
12. A,B两地相距25 km.甲8:00由A地出发骑自行车去B 地,速度为10 km/h;乙9:30由A地出发乘汽车也去B 地,速度为40 km/h. (1) 分别写出两个人的行程关于时刻的函数解析式;
解:(1)设甲的出发时刻为x时,甲、乙行驶的路程 分别为y甲 km,y乙 km,则有 y甲=10(x-8) (8≤x≤10.5), y乙=40(x-9.5) (9.5≤x≤10.125).
2
×8×(10-x)=40-4x.
即S=40-4x.
(2)求x的取值范围; (3)当S=12时,求P点坐标;
(2)由题意得,x>0,y=10-x>0, ∴0<x<10.
(3)当S=12时,12=40-4x,解得x=7,∴P(7,3)
(4)画出函数S的图象.
(4)函数图象如图所示.
S 40 30 20 S=40-4x 10
∴点(-5,-4)在直线上;
当x=-7时,y=2x+6=2×(-7)+6=-8,
∴点(-7,20)不在直线上; Nhomakorabea当不x在=直 72线时上,;y=2x+6=2×
7 2
+6=-1,∴点
7 2
,1
当x= 2 线上.3
时,y=2x+6=2×
2 3
+6=
7
1 3
,∴点
2 3
,7
1 3
在直
当x=0时,y=6;当y=0时,x=-3. 故直线y=2x+6与x
轴交于点(-3,0),与y轴交于点(0,6).
3.填空: (1) 直线 y 1 2 x 经过第_一__、__二__、__四___象限,y随x的增

八年级数学下册复习题(人教版)

八年级数学下册复习题(人教版)

第十六章 分式一、分式的概念:1、下列式子是分式的有(1)21+x 、(2)12-x x 、(3)112+-x x 、(4)2-πx、(5)23+x、(6)21-x 、 (7)x 322、下列式子是分式的有(1)21--x x 、(2)、x 21(3)32-x 、(4)121-x 、(6)、242--x x (7)12-x二、分式有无意义的条件:1、当x 时,分式12-+x x 有意义;当x 时,分式12-+x x 无意义。

2、当a 为任何实数时,下列分式中一定有意义的是( )A 、21aa +B 、11+aC 、112-+a aD 、112++a a3、如果代数式1-x x有意义,那么x 的取值范围是( ) A 、x ≥0 B 、x ≠0 C 、x>0 D 、x ≥0且x ≠14、当x 时,分式12+-x x 有意义;当x 时,分式12-+x x 无意义。

5、当a 为任何实数时,下列分式中一定有意义的是( )A 、1122--a aB 、22aa -C 、112++a aD 、212++a a6、如果代数式22-+x x 有意义,那么x 的取值范围是( ) A 、x ≥-2 B 、x ≠2 C 、x ≥-2且x ≠2 D 、x>-2 7、如果代数式22+-x x 有意义,那么x 的取值范围是( )A 、x ≥-2B 、x ≠2C 、x ≥-2且x ≠2D 、x>-2三、分式的值为0的条件: 1、分式22--x x 的值为0,则x 的值为( )A 、 0B 、2C 、-2D 、2或-22、若分式32122---x x x 的值为0,则x 的值为 。

3、分式33+-x x 的值为0,则x 的值为( )A 、 0B 、-3C 、3D 、3或-34、若分式43422---x x x 的值为0,则x 的值为 。

四、分式的值为正、为负的条件:1、若分式21+a 的值为正,则a ;若分式21+a 的值为负,则a 。

冀教版八年级下册数学 期末复习专题练 专题6.四边形(提升) 习题课件

冀教版八年级下册数学 期末复习专题练 专题6.四边形(提升) 习题课件
A.150° B.140° C.130° D.120°
期末复习专题练 3.【2020·河北邢台模拟】证明:平行四边形的对角线
互相平分. 已知:如图,四边形ABCD是平行四边形,对角线AC、 BD相交于点O. 求证:OA=OC,OB=OD. 证明:∵四边形ABCD是平行四边形, ∴… ∴∠ABO=∠CDO,∠BAO=∠DCO.
期末复习专题练
∴当AE=CF时,四边形AEFC是平行四边形,即t=2t -6,解得t=6. 综上可得,当t=2或t=6时,以A,C,E,F为顶点的 四边形是平行四边形.
【答案】2或6
期末复习专题练
15.(10分)【2019·河北唐山丰南区二模】关于n边形,甲、 乙、丙三位同学有以下三种说法:
甲:五边形的内角和为520°; 乙:正六边形每个内角为130°; 丙:七边形共有对角线14条. 判断三种说法是否正确,并对其中你认为不对的说法用计
期末复习专题练
6.如图,在△ABC中,∠BAC=90°,AB=6,AC= 8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F, M为EF的中点,则PM的最小值为( )
A.5 B.2.5 C.4.8 D.2.4
期末复习专题练
【点拨】连接AP,如图. ∵∠BAC=90°,AB=6,AC=8, ∴BC= 62+82 =10. ∵PE⊥AB,PF⊥AC, ∴四边形AFPE是矩形, ∴EF=AP,EF与AP互相平分. ∵M是EF的中点,
期末复习专题练
由乙的作法可得∠ADN=∠MDN=∠DAM=∠NAM =45°,则AD=AN=DM. 在△MDA和△NAD中, ∠MDA=∠NAD, DA=AD, ∠DAM=∠ADN, ∴△MDA≌△NAD, ∴DM=AN.
期末复习专题练

人教版八年级下册数学专题复习及练习(含解析):因式分解

人教版八年级下册数学专题复习及练习(含解析):因式分解

专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。

人教版八年级数学下册-第十六章复习2

人教版八年级数学下册-第十六章复习2

《二次根式》复习一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3 4.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .ba D .44+a5.如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 6.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a aa a a =•=112; ④a a a =-23。

做错的题是( ) A .① B .② C .③ D .④7.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 8.化简)22(28+-得( )A .—2B .22-C .2D . 224-二、填空题9.①=-2)3.0( ;②=-2)52( 。

10.若m<0,则332||m m m ++= 。

11.1112-=-•+x x x 成立的条件是 。

12.比较大小:13.=•y xy 82 ,=•2712 。

14.若35-=x ,则562++x x 的值为 。

三、解答题15.求使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x 1-16.化简:(1))169()144(-⨯- (2)22531-(3)5102421⨯- (4)n m 21817.计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫⎝⎛-- (3))459(43332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5)2484554+-+ (6)2332326--四、综合题 18.若代数式||112x x -+有意义,则x 的取值范围是什么?19.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。

八年级数学期末复习最典型题总结

八年级数学期末复习最典型题总结

八年级数学期末复习典型题总结1.将分解因式得2.已知是△ABC的三边长, 且满足, 则△ABC的形状是;3、若代数式的值是0, 则代数式的值为;4.分式有意义时, 分式无意义时。

分式值为0时, 同时。

分式值为正时, 值为负;5.已知关于的分式方程=1的解是非正数, 则的取值范围是;6.佳佳果品店在批发市场购买某种水果销售, 第一次用1200元购进若干千克, 并以每千克8元出售, 很快售完。

由于水果畅销, 第二次购买时, 每千克的进价比第一次提高了10%, 用1452元所购买的数量比第一次多20千克, 以每千克9元售出100千克后, 因出现高温天气, 水果不易保鲜, 为减少损失, 便降价50%售完剩余的水果。

(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中, 总体上是盈利还是亏损?盈利或亏损了多少元?7、已知实数满足, 求的值。

8、在△ABC中, AB=AC, 点D在边BC所在的直线上, 过点D作DF∥AC交直线AB于点F, DE∥AB 交直线AC于点E。

(1)当点D在边BC上时, 如图①, 求证: DE+DF=AC;(2)当点D在边BC的延长线上时, 如图②;当点D在边BC的反向延长线上时, 如图③, 请分别写出图②、图③中DE, DF, AC之间的数量关系, 不需要证明;(3)若AC=6, DE=4, 则DF= 。

9、下列方程中不是分式方程的是()A...B...C...D.10、若解分式方程产生增根, 则的值是()A.-1或-.B.-1或.C.1或.D.1或-211.已知, 则的值是;12、若关于的方程= 无解, 则的值是。

13.某校七年级准备购买一批笔记本奖励优秀学生, 在购买时发现, 每本笔记本可以打九折, 用360元钱购买的笔记本, 打折后购买的数量比打折前多10本。

(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同, 学校决定购买笔记本和笔袋共90件, 笔袋每个原售价为6元, 两种物品都打九折, 若购买总金额不低于360元, 且不超过365元, 问有哪几种购买方案?14.如图, 在平行四边形ABCD中, AB=3cm, BC=5cm, 对角线AC, BD相交于点O, 则OA的取值范围是()A.2cm<OA<5c.B.2cm<OA<8c.C.1cm<OA<4c.D.3cm<OA<8c.15.如图, 已知△ABC是等边三角形, 点D.F分别在线段BC.AB上, ∠EFB=60°, DC=EF。

人教版八年级数学下册专题复习(十) 平行四边形的剪拼

人教版八年级数学下册专题复习(十)  平行四边形的剪拼

思维特训(十)平行四边形的剪拼方法点津1.平行四边形剪拼成三角形2.平行四边形剪拼成矩形3.菱形剪拼成矩形典题精练类型一三角形的剪拼1.如图10-S-1,将一张锐角三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形一定是下列图形中的()图10-S-1A.平行四边形B.矩形C.菱形D.正方形2.如图10-S-2,任意三角形ABC中,可沿中位线EF一刀剪切后,用得到的△AEF 和四边形EBCF拼成平行四边形EBCD,现在仿照上述方法,结合自己所画的图,完成下列问题.图10-S-2(1)在△ABC中,可增加条件:________,沿着图中________一刀剪切后的两图形可拼成矩形(剪切线与拼图画在图10-S-3①的位置);(2)在△ABC中,可增加条件:________,沿着图中________一刀剪切后的两图形可拼成菱形(剪切线与拼图画在图②的位置);(3)在△ABC中,可增加条件:________,沿着图中________一刀剪切后的两图形可拼成正方形(剪切线与拼图画在图③的位置).图10-S-33.如图10-S-4,已知在△ABC中,AB=AC,AD⊥BC于点D,且AD=BC=4.若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(不要求写计算过程,只需写出结果)图10-S-4类型二平行四边形的剪拼4.(1)如图10-S-5①,平行四边形纸片ABCD中,AD=5,S▱ABCD=15,过点A作AE ⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为________.A.平行四边形B.菱形C.矩形D.正方形(2)如图10-S-5②,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D的两条对角线的长.图10-S-55.有一张邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图10-S-6①,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图②,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知平行四边形ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD 及裁剪线的示意图,并在图形下方写出a的值;②已知平行四边形ABCD的邻边长分别为a,b(a>b),且a,b满足a=6b+r,b=5r,请写出平行四边形ABCD是几阶准菱形.图10-S-6类型三矩形的剪拼6.如图10-S-7是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()图10-S-7A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以7.有一张邻边不相等的矩形纸片,剪去一个正方形,余下一个四边形,称为第一次操作;在余下的四边形中再剪去一个正方形,又余下一个四边形,称为第二次操作……以此类推,若第n次操作后余下的四边形是正方形,则称原矩形是n阶矩形.如图10-S-8①,矩形ABCD中,若AB=1,AD=2,则矩形ABCD是1阶矩形.探究:(1)两边长分别是2和3的矩形是________阶矩形.(2)小聪为了剪去一个正方形,进行如下的操作:如图②,把矩形ABCD沿着BE折叠(点E在AD上),使点A落在BC上的点F处,得到四边形ABFE.请证明四边形ABFE是正方形.(3)操作、计算:①已知矩形的两边分别是2,a(a>2),而且它是3阶矩形,请画出此矩形及裁剪线的示意图,并在示意图下方直接写出a的值;②已知矩形ABCD的两邻边长分别为a,b(a>b),且a,b满足a=5b+m,b=4m.请直接写出矩形ABCD是几阶矩形.图10-S-8典题讲评与答案详析1.A [解析] 因为此三角形没说明是特殊三角形,所以沿中位线剪开,拼成一个新的图形,一定是平行四边形.2.解:答案不唯一.(1)如图①,∠B =90°;中位线DE . (2)如图②,∠ACB =90°,∠A =30°;中位线DE . (3)如图③,∠ABC =90°,AB =BC ;AC 上的高BE .3.解:图①是矩形,两条对角线长相等,均为2 5;图②是平行四边形,两条对角线长为4和4 2;图③是平行四边形,两条对角线长为2和2 17;图④是一般的四边形,两条对角线长为2 5和855.4.解:(1)C(2)①证明:∵▱ABCD 中,AD =5,S ▱ABCD =15,AE ⊥BC , ∴AE =3.∵将△AEF 平移至△DE ′F ′的位置, ∴AF ∥DF ′,AF =DF ′, ∴四边形AFF ′D 是平行四边形. 在Rt △AEF 中,由勾股定理,得 AF =AE 2+EF 2=32+42=5, ∴AF =AD =5,∴四边形AFF ′D 是菱形.②连接AF ′,DF ,如图.在Rt △DE ′F 中,E ′F =FF ′-E ′F ′=5-4=1,DE ′=3, ∴DF =DE ′2+E ′F 2=32+12=10.在Rt △AEF ′中,EF ′=EF +FF ′=4+5=9,AE =3, ∴AF ′=AE 2+EF ′2=32+92=310. 5.解:(1)①2②证明:由折叠知:∠ABE =∠FBE ,AB =BF .∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形.又∵AE=AB,∴四边形ABFE是菱形.(2)①如图所示:②∵a=6b+r,b=5r,∴a=6×5r+r=31r.如图所示:故平行四边形ABCD是10阶准菱形.6.A[解析] 所作图形如图所示,甲、乙都可以拼一个与原来面积相等的正方形.7.解:(1)2(2)证明:∵△AEB与△FEB关于直线BE成轴对称,∴△AEB≌△FEB,∴AE=FE,∠BFE=∠A.∵四边形ABCD是矩形,∴∠A=∠ABF=90°,∴∠A=∠ABF=∠BFE=90°,∴四边形ABFE为矩形.又∵AE=FE,∴矩形ABFE为正方形.(3)①如图所示:②∵a=5b+m,b=4m,∴a=21m.如图所示:∴矩形ABCD是8阶矩形.。

八年级下册数学复习专题

八年级下册数学复习专题

八年级下册数学复习专题八年级下册数学复资料第一章直角三角形1、直角三角形的性质:①直角三角形的两锐角互余。

②直角三角形斜边上的中线等于斜边上的一半。

例如,在直角三角形ABC中,CD是斜边AB的中线,因此CD等于AB的一半。

③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

例如,在直角三角形ABC中,如果∠A=30°,那么BC等于AB的一半。

例如,在Rt△ABC中,∠C=90°,∠A=30°,则正确的结论是AC²+BC²=AB²。

④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

例如,在直角三角形ABC 中,如果BC等于AB的一半,那么∠A=30°。

例如,如果等腰三角形一腰上的高等于腰长的一半,那么顶角的度数是60°。

⑤勾股定理及其逆定理1)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c²。

求斜边的长度,可以用c=√(a²+b²);求直角边的长度,可以用a=√(c²-b²)或b=√(c²-a²)。

例如,在图中的拉线电线杆示意图中,已知CD⊥AB,∠CAD=60°,那么拉线AC的长度是6m。

例如,如果一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是√136.2)逆定理:如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形。

可以分别计算“a²+b²”和“c²”,如果相等就是直角三角形,不相等就不是直角三角形。

例如,在Rt△ABC中,如果AC=2,BC=7,AB=3,那么正确的结论是∠C=90°。

例如,如果一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,那么这块木板的面积是18.例如,某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?直角三角形性质及勾股定理的应用常见于各种图形中。

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础  含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)1.上复习课时,李老师叫小聪举出一些分式的例子,他举出了:1x ,12,212x +,3xy π,3x y +,a +1m,其中正确的个数为( ) A .2 B .3 C .4 D .52.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y < 3.如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k≠0)在第一象限交于点M(1,2),若直线l 2与x 轴的交点为A(-2,0),则-2x +4> kx +b>0的解集 ( )A .-2<xB .-2<x <1C .x <2D .-2<x <24.如图,DE 是△ABC 的中位线,若BC 的长为3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm5.如图,点A 的坐标是()2,2,若点P 在x 轴上,且APO ∆是等腰三角形,则点P 的坐标不可能是( )A .()1,0B .()2,0C .()22,0-D .()4,06.下列角度中,是多边形内角和的只有( )A .270°B .560°C .630°D .1 800°7.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .8.下列多项式中不能用平方差公式分解的是( )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 2 9.英国和新加坡研究人员制造出观测极限为0.00000005m 的光学显微镜,这是迄今为止观测能力最强的光学显微镜.将数据0.00000005用科学记数法表示为( )A .0.5×10-7B .5×10-8C .5×10-9D .50×10-6 10.下列各式: 116,,1,32b a x a b ++- 其中,分式有( ) A .1个 B .2个 C .3个 D .4个11.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.12.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.13.如图,有边长为1的等边三角形ABC 和顶角为120°的等腰DBC ∆,以D 为顶点作60MDN ∠=︒角,两边分别交AB 、AC 于M 、N ,连结MN ,则AMN ∆的周长为________.14.如图,在矩形中,,,点为边上一点,且,点是的中点,点为的中点,则的长为______.15.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,AB =2cm ,E 、F 分别是AB 、AC 的中点,动点P 从点E 出发,沿EF 方向匀速运动,速度为1cm /s ,同时动点Q 从点B 出发,沿BF 方向匀速运动,速度为2cm /s ,连接PQ ,设运动时间为ts (0<t <1),则当t =___时,△PQF 为等腰三角形.16.如图,在▱ABCD 中,AD =2AB ,点F 是BC 的中点,作AE ⊥CD 于点E ,点E 在线段CD 上,连接EF 、AF ,下列结论:①2∠BAF =∠C ;②EF =AF ;③S △ABF =S △AEF ;④∠BFE =3∠CEF .其中一定正确的是_____.17.直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为_______cm 2.18.分解因式:81x -=______.19.如果方程2a x -+3=12x x--有增根,那么a =________. 20.如图,在△ABC 中,∠C=70°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A'处,且A'C=A'E ,则∠A'ED=____°.21.某地组织20辆汽车装运A 、B 、C 三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2辆车.(1)设用x 辆车装运A 种苹果,用y 辆车装运B 种苹果,根据下表提供的信息,求y 与x 之间的函数关系式,并写出x 的取值范围; 苹果品种 A B C每辆汽车(吨) 2.2 2.1 2每吨苹果获利(百元) 6 8 5(2)设此次外销活动的利润为W 百元,求W 与x 之间的函数关系式,当x 为何值时,W (百元)取得最大利润,并安排此时相应的车辆调配方案.22.某市政部门为了保护生态环境,计划购买A ,B 两种型号的环保设备.已知购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元.(1)求A 型设备和B 型设备的单价各是多少万元;(2)根据需要市政部门采购A 型和B 型设备共50套,预算资金不超过3000万元,问最多可购买A 型设备多少套?23.如图,在等边三角形ABC 中,4AB =,点E 是AC 边上的一点,过点E 作//DE AB 交BC 于点D ,过点E 作EF DE ⊥,交BC 的延长线于点F .(1)求证:CEF ∆是等腰三角形;(2)点E 满足__________时,点D 是线段BF 的三等分点;并计算此时CEF ∆的面积.24.如图,四边形ABCD 是矩形(1)尺规作图:在图8中,求作AB 的中点E (保留作图痕迹,不写作法)(2)在(1)的条件下,连接CE ,DE ,若2,3AB AD ==, 求证:CE 平分∠BED25.如图,的三个顶点都在正方形网格的格点上(网格中每个小正方形的边长都为1个单位长度),将平移,使点到的位置.(1)画出平移后的; (2)连接、,则线段与的关系是______; (3)求的面积.26.阅读理解: 若一个整数能表示成a 2+b 2(a 、b 是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x , y 是整数),我们称M 也是“平和数”.(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.(2)已知S =x 2+9y 2+6x ﹣6y +k (x ,y 是整数,k 是常数,要使S 为“平和数”,试求出符合条件的一个k 值,并说明理由.(3)如果数m ,n 都是“平和数”,试说明22()()4m n m n +--也是“平和数”. 27.分解因式:(1)22242x xy y -+. (2)()()229a b a b --+. 28.解不等式组3432(1)1x x x ①②>-⎧⎨+-≥⎩,并将解集在数轴上表示出来. 29.214416x x =--. 30.已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)参考答案1.B【解析】【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式进行分析即可.【详解】1 x ,3x y, a+1m是分式,只有3个,故选B.【点睛】此题主要考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.C【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A、两边都减3,不等号的方向不变,故A错误;B、两边都乘以2,不等号的方向不变,两边再加1,不等号的方向不变,故B错误;C、两边都乘以-1,不等号的方向改变,故C正确;D、两边都除以2,不等号的方向不变,故D错误;故选C.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.3.B【解析】【分析】观察函数图象得到当-2<x<1时,-2x+4> kx+b>0.【详解】根据图象可得不等式-2x+4> kx+b>0的解集为:-2<x<1;故选:B【点睛】此题主要考查了一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.4.B【解析】试题分析:三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;本题利用定理计算即可由BC的长为3cm,得DE=1.5.故选B.考点:三角形中位线定理5.A【解析】【分析】∆是等腰三角形时P点的位本题可先根据勾股定理求出OA的长,然后结合选项分析APO置,然后用排除法求解.【详解】解:点A的坐标是(2,2),根据勾股定理:则OA=-,当OA=OP=,且点P在点O左侧时,P点坐标为:()4,0,当OA=AP时,由对称性可知P点坐标为:()2,0,当OP=AP时,则P点坐标为:()1,0∴点P的坐标不可能是()故选:A.【点睛】此题主要考查了坐标与图形的性质,勾股定理,等腰三角形的判定,关键是根据等腰三角形的判定和性质,分情况讨论.6.D【解析】【分析】n(n≥3)边形的内角和是(n-2)180°,因而多边形的内角和一定是180°的整数倍,由此即可求出答案.【详解】∵多边形的内角和是(n-2)180°(n≥3),∴多边形的内角和一定是180°的整数倍,四个选项中,只有1800°是180°的整数倍,故选D.【点睛】本题主要考查了多边形的内角和定理,多边形的内角和是(n-2)180°(n≥3),熟记定理并灵活运用是解题关键.7.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax-bx>c的解集为x>1.故选:D.【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.8.B【解析】【分析】根据平方差公式的特点:两平方项,符号相反,对各选项分析判断后利用排除法就可.【详解】A、-a2+b2=(b+a)(b-a);B、-x2-y2=-(x2+y2),提取公因式-1后是两数的平方和,不能用平方差公式分解因式;C、49x2y2-z2 =(7xy+z)(7xy-z);D、16m4-25n2p2=(4m2+5np)(4m2-5np),故选B.【点睛】本题考查用平方差公式分解因式的多项式的特点,熟记平方差公式结构是解题的关键. 9.B【解析】【分析】根据科学记数法的表示形式写出即可.【详解】解:数据0.00000005用科学记数法表示为:0.00000005=5×10-8.故选:B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10.B【解析】【分析】根据分式的概念判断即可.【详解】解:在116,,1,32b axa b++-中,是分式的有:1a和62ab+,共2个.故选:B.【点睛】本题考查了分式的定义,属于基础概念题,熟知分式的概念是关键.11.9.36【解析】【分析】设裁判员有x名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.【详解】设裁判员有x名,那么总分为9.84x;去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取7时,最低分有最小值,则最低分为9.9-0.06x=9.9-0.54=9.36.故答案是:9.36.【点睛】考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.12.3【解析】【分析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB=22AC CB=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.13.2【解析】【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为1的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,∵BF CNFBD DCN DB DC=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,∵DM MDFDM MDN DF DN=⎧⎪∠=∠⎨⎪=⎩,∴△DMN≌△DMF(SAS)∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=1+1=2,故答案为:2【点睛】此题考查全等三角形的判定与性质,角平分线的性质,等边三角形的性质,解题关键在于掌握判定定理.14.5【解析】【分析】过G作GM⊥AD,延长MG交BC于N,根据矩形性质可得四边形MNCD是矩形,MD=NC,MN=CD,根据EC=2BE可求出CE的长,由三角形中位线的性质可求出NG、NC的长,进而可得MG、AM的长,利用勾股定理求出AG的长即可.【详解】过G作GM⊥AD,延长MG交BC于N,∴四边形MNCD是矩形,∴MD=NC,MN=CD,∵EC=2BE,BC=6,∴EC=4,∵F为CD的中点,CD=AB=4,∴CF=2,∵G为EF中点,MN//CD,∴NC=EC=2,NG=CF=1,∴MG=MN-NG=4-1=3,AM=AD-MD=6-2=4,∴AG===5.故答案为:5【点睛】本题考查矩形的判定与性质、三角形中位线的性质及勾股定理,三角形的中位线,平行于第三边,且等于第三边的一半;三角掌握相关性质是解题关键.15.2. 【解析】【分析】 由勾股定理和含30°角的直角三角形的性质先分别求出AC 和BC ,然后根据题意把PF 和FQ 表示出来,当△PQF 为等腰三角形时分三种情况讨论即可.【详解】解:∵∠ABC =90°,∠ACB =30°,AB =2cm ,∴AC =2AB =4cm ,BC =∵E 、F 分别是AB 、AC 的中点,∴EF =12BC ,BF =12AC =2cm , 由题意得:EP =t ,BQ =2t ,∴PF t ,FQ =2﹣2t ,分三种情况:①当PF =FQ 时,如图1,△PQF 为等腰三角形.t =2﹣2t ,t =2;②如图2,当PQ =FQ 时,△PQF 为等腰三角形,过Q 作QD ⊥EF 于D ,∴PF =2DF ,∵BF =CF ,∴∠FBC =∠C =30°,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠PFQ =∠FBC =30°,∵FQ =2﹣2t ,∴DQ =12FQ =1﹣t ,∴DF = 1﹣t ),∴PF=2DF=23(1﹣t),∵EF=EP+PF=3,∴t+23(1﹣t)=3,t=6+311;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣3或6+3时,△PQF为等腰三角形.故答案为:2﹣3或6+3.【点睛】勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.16.①②④.【解析】【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【详解】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,∠MBF=∠C,BF=CF,∠BFM=∠CFE,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF<S△AEF,故③错误;④设∠FEA=x,则∠F AE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EF A=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF =90°﹣x ,∴∠BFE =3∠CEF ,故④正确,故答案为:①②④.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF ≌△DME .17.9【解析】【分析】根据平移的性质,AB 经过的平面是底边长等于平移距离,高为AC 的平行四边形,然后根据平行四边形的面积公式列式计算即可得解.【详解】解:如图,边AB 所经过的平面是底边为3cm ,高为AC 的平行四边形,面积=3×3=9cm 2. 故答案为:9cm 2.【点睛】本题考查平移的性质,判断出AB 所经过的平面的形状是解题的关键.18.()()()()421111x x x x +++- 【解析】【分析】根据平方差公式因式分解即可.【详解】解:()()()()()()()()()844422421111111111x x x x x x x x x x -=+-=++-=+++- 故答案为:()()()()421111x x x x +++-. 【点睛】此题考查的是因式分解,掌握用平方差公式因式分解是解决此题的关键.19.1【解析】【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x=2,将x=2代入整式方程计算即可求出a 的值.【详解】解:分式方程去分母得:a+3(x-2)=x-1,根据分式方程有增根,得到x-2=0,即x=2,将x=2代入得:a=2-1=1,故答案为:1【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.55°【解析】【分析】根据等边对等角即可证出∠A'EC=∠C=70°,再根据翻折的性质即可求出∠A'ED.【详解】解:∵A'C=A'E∴∠A'EC=∠C=70°由翻折的性质可知:∠A'ED=∠AED=12(180°-∠A'EC )=55°. 【点睛】此题考查的是翻折的性质和等腰三角形的性质,根据翻折的性质找到相等的角和掌握等边对等角是解决此题的关键.21.(1)220y x =-+, 2≤x ≤9;(2)当2x =时,W 的值最大,315.2W =最大值(百元),安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【解析】【分析】(1)先表示出C 种苹果所用的车辆的数量,根据全部装满得到()2.2 2.122042x y x y ++--=,再由每种苹果不少于2辆车得到22202x x ≥⎧⎨-+≥⎩,解不等式组即可解题,(2)利用(1)中的数量关系表示出利润W 与x 之间的函数关系,再利用函数的增减性找到函数的最值即可解题.【详解】(1)根据题意,运A 种苹果x 车,B 种苹果y 车,∴运C 种苹果()20x y --车,由题意得:()2.2 2.122042x y x y ++--=,整理得220y x =-+由题意可知22202x x ≥⎧⎨-+≥⎩,解得2≤x ≤9 ∴y 与x 之间的函数关系式是220y x =-+,自变量x 的取值范围是2≤x ≤9.(2)由题意可知:W ()6 2.28 2.12205233610.4x x x x =⨯+⨯-++⨯=-∵10.40k =-<∴W 随x 的增大而减小∴当x 取最小值时,W 的值最大即当2x =时,W 的值最大,max 33610.42315.2W =-⨯=(百元)∴安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【点睛】本题考查了一次不等式与一次函数的实际应用,中等难度,综合性强,认真审题,找到题干中的等量关系是解题关键.22.(1)A 型设备的单价是80万元,B 型设备的单价是50万元;(2)最多可购买A 型设备16套.【解析】【分析】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,根据“购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型设备m 套,则购进B 型设备(50-m )套,根据总价=单价×数量结合预算资金不超过3000万元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,依题意,得:323032340x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩. 答:A 型设备的单价是80万元,B 型设备的单价是50万元.(2)设购进A 型设备m 套,则购进B 型设备(50)m -套,依题意,得:8050(50)3000m m +-„, 解得:503m „. m Q 为整数,m ∴的最大值为16.答:最多可购买A 型设备16套.【点睛】此题考查二元一次方程组的应用,一元一次不等式的应用,解题关键在于根据题意列出方程.23.(1)见解析;(2)E 是AC 的中点,CEF S ∆.【解析】【分析】(1)根据等边三角形的性质以及平行线的性质得到60EDC B ∠=∠=︒,根据三角形的内角和求出30F ∠=︒,根据三角形外角的性质求出603030CEF ∠=︒-︒=︒,得到 CEF F ∠=∠,即可证明.(2)过点E 作EP DF ⊥,交DF 于点P ,当点E 是AC 的中点时,2AE EC CD DB CF =====,求出高,即可求出CEF ∆的面积.解:证明:(1)∵ABC ∆是等边三角形,∴AB BC AC ==,60A B ACB ∠=∠=∠=︒∵//DE AB ,∴60EDC B ∠=∠=︒∵EF DE ⊥∴90DEF ∠=︒∴30F ∠=︒∵ACB ∠是CEF ∆的外角,且60ACB ∠=︒,∴603030CEF ∠=︒-︒=︒,∴CEF F ∠=∠,∴CE CF =,∴CEF ∆是等腰三角形.(2)E 是AC 的中点(或AE CE =).过点E 作EP DF ⊥,交DF 于点P∵//DE AB ,∴60CED A ∠=∠=︒,∴CDE ∆是等边三角形.当点E 是AC 的中点时,2AE EC CD DB CF =====在CEF ∆中,90EPC ∠=︒,60ECP ∠=︒,∴30PEC ∠=︒,∴11,32CP CE PE ===. ∴11·23322CEF S CF EP ∆==⨯=. 【点睛】考查平行线的性质,等边三角形的判定与性质,三角形外角的性质等,难度一般.24.(1)见解析;(2)见解析.【分析】(1)作AB的垂直平分线即可得到AB的中点E,E点即为所求;(2)先利用勾股定理求出DE=2,再利用平行线的性质可得出结果.【详解】如图,四边形ABCD是矩形了(1)正确作出AB的垂直平分线下结论:点E为所求(2)∵E是AB的中点∴AE=11 2AB=∵四边形ABCD是矩形∴∠A=90°AB=CD=2∴222DE AD AE=+=∴DE=DC∴∠DEC=∠DCE∵AB∥CD∴∠CEB=∠DCE∴∠CEB=∠DEC∴CE平分∠BED【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.(1)见解析;(2)平行且相等;(3)4.【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后顺次连接即可;(2)由平移的性质即可解答;(3)利用经过点的长方形的面积减去3个小直角三角形的面积即可求得的面积.【详解】(1)如图所示:(2)由平移的性质可得线段与的关系是平行且相等;(3)的面积为:3×4-×1×2-×2×4-×2×3=4.【点睛】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.(1)2(答案不唯一),是;(2)10,理由见解析;(3)证明见解析.【解析】【分析】(1)利用“平和数”的定义可得;(2)利用配方法,将S配成平和数,可求k的值;(3)根据完全平方公式,可证明22()()4m n m n+--也是“平和数”.【详解】(1)∵2=12+12∴2是平和数∵34=52+32∴34是平和数(2)∵S=x 2+9y 2+6x-6y+k=(x+3)2+(3y-1)2+k-10∴k=10时,S 是平和数(3)设m=a 2+b 2,n=c 2+d 2 ∴22()()4m n m n +--=mn=(a 2+b 2)(c 2+d 2) =a 2c 2+b 2d 2+a 2d 2+b 2c 2=a 2c 2+b 2d 2+a 2d 2+b 2c 2+2abcd-2abcd∴mn=(ac+bd )2+(ad-bc )2∴mn 是平和数 ∴22()()4m n m n +--也是“平和数”. 【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是解决本题的关键.27.(1)()22x y -;(2)()()422a b a b -- 【解析】【分析】(1)首先提取公因式2,进而利用完全平方公式分解因式即可.(2)先用平方差公式分解,再化简即可.【详解】解:(1)原式()()222222x xy yx y =-+=-; (2)原式()()223a b a b ⎡⎤=--+⎣⎦()()()()33a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()4224a b a b =--()()422a b a b =--.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.28.0x≥【解析】【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【详解】3432(1)1x xx>-⎧⎨+-≥⎩①②由①得:x>-2;由②得:x≥0;所以不等式组的解集为:x≥0.在数轴上表示为:【点睛】本题在分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果,此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的运用能力的考查.29.0x=【解析】【分析】先通过方程两边乘最简公分母216x-将分式方程化为整式方程,再解整式方程,最后检验整式方程的解是不是分式方程的解.【详解】214416x x=--解:44x+=x=经检验0x=是分式方程的解.【点睛】本题考查解分式方程. 切记解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.30.见详解.【解析】【分析】由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P点.【详解】解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于12CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.【点睛】本题考查作图-复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解题的关键.。

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。

冀教版八年级下册数学 期末复习专题练 专题2.平面直角坐标系 习题课件

冀教版八年级下册数学 期末复习专题练 专题2.平面直角坐标系 习题课件

期末复习专题练 (3)点P到两坐标轴的距离相等.
解:当点P到两坐标轴的距离相等,可分为以下两种情 况讨论: ①当2m+4=m-1时,m=-5, ∴2m+4=-6,m-1=-6,∴P(-6,-6). ②当2m+4+(m-1)=0时,m=-1, ∴2m+4=2,m-1=-2,∴P(2,-2). 综上所述,P(-6,-6)或(2,-2).
纵 坐 标 不 变 , 得 到 点 A′ , 则 点 A 与 点 A′ 的 关 系 是
( B)
A.关于x轴对称
B.关于y轴对称
C.关于原点对称
D.无法判断
期末复习专题练
7.如图,象棋盘上“将”位于点(2,-1),“象”位于点(4, -1),则“炮”位于点( C ) A.(1,2) B.(2,-1) C.(-1,2) D.(2,1)
解:如图所示,△A1B1C1即为所求.
期末复习专题练 (3)△A1B1C1的面积为____5_._5____.
期末复习专题练 17.(12分)如图,在平面直角坐标系xOy中,已知△ABC三个
顶点坐标分别为A(-2,4),B(-2,1),C(-5,2). (1)请画出△ABC关于x轴对称的图形△A1B1C1;
答案显示
期末复习专题练
1.三水是长寿之乡,以下说法中能准确表示三水地理 位置的是( B )
A.在广州的西北方 B.东经113°,北纬23° C.距离广州40公里处 D.东经113°
期末复习专题练
2.在平面直角坐标系中,点A(-3,-5)位于( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
期末复习专题练 10.如图,在平面直角坐标xOy中,动点P按图中箭头所示
方向依次运动,第1次从点(-1,0)运动到点(0,1), 第2次运动到点(1,0),第3次运动到点(2,-2)……按 这样的运动规律,动点P第2 020次运动到点( D ) A.(2 020,-2) B.(2 020,0) C.(2 019,1) D.(2 019,0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1..(8分)(2013·昭通中考)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN 是平行四边形.
(2)当AM 为何值时,四边形AMDN 是矩形?请说明理由.
2、梯形ABCD ,AD ∥BC ,∠A=90°AB=8cm ,AD=24cm ,BC=26cm 点,点P 从A 出发沿线段AD 的方向以1cm/s 的速度运动;点Q 从C 出发沿线段CB 的方向以3cm/s 的速度运动,点P 、Q 分别从A 、C 同时出发,当点P 运动到点D 时,点Q 随之停止运动.设运动时间为t (秒).
(3分)(1)设四边形PQCD 的面积为S ,写出S 与t 之间的函数关系(注明自变量的取值范围); 解:
(3分)(2)当t 为何值时,四边形PQCD 为等腰梯形? 解:
3.在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),,( , ),( ,______)
(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的
坐标(如图所示),求出顶点C 的坐标
y
C
()A
(40)D ,
(12)B ,
O x
图1
y
C
()A
(0)D e ,
()B c d ,
O x
图2
y
C
()A a b , ()D e b ,
()B c d ,
O
x
图3
Q P D C
y
C
()A a b ,
()D e f
()B c d ,
O
x
图4
( , )(C点坐标用含a b c d e f
,,,,,的代数式表示)归纳与发现
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,
你会发现:无论平行四边形ABCD处于直角坐标系
中哪个位置,当其顶点坐标为()()()()
,,,,,,,(如图4)
A a b
B c d
C m n
D e f
时,则四个顶点的横坐标a c m e
,,,之间的等量关系为;纵坐标b d n f
,,,之间的等量关系为(不必证明)。

4.我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A,B两种产品共80件.生产一件A产品需要甲种原料5kg,•乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,•生产成本是200元.
(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案,请你设计出来;
(2)设生产A,B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?•最低生产总成本是多少?
5.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)
甲成绩76 84 90 84 81 87 88 81 85 84
乙成绩82 86 87 90 79 81 93 90 74 78 (1) 请完成下表:
(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.
6.如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.(1
如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.
(1)求证:BE-DF=EF;
(2)如图②,若点P在DC的延长线上,其余条件不变,则BE,DF,EF有怎样的数量关系______(不用证明)
(3)如图③,若点P在CD的延长线上,其余条件不变,画出图形,写出此时BE,DF,EF之间的数量关系,并证明你的结论.
2014年新人教版八年级数学下册期末试题
一、选择题
1、下列计算结果正确的是:
(A)(B)(C)(D)
2、已知,那么的值为
( )
A.一
l B.1 C.32007 D

4、△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是( )
A.42
B.32
C.42或32
D.37或33
5、如图,在ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大
小为
A.150°B.130° C.120°D.100°
6、如图,在菱形中,对角线、相交于点O,E为BC的中点,则下列式子中,一定成立的是()
A. B.
C. D.
7、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的大小关系是()
A.y
1>y
2
>y
3
B.y
1
<y
2
<y
3
C.y
3
>y
1
>y
2
D.y
3
<y
1
<y
2
8、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )
(A)(B)(C)
(D)
9、一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图像是……()
A. B. C. D.
10、某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,
8元,9元,则这组数据的中位数与众数分别为()
A.6,6 B.7,6 C.7,
8 D.6,8
11、8名学生在一次数学测试中的成绩为80,82,79,69,74,78,,81,这组成绩的平均数是77,则的值为()
A.76 B.75 C.74 D.73 二、填空题
12、直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________,面积为________ .
13、已知a,b,c为三角形的三边,则
= .
14、如图所示,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下滑了__________米.
15、直角三角形的两边为3和4,则该三角形的第三边
为 .
16、在长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.
17、如图,已知正方形ABCD的边长为1,连接AC,BD,相交于点O,CE平分∠ACD 交BD于点E,则
DE=.
18、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式
为:。

19、如图,已知函数和的图象交点为,则不等式
的解集为.
20、已知一次函数的图象如图,当时,的取值范围
是.
21、数据11,9,7,10,14,7,6,5的中位数是______ ,众数是______。

22、对于样本数据1,2,3,2,2,以下判断:①平均数为2;②中位数为2;
③众数为2;④极差为2;⑤方差为2。

正确的有.(只要求填序号)。

相关文档
最新文档