江苏对口单招数学试卷和答案 (1)
(word版)江苏省对口单招数学模拟试卷一含答案,文档
一.单项选择题〔本大题共 12小题,每题4分,共48分,每题列出的四个选项中,只有一项为哪一项符合要求的〕1. 集合M0,1,2,3,4,N1,3,5,PMN,那么P 的子集共有〔〕A .2B .4C.6D .82.设p :直线l 垂直于平面内的无数条直线,q :l ⊥,那么p 是q 的〔〕A.充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件3.复数i 2i 3i 41 i〔〕A .11i B .11iC .11i2 22 22211D . +i4.假设 tan=3 ,那么sin2的值等于cos 2〔 〕A .2B .3C .4 D.65. 圆x 2y 24x4y6 0截直线x y 5 0所得的弦长为〔〕A .6B.52 C .1 D.526. 函数 f(x)1 lg(x 1) 的定义域是〔〕1 xA .(,1) B.( 1, )C .( 1,1)U(1, ) D .(,)7. 以下函数中,其图象关于直线x5 对称的是 〔〕6A .y4sin(x π)B.y2sin(x 5π)3 6 C .y 2sin(x+π)D .y 4sin(x+π)6 38. 设f(x)是周期为 2 的奇函数,当≤ x ≤ 1 时,f(x) 2x 1 x ,那么f( 2.5)〔〕=A.1B.1C.1D.1 24429.设双曲线x2y21(a0)的渐近线方程为3x2y 0,那么a的值为〔〕a29A.4B.3C.2D.1有A 、B 、C 、D 、E 共5人并排站在一起,如果A 、B 必须相邻,并在B 在A 的右边, 那 么 不 同 的 排 法 有 〔 〕A .60种B .48种C .36种D.24种11. 假设△ABC 的内角A 、B 、C 所对的边a 、b 、c满足 (a b) 2c 24,且°,那么ab 的C=60值为〔〕A .4B.843C .1D.23312. 假设X 服从X ~N(1,0.25) 标准正态分布,且P 〔X<4〕,那么P(1<X<4)=〔 〕A .B.C .D.二.填空题〔本大题共 6小题,每题4分,共24分〕13. 过点〔1,2〕且与原点距离最大的直线方程是___________________.14. 函数 f(x) 1 ,那么 f 1_____________.〔〕 x r 2r215. rrr rrr_______.ab2,(a2b)(a b)2,那么a 与b 的夹角为16. 椭圆5x 2ky 25的焦点坐标为〔0,2〕,那么k_____________.17. 假设cos θ1log 2 x ,那么x 的取值范围为_______________.18. 假设x,yR ,那么(x21 1 +4y 2)的最小值为______________.y 2 )(2x二.填空题〔本大题共 6小题,每题 4分,共24分〕13. .14. .15. .16. .17. .18..第二卷〔共78分〕得分评 卷得 评三.解答题〔本大题共7小题,共78分〕人人19.(6分)ax 2+bx+c<0的解集为{x|1<x<2},求axb>0的解集.20.(10分)函数f(x)4cosxsin(xπ)16〔1〕求f(x)的最小正周期;〔2〕求f(x)在区间π,π上的最大值和最小值.6 421.(10分)等比数列a n的各项均为正数,且2a 13a 2,1a 329a 2a 6.〔1〕求数列 a n 的通项公式;〔2〕设b n log 1 a 1+log 1 a 2...log 1 a n ,求数列1的前n 项和.333b n22.(12分)函数f(x)1x 2 2xb(a1)a2〔1〕假设f(x)在2,+ 上是单调函数,求a 的取值范围;〔2〕假设f(x)在 2,3上的最大值为6,最小值为 3,求a,b 的值.23. (12分)红队队员甲、乙分别与蓝队队员A 、B 进行围棋比赛,甲对A ,乙对B ,各比一盘,甲胜A ,乙胜B 的概率分别为3,1,假设各盘比赛结果相互独立. 5 21〕求红队只有甲获胜的概率;2〕求红队至少有一名队员获胜的概率;3〕用表示红队队员获胜的总盘数,求的分布列和数学期望E(ξ).24.(14分)如下图,ABC 为正三角形,CE 平面ABC ,BD//CE,G 、F 分别为AB 、AE的中点,且EC=CA=2BD=2. E〔1〕求证:GF//平面BDEC ;〔2〕求GF 与平面ABC 所成的角; D〔3〕求点G 到平面ACE 的距离.F(14分)一条曲线C 在y 轴右边,C 上任一点到点F 〔1,0〕的距离都比它到y 轴C B G A距离大1.1〕求曲C 的方程;2〕是否存在正数m ,于点M 〔m ,0〕且与曲C 有两个交点A,B 的任一直,都有FAFB0?假设存在,求出m 的取范;假设不存在,明理由.1 2345678 9101112号答BBCDACAACDAB案二、填空13、x2y-514、515、60216、117、1,418、9三、解答19、解:Qax 2+bx+c<0的解集{x|1<x<2}a0,bx 1x 2 123,a3,+不等式ax b>0的解集〔 〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分20、解:〔1〕() 4cossin(π1x x )fx62sin(2x )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分f(x)的最小正周期π⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分( 2〕Qπx π642π⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分π 2x π 6 6 3当2 x ππ,即x=π,f(x)取得最大2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分6 2 6当2 x π π,即x=π,f(x)取得最小1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分6 662a 1 3a 1q 1a 1 121、解:〔1〕(a 1q 2)29a 1q a 1q 53⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分q>0q13a n(1)n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯53分〔2〕b nlog 1 1 log 1(1)2+...log 1(1)n3 3 3333=n(n 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72分12 2( 1 1 )b nn(n1) n n 1S n 2〔11)=2n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分n+1 n+122、解:〔1〕称2上是函数x 1=a ,f(x)在2,+2aa2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 1 a 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分2〔2〕Qa> 12当x a ,取得最小,即a 2a b 3当x2,取得最大,即44 b6a解得a 1,b 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12分23、解:(1)P=313⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分5 2 10(2)P=121 4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6分5 2 5的取0,1,2,P(0)2 1 1,5 2 5P(1) 3 1 2 1 1,5 2 5 2 2的概率分布列1 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分E()1123 11 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分 2101024、解:〔1〕明:接BE QG 、F 是AB 、AE 的中点QGF 平面BDEC ,BE 平面BDECGF //平面BDEC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(3) GF//BE(4) BE 与平面ABC 所成的角即GF 与平面ABC 所成的角 (5) EC 平面ABC(6) EBC 是BE 与平面ABC 所成的角 (7) 在RtECB 中,EC=BC ,EBC=45(8)GF 与平面ABC 所成的角45⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(9)QVG-ACE =VE-ACGQS ACE =12 2=2 ,2QS ACG =113=3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12分222h= 32h=3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分22点G 到平面的距离3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分ACE225、解:〔1〕P 〔x,y)是曲C 上任意一点,那么点P 〔x,y)足:化得:y 24x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分2〕假存在在的m ①当直斜率存在点M 〔m ,0〕的直yk(xm),k0,点A(x 1,y 1)、B(x 2,y 2)x 1x 22k 2m 4x 1x 2m 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分k 2Qm 0 y 1 y 2 4m ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8分即x 1x 2 (x 1x 2)1y 1y 2化(m 26m1)k 240⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11分无k 取何不等式恒成立,即 m 2 6m10②当直斜率不存在点M(m,0)的直x=m ,此A(m,2m)、B(m,2m)uuur uuur(m1)24m0,即m26m+10,m(322,322) FA FB上可得,存在正数m,于点M〔m,0〕且与曲C有两个交点A,B的任一直,都有FAFB0,且m(322,322〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分。
2022年江苏省常州市普通高校对口单招数学自考真题(含答案)
2022年江苏省常州市普通高校对口单招数学自考真题(含答案)一、单选题(20题)1.已知等差数列{a n}满足a2+a4=4,a3+a5=它的前10项的和S n()A.138B.135C.95D.232.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1B.f(x)=x0(x≠0)与f(x)=1C.D.f(x)=2x+l与f(t)=2t+13.若f(x)=1/log1/2(2x+1),则f(x)的定义域为()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)4.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.145.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.1206.若102x=25,则10-x等于()A.B.C.D.7.为A.23B.24C.25D.268.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x 的值是()A.-2B.0C.2D.19.过点A(1,0),B(0,1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=010.设a>b>0,c<0,则下列不等式中成立的是A.ac>bcB.C.D.11.等差数列{a n}中,若a2+a4+a9+a11=32,则a6+a7=()A.9B.12C.15D.1612.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)14.下列函数为偶函数的是A.B.y=7xC.y=2x+115.下列命题是真命题的是A.B.C.D.16.设集合={1,2,3,4,5,6,},M={1,3,5},则C U M=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U17.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=018.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},则A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}19.若f(x)=ax2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.220.椭圆x2/4+y2/2=1的焦距()A.4B.2C.2D.2二、填空题(20题)21.10lg2 = 。
江苏省普通高校对口单招数学
江苏省2021年一般高校正口单招文化统考数学试卷本卷须知考生在答题前请仔细阅读本本卷须知及各题答题要求1.本试卷共4页,包括选择题〔第1题~第10题,共10题〕、非选择题〔第11题~第23题,共13题〕。
本卷总分值为150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务势必自己的姓名、考试证号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点。
3.请仔细查对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您自己能否符合。
4.作答选择题〔第1题~第10题〕,一定用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需变动,请用橡皮擦洁净后,再选涂其余答案。
作答非选择题,一定用毫米黑色墨水的署名笔在答题卡上的指定地点作答,在其余地点作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
一、单项选择题〔本大题共10小题,每题4分,共40分。
在以下每题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑〕1.会合M={0,1,2},N={2,3},那么M∪N等于( )A.{2}B.{0,3}C.{0,1,3}D.{0,1,2,3}2.数组a=(1,3,-2),b=(2,1,0),那么a-2b等于()A.(-3,1,-2)B.(5,5,-2)C.(3,-1,2)D.(-5,-5,2)3.假定复数z=5-12i,那么z的共轭复数的模等于()4.以下逻辑运算不.正确的选项是()———A.A+B=B+AB.AB+AB=A·0=0 D.1+A=15.过抛物线y2=8x的焦点,且与直线4x-7y+2=0垂直的直线方程为x+4y-44=0B.7x+4y-14=0C.4x-7y-8=0x-7y-16=0“a=〞是“角α的终边过点〔2,2〕〞的4A.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件7.假定一个底面边长为23,高为2的正四棱锥的体积与一个正方体的体积相等,那么该正方体的棱长为x=5cosθ8.将一枚骰子先后投掷两次,所得的点数分别为m,n,那么点〔m,n〕在圆(θ是参数)上的概率为y=5sinθ1111A. B. C. D.3618126-2x2+x,x≥09.函数f(x)=x2-g(x),x<0是奇函数,那么g(-2)的值为D.-310.设m>0,n>0,且4是2m与8n的等比中项,那么3+4的最小值为m n317327 B. D.44二、填空题〔本大题5小题,每题4分,共20分〕11.题11图是一个程序框图,假定输入x的值为3,那么输出的k值是.12.题12图是某工程的网络图〔单位:天〕,假定总工期为27天,那么工序F所需的工时x〔天〕的取值范围为.13.设向量a=(cosα,sinb=(2,1),αα∪-2,,假定a·b=1,那么cosα等于. 214.函数f(x)是R上的奇函数,且f(x+4)=f(x),当a<x≤2时,f(x)=log2(x+1),那么f(11)等于.15.设实数x,y知足(x-1)2+y2=1,那么y的最大值为.x1三、解答题〔本大题共8小题,共90分〕16.(8分)复数z=(m2-2m-8)+(log2m-1)i所表示的点在第二象限,务实数m的取值范围.x-x,m是实数.17.(10分)设函数f(x)=3-m·3(1)假定f(x)是R上的偶函数.∪求m的值;3x∪设g(x)=,求证:g(x)+g(-x)=1;f(x)(2)假定对于x的不等式 f(x)≥6在R上恒建立,求m的取值范围.18.(12分)函数1f(x)=3sinxcosx-cos2x,2(1)求f(x)的最小正周期;(2)在∪ABC中,三个角,,C所对的边分别为,假定f(A)=1,c=2a·cosB、b=6,求AB a,b,c∪ABC的面积.19.(12分)为了弘扬传统文化,某校举办了诗词大赛.现将抽取的200名学生的成绩从低到高挨次分红六组:[40,50〕,[50,60〕,[60,70〕,[70,80〕,[80,90〕,[90,100〕,获取频次散布直方图〔题19图〕.解答以下问题:(1)求a的值;(2)假定采纳分层抽样的方法从6个小组中随机抽取40人,那么应从第1组和第2组各抽取多少人?(3)从成绩不低于80分的学生中随机抽取2人,求所抽取的2名学生起码有1人来自第5组的概率.题10图20.(14分){a n}是公差为2的等差数列,其前n项和S n=pn2+n.(1)求首项a1,实数p及数列{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2,假定{b n}的前n项和为T n,求证:{T n+1}是等比数列.21.〔10分〕某公司生产甲、乙两种产品,生产每吨甲产品需投资5万元,且要用A原料2吨,B原料3吨,生产每吨乙产品需投资3万元,且要用A原料1吨,B原料2吨,每吨甲产品售价14万元,每吨乙产品售价8万元.该公司在一个生产周期内,投资不超出34万元,耗费A原料不超出13吨,B原料不超出22吨,且生产的产品均可售出.问:在一个生产周期内生产甲、乙产品各多少吨时可获取最大收益,最大收益是多少?22.〔10分〕某经销商方案销售某新式产品,经过市场调研发现, 当每吨的收益为 x 〔单位:千元,x >0〕时,销售量q(x)(单位:吨)与x 的关系知足以下规律:假定x 不超出4时,那么q(x)=120;假定x 大于或等于12时,那么销售量为零;当4≤x ≤12时,q(x)=a-bx(a,b 为常数).x1(1)求a,b ;(2)求函数q(x)的表达式;(3)当x 为多少时,总收益 L(x)获得最大值,并求出该最大值.23.(14分)椭圆E :x 2 y 222a 2 +b 2=1的右焦点是圆C :(x-2)+y=9的圆心,且右准线方程为x=4.(1)求椭圆E 的标准方程;(2)求以椭圆E 的左焦点为圆心,且与圆 C 相切的圆的方程;(3)设P 为椭圆E 的上极点,过点 M0,-2的随意直线〔除 y 轴〕与椭圆 E 交于A ,B 两3点,求证:PA ∪PB.。
江苏省普通2020届高考对口单招文化数学试卷 (含答案解析)
江苏省普通2020届高考对口单招文化数学试卷一、选择题(本大题共10小题,共40.0分)1. 若集合M ={−1,1},N ={2,1,0},则M ∪N =( )A. {0,−1,1}B. {0,−1,2}C. {1,−1,2}D. {1,−1,0,2} 2. (文)已知复数z =6+8i ,则−|z|=( )A. −5B. −10C. 149 D. −169 3. 已知向量a ⃗ =(−3,2,5),b ⃗ =(1,x ,−1),且a ⃗ ⋅b ⃗ =2,则x 的值是( )A. 3B. 4C. 5D. 64. 两条直线A 1x+B1y+C1=0,A 2x+B2y+C2=0,互相垂直的充分必要条件是( )A. A 1A2B 1B 2=−1 B. A 1A2B 1B 2=1 C. A 1A2+B1B2=0D. A 1A2−B1B2=05. 现有3名男医生3名女医生组成两个组,去支援两个山区,每组至少2人,女医生不能全在同一组,且每组不能全为女医生,则不同的派遣方法有( )A. 36种B. 54种C. 24种D. 60种6. 经过抛物线y 2=4x 的焦点且垂直于直线3x −2y =0的直线l 的方程是( )A. 3x −2y −3=0B. 6x −4y −3=0C. 2x +3y −2=0D. 2x +3y −1=07. 如图,在正方体ABCD −A 1B 1C 1D 1中,则异面直线AC 1与BB 1所成角的余弦值为( )A. 0B. 13C. √63D. √338. 下列说法正确的是( ) A. 合情推理是正确的推理 B. 合情推理是归纳推理C. 归纳推理是从一般到特殊的推理D. 类比推理是从特殊到特殊的推理9. 已知函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则ω=( )A. 12B. 1C. 32 D. 4310. 已知函数f (x )={2x +1,x ≥0,|x|,x <0,且f (x 0)=3,则实数x 0=( )A. −3B. 1C. −3或1D. −3或1或3二、填空题(本大题共5小题,共20.0分)11. 执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是______ .12. 参数方程{x =−1+2cosθy =2+2sinθ(θ为参数0≤θ<2π)所表示的曲线的普通方程是______ . 13. 在{a n }为等比数列,a 1=12,a 2=24,则a 3= ______ . 14. 已知sin(α−π)=23,且α∈(−π2,0),则tanα= ______ .15. 已知函数f(x)=x 2−4x +alnx 在区间[1,4]上是单调函数,则实数a 的取值范围是______ . 三、解答题(本大题共8小题,共90.0分) 16. 已知函数f(x)=ax 2+x −a ,a ∈.(1)若函数f(x)的最大值大于178,求实数a 的取值范围; (2)解不等式f(x)>1(a ∈).17. 已知函数f(x)是定义在R 上的奇函数,且满足f(x +1)=f(−x +1).(1)求证:函数f(x)是周期为4的周期函数;(2)若f(x)=x 2−2x(0<x ≤1),求当x ∈[−5,−4]时,函数f(x)的解析式.18.有3张卡片,上面分别标有数字1,2,3.从中任意抽出一张卡片,放回后再抽出一张卡片.(Ⅰ)写出这个实验的所有基本事件;(Ⅱ)求两次抽取的卡片上数字之和等于5的概率;(Ⅲ)求两次抽取的卡片上数字相同的概率.19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin(A+B)a+b =sinA−sinBa−c,b=3.(Ⅰ)求角B;(Ⅱ)若cosA=√63,求△ABC的面积.20.某公司计划在办公大厅建一面长为a米的玻璃幕墙.先等距安装x根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为m米的玻璃造价为(50m+100m2)元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为y元(总造价=立柱造价+玻璃造价).(1)求y关于x的函数关系式;(2)当a=56时,怎样设计能使总造价最低?21.设满足a1+13a2+15a3+⋯+12n−1a n=n.(1)求数列{a n}的通项公式;(2)求数列{√a+√a}的前84项和.22.某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?23.已知椭圆x2a2+y2b2=1(a>b>0)经过点P(−√3,12),且点F(√3,0)为其右焦点.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B.已知点A 的坐标为(−a,0),点Q(0,y 0)在线段AB 的垂直平分线上,且QA ⃗⃗⃗⃗⃗ ·QB⃗⃗⃗⃗⃗⃗ =4,求y 0的值.-------- 答案与解析 --------1.答案:D解析:解:∵M={−1,1},N={2,1,0};∴M∪N={−1,1,2,0}.故选:D.进行并集的运算即可.考查列举法的定义,以及并集的运算.2.答案:B解析:本题考查复数的模的求法,考查计算能力.直接利用复数的求模公式求解即可.解:复数z=6+8i,则−|z|=−√62+82=−10.故选B.3.答案:C解析:【分析】本题主要考查空间向量数量积运算,考查计算能力,属于基础题.利用空间向量坐标运算a⃗⋅b⃗ =−3+2x−5=2,建立方程求解即可.【解答】解:因为a⃗=(−3,2,5),b⃗ =(1,x,−1),所以a⃗⋅b⃗ =−3+2x−5=2,解得x=5.故选C.4.答案:C解析:两直线垂直满足斜率之积为−1.∴(−A1B1)(−A2B2)=−1,∴A1A2+B1B2=0.5.答案:A解析:【分析】本题考查排列组合的应用,属于较易题.组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,;3,3型只能是2男1女和1男2女,分别求出派遣方法,相加即可.【解答】解:组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,此时有C31C31种方法;3,3型只能是2男1女和1男2女,此时有C32C31种方法.综上,共有(C31C31+C32C31)A22=36(种)方法,故选A.6.答案:C解析:解:设垂直于直线3x−2y=0的直线l的方程为2x+3y+c=0,由于直线l经过抛物线y2=4x的焦点为F(1,0),所以c=−2.故选C.设出垂线方程,求出焦点坐标,然后求解即可.本题考查抛物线的基本性质,直线方程的应用,考查计算能力.7.答案:D解析:本题考查异面直线所成角,属于基础题,解决异面直线所成角关键是平移,将空间问题化为平面问题,解三角形可得.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角,∵在正方体ABCD−A1B1C1D1中,设棱长为1,则CC1=1,AC1=√3,,即异面直线AC1与BB1所成角的余弦值为√3.3故选D.8.答案:D解析:本题主要考查推理定义的理解,理解推理的概念是解题的关键,属于基础题.类比推理是从特殊到特殊的推理过程.解:根据类比推理是从特殊到特殊的推理过程,正确,故选D.9.答案:A解析:本题考查函数y=Asin(ωx+φ)的图象与性质,由题意可知函数在时,取最大值,得4π3×ω−π6=2kπ+π2,k∈Z,并且周期,从而求出ω的值即可.解:根据题意,函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则f(x)在x=4π3处取得最大值,并且周期,则有4π3×ω−π6=2kπ+π2,k∈Z,且,变形可得ω=3k2+12,k∈Z,且ω≤34,当k=0时,ω=12,故选A.10.答案:C解析:本题考查分段函数求函数值,属于基础题.一般按照由内到外的顺序逐步求解.要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值即可.解:当x0≥0时,由f(x0)=2x0+1=3,得x0=1,符合要求;当x0<0时,由f(x0)=|x0|=3,得x0=−3(舍去x0=3).综上所述,x0=1,或x0=−3.故选C.11.答案:4。
2023年江苏省南通市普通高校对口单招数学自考真题(含答案)
2023年江苏省南通市普通高校对口单招数学自考真题(含答案)一、单选题(10题)1.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.482.A.B.{-1}C.{0}D.{1}3.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be4.A.B.(2,-1)C.D.5.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//βB.若l//α,l//β,则α//βC.若α//β,β//γ,则α//γD.若α//β,β//γ,则α//γ6.在△ABC,A=60°,B=75°,a=10,则c=()A.B.C.D.7.下列函数为偶函数的是A.B.C.8.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=09.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.610.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7二、填空题(10题)11.12.在△ABC中,AB=,A=75°,B=45°,则AC=__________.13.若函数_____.14.10lg2 = 。
15.16.不等式(x-4)(x + 5)>0的解集是。
17.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.18.19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为。
20.三、计算题(5题)21.己知{a n}为等差数列,其前n项和为S n,若a3=6, S3= 12,求公差d.22.(1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性,并说明理由。
2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案
2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案江苏省2022年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合M={1,3},N={a+2,5},若M∩N={3},则a的值为A.-1B.1C.3D.52.若实系数一元二次方程某m某n0的一个根为1i,则另一个根的三角形式为A.co24iin4B.2(co33iin)44C.2(co4iin)D.2[co()iin()] 4442aa20223.在等差数列{an}中,若a3,a2022是方程某2某20220的两根,则313A.的值为1B.1C.3D.934.已知命题p:(1101)2=(13)10和命题q:A·1=1(A为逻辑变量),则下列命题中为真命题的是A.pB.p∧qC.p∨qD.p∧q5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是A.18B.24C.36D.486.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=26,则对角线BD1与底面ABCD所成的角是A.B.C.D.64327.题7图是某项工程的网络图。
若最短总工期是13天,则图中某的最大值为A.1B.2C.3D.48.若过点P(-1,3)和点Q(1,7)的直线l1与直线l2:m某(3m7)y50平行,则m的值为A.2B.4C.6D.89.设向量a=(co2,A.23),b=(4,6),若in(),则25ab的值为553B.3C.4D.5510.若函数f(某)某2b某c满足f(1某)f(1某),且f(0)5,则f(b某)与f(c某)的大小关系是A.f(b某)≤f(c某)B.f(b某)≥f(c某)C.f(b某)<f(c某)D.f(b某)>f(c某)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-1,2,4),b=(3,m,-2),若a·b=1,则实数m=12.若in23),则tan=,(,3213.题13图是一个程序框图,执行该程序框图,则输出的m值是某13co某2y214.若双曲线221(a>0,b>0)的一条渐近线把圆(为参数)分y23inab成面积相等的两部分,则该双曲线的离心率是某2某,15.设函数f(某),若关于某的方程f(某)1存在三个不相等的实2某4某a9,某2根,则函数a的取值范围是三、解答题(本大题共8小题,共90分)16.(8分)设实数a满足不等式a32。
2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)
2023年江苏省徐州市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R2.下列句子不是命题的是A.5+1-3=4B.正数都大于0C.x>5D.3.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.不存在x∈R,使得x2<04.下列函数为偶函数的是A.B.C.5.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.A.2B.3C.4D.57.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/38.A.B.C.D.9.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数10.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5B.2/5C.D.二、填空题(10题)11.等差数列中,a2=2,a6=18,则S8=_____.12.抛物线y2=2x的焦点坐标是。
13.若=_____.14.函数的最小正周期T=_____.15.已知那么m=_____.16.设{a n}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q= 。
17.18.椭圆9x2+16y2=144的短轴长等于。
19.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
20.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b =______.三、计算题(5题)21.在等差数列{a n}中,前n项和为S n ,且S4 =-62,S6=-75,求等差数列{an}的通项公式a n.22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1) 求三种书各自都必须排在一起的排法有多少种?(2) 求英语书不挨着排的概率P。
江苏省2024年普通高校对口单招文化统考数学试卷及答案
江苏省2024年普通高校对口单招文化统考数学试卷及答案标题:江苏省2024年普通高校对口单招文化统考数学试卷及答案一、试卷概述江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考核。
试卷结构与往年相似,分为选择题、填空题和解答题三个部分,难度设置合理,覆盖了数学的基本知识点。
二、试题解析选择题部分注重基础知识的考察,如集合、数列、几何等,同时也有对应用能力的考察,如概率、统计等。
其中,第1题考察集合的交并补运算,第2题考察数列的通项公式,第3题考察三角函数的图像和性质,第4题考察立体几何中的空间关系。
这些题目既注重基础知识,又突出了实际应用。
填空题部分同样注重基础知识的考察,如函数、向量、不等式等,同时也强调了应用能力的考察,如解析几何、导数等。
其中,第5题考察函数的单调性,第6题考察向量的基本运算,第7题考察不等式的解法,第8题考察解析几何中的直线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的应用能力。
解答题部分则更加注重对应用能力的考察,如概率、统计、函数等。
其中,第9题考察概率的简单计算和统计中的抽样方法,第10题考察函数的综合应用,第11题考察立体几何中的空间关系,第12题考察解析几何中的曲线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的综合应用能力。
三、答案解析选择题部分答案如下:1. C 2. D 3. A 4. B 5. B 6. A 7. C 8. D 填空题部分答案如下:5. y=x+1 6. (2,3) 7. [2,4] 8. y=3x-5解答题部分答案如下:9. (1)A=30, B=100, C=120, D=60 (2)抽样方法为简单随机抽样。
10. f(x)=x^3-2x^2+3x-6,f'(x)=3x^2-4x+3, f'(x)=4x^3-8x^2+12x-18, f(3)=0, f(4)=8 11. (1)AB//CD (2)∠ABC=∠BCD 12. (1)r=2sinθ(2)略四、总结评价江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考察。
江苏省2020年对口单招数学试卷与答案
江苏省2020年对口单招数学试卷与答案机密★启用前江苏省2020年普通高校对口单招文化统考数学试卷一、草项选择题(本大题共10小题,毎小题4分,共40分.在下列毎小題中,选出一个正确答案,将答題卡上对应选项的方框涂满、涂黑)1.已知集合M = {1,4>? N = {l?2,3>?则MU N 導于A?{l}B?{2,3} C.{2,3,4} D.{l?2,3?4}2.若复数Z满足z(2-i)=l÷3i.则Z的模等于A.√2B,√3 C.2 D.33.若数组fl = (2,-3.1)和b = (lγ,4)満足条件α?h=0,则工的值是A. -1B.0C. 1D.24.在逻辑运算中,“A + B=0”是“A?B=0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.从5名男医生、4名女医生中任选5人组成一个医疗小分队?要求其中男医生、女医生均不少于2人,则所冇不同的组队方案种数是A. 80B. 100C. 240D. 3006?过抛物线(y - D1 -4(x + 2)的頂点?且与-直线x-2>÷3-≡0垂直的直线方程是A. 2jr+y-3=0B. 2?r+y + 3= 0C.R — 2y + 4= 0D. X — 2,y — 4 = 0数学试卷第1页(共4页)数学试卷第2页(共4页〉7?在正方体ABCD-A I B l C l D l 中(题7图)?界面直线A”与BlC 之间的夹角是A. 30'B.45°C. 60eD. 9O e&題8图足某项工程的网络图《单位:天)?则该工程的关键路径是A-AfBfQfEf e / B? AfBfDfEfKfMC. A→B→ D →F→ H →JD.A→B→D→G→ Z→ J9.若函数/(jr)-sinωx(ω > 0)在区间[0.|]上单调递增?在区何[今诗]上单调递减?则3等于A.∣?B.2C.?∣?D.3(2. X ∈ [OU]10.C 知旳数/(工)= W r十则tt∕(∕(χ))=2成立的实数工的集合为Uf X G [oa] A. U I O ≤ X ≤ 1 或z =2} B. {x I O ≤ j? ≤ 1 或工=3}C. {x I 1 ≤x≤2} DjXIO ≤x≤ 2}二、填空逸(本大題共5小通,毎小题4分,共20分)11?题11图是一个程序能图?执行该程序權图?则输出的T 值是_▲ _?H = 6 + 3V2cos^?a H S12?与曲线(&为参数)和克线z÷>-2= O都相切■且半轻最小的凤的标准y s≡ 6 + 3j2sinθ9β方程是▲.13.已知{-}是等比数列?血=2> α5≡i>则α∣= ▲?4 ------------14.已知α W α,2∕r), tana = —则COS(2JΓ-a)= ▲?4 ------------15.已知顒数y(z)≡f x 1, J 2 (a > 0且a≠l)的最大值为3.则实数a 的取值范围(4 + IOdr ?工 > 2是一▲—?三、解答題(本大题共8小题,共90分)16.(8 分)若西数/(x) ≡ J2 + (a:— 5a + 3)工 + 4 在(一∞?-∣-]上单调递减.(1)求实数a的取值范围,(2)解关于H的不等式1。
江苏省中等职业学校对口单招高一年级数学习题 部分含答案
1.用适当的符号填空:0 {}0;0 ∅;{}0 ∅;-3 Z ;3.14 Q ;{}π Q 。
2.集合{}0,1,2,3的真子集共有 个。
3.已知集合(){,A x y =|}22y x=+,(){,B x y =|}3y x =,求A B ⋂.4. 已知集合{A y =|}22,y x x R =+∈,{B y =|}3,y x x R =∈,求A B ⋂.5.用“充分条件、必要条件、充要条件”填空:⑴ “x 是平行四边形”是“x 是矩形”的 。
⑵ “x 是整数”是“x 是有理数”的 。
⑶ “a b +是整数”是“a 和b 是整数”的 。
6. 集合{A x =|}2420ax x -+=中只有一个元素,则a 的取值集合为 。
7. 已知集合{A x =|}2230x x --=,{B x =|}0x m -≤,若A B ⊂,则实数m 的取值范围为 。
8.已知{P x =|}2,x n n N =∈,{Q x =|}4,x n n N =∈,则P Q 等于 。
9.已知全集{}22,3,51,U mm =--集合{}2,2A m =-,且{}1U C =-,则实数m = 。
10.已知集合{}2,1A =,且{}1,2,3A B = ,则集合B 可能为 。
11.已知全集U R =,集合{A x =|}12x -≤<,{B x =|}1x >,则U U C A C B = 。
12.已知集合{A x =|}320x +≥,{B x =|}x b >,若A B B =,则b 的取值范围为 。
13.已知集合{A x =|}220x mx n --=,{B x =|()}26330x m x n +++-=,若{}1A B = ,求A B 。
14. 集合{A x =|}2x x p -+=,{B x =|}220x qx +-=,若{}2,0,1A B =- ,求p 和q 的值。
2022年江苏省常州市普通高校对口单招数学月考卷(含答案)
2022年江苏省常州市普通高校对口单招数学月考卷(含答案)一、单选题(20题)1.已知向量a=(1,2),b=(3,1),则b-a=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)2.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线B.若|a|=|b|,则a=bC.若a,b为两个单位向量,则a·a=b·bD.若a⊥b,则a·b=03.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)4.下列命题是真命题的是A.B.C.D.5.A.B.C.D.6.下列函数为偶函数的是A.B.y=7xC.y=2x+17.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.B.C.D.8.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)是图象关于直线x=π/4对称D.函数f(x)在区间[0,π/2]上是增函数9.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.4810.若集合A = {1,2},集合B={1},则集合A与集合B的关系是()A.B.A=BC.B∈AD.11.函数y=f(x)存在反函数,若f(2)=-3,则函数y=f-1(x)的图像经过点()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)12.已知点A(-1,2),B(3,4),若,则向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)13.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}14.过点C(-3,4)且平行直线2x-y+3=0的直线方程是()A.2x-y+7=0B.2x+y-10=OC.2x-y+10=0D.2x-y-2=015.A.第一象限角B.第二象限角C.第三象限角D.第四象限角16.椭圆x2/4+y2/2=1的焦距()A.4B.2C.2D.217.下列函数中是奇函数的是A.y=x+3B.y=x2+1C.y=x3D.y=x3+118.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切19.椭圆x2/2+y2=1的焦距为()A.1B.2C.3D.20.A.1/4B.1/3C.1/2D.1二、填空题(20题)21.22.23.若直线的斜率k=1,且过点(0,1),则直线的方程为。
2022年江苏省苏州市普通高校对口单招数学自考真题(含答案)
2022年江苏省苏州市普通高校对口单招数学自考真题(含答案)一、单选题(20题)1.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.72.A.1B.2C.3D.43.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台4.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2B.2C.D.5.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.A.3/5B.-3/5C.4/5D.-4/57.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.B.C.D.8.函数和在同一直角坐标系内的图像可以是()A.B.C.D.9.A.2B.1C.1/210.下列函数中,是增函数,又是奇函数的是(〕A.y=B.y=1/xC.y=x2D.y=x1/311.A.7B.8C.6D.512.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.B.C.D.13.A.2B.3C.4D.514.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/5015.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.916.直线以互相平行的一个充分条件为()A.以都平行于同一个平面B.与同一平面所成角相等C.平行于所在平面D.都垂直于同一平面17.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条18.A.B.C.D.19.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)20.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线B.若|a|=|b|,则a=bC.若a,b为两个单位向量,则a·a=b·bD.若a⊥b,则a·b=0二、填空题(20题)21.若ABC的内角A满足sin2A=则sinA+cosA=_____.22.已知等差数列{a n}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.23.已知函数,若f(x)=2,则x=_____.24.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.25.26.若事件A与事件互为对立事件,则_____.27.28.29.设A=(-2,3),b=(-4,2),则|a-b|= 。
(word版)江苏省普通高校对口单招文化统考数学试题(Word版,含答案),文档
江苏省2021年普通高校对口单招文化统考数学试卷一、单项选择题〔本大题共10小题,每题4分,共40分。
在以下每题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑〕1.设集合M={1,3},N={a+2,5},假设M∩N={3},那么a的值为2.假设实系数一元二次方程x2mxn0的一个根为1i,那么另一个根的三角形式为A.cos isinB.33) 2(cos isin4444C.2(cosisin) D.2[cos()isin()] 44443.在等差数列{an}中,假设a3,a2021是方程x22x20210的两根,那么3a1?3a2021的值为A.13命题p:(1101)2=(13)10和命题q:A·1=1〔A为逻辑变量〕,那么以下命题中为真命题的是A.?p∧q∨q D.?p∧q用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是6.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=26,那么对角线BD1与底面ABCD所成的角是A. B. C. D.26437.题7图是某项工程的网络图。
假设最短总工期是13天,那么图中x的最大值为8.假设过点P〔-1,3〕和点Q〔1,7〕的直线l1与直线l2:mx(3m7)y50平行,那么m的值为9.设向量a=(cos2,2),b=〔4,6〕,假设sin()3,那么25a b的值为355A.510.假设函数f(x)x2bx c满足f(1x)f(1x),且f(0)5,那么f(b x)与f(c x)的大小关系是A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)<f(c x)D.f(b x)>f(c x)二、填空题〔本大题共5小题,每题4分,共20分〕11.设数组a=(-1,2,4),b=(3,m,-2),假设a·b=1,那么实数m=。
12.假设sin2,(,3),那么tan=。
3213.题13图是一个程序框图,执行该程序框图,那么输出的m值是。
2023年高职单独招生考试数学试卷(答案) (1)
数学试卷
(满分 120 分,考试时间 120 分钟)
一、选择题:(本题共 20 小题,每小题 3 分,共 60 分)
(
OB
OC ) (OB OC 2OA) 0 , 则 ABC 的形状为
ABC
1、若 O 为
D. 内必存在直线与 m 平行, 不一定存在直线与 m 垂直。
2
S n 1 an
3 , 则其各项和 S(
3、已知数列 an 的前 n 项和 Sn 满足
Hale Waihona Puke A.13B. 2
5
C. 3
)
2
D. 3
4、当圆锥的侧面积与底面积的比值是 2 时, 圆锥的轴截面的顶角是(
A. 30
B. 45
C. 90
积的最小值是____.
3、过点 p(2,1) 且与直线 x 2 y 10 0 平行的直线方程是______
4、在 ABC 中,已知 B= 30 , C= 135 ,AB=4,则 AC=______
1
7
y sin x b
3
5、已知函数
的最大值是 9 ,则 b=______
A. A′C⊥平面 DBC′
B. 平面 AB′D′//平面 BDC′
C. BC′⊥AB′
D. 平面 AB′D′⊥平面 A′AC
13. 已知集合 A={-1,0,1},集合 B={-3,-1,1,3},则 A∩B=(
)
)
A. {-1,1}
B. {-1}
14. 不等式 x2-4x≤0 的解集为(
A. [0,4]
当 t>1 时,S′>0,当 0<t<1 时,S′<0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2015年普通高校对口单招文化统考
数 学 试 卷
一、单项选择题(本大题共10小题,每小题4分,共40分.)
1.已知集合{1,1,2}M =-,2
{1,3}N a a =++若{2}M N ⋂=,则实数a =( ) A 、0 B 、1 C 、2 D 、3
2.设复数z 满足1iz i =-,则z 的模等于( ) A 、1
B
C 、2
D
3.函数()sin(2)4f x x π
=-
在区间[0,]2
π
上的最小值是( )
A
、2-
B 、12-
C 、1
2
D
、
2 4.有3名女生和5名男生,排成一排,其中3名女生排在一起的所有排法是( )
A 、2880
B 、3600
C 、4320
D 、720
5.若1sin()2αβ+=
,1sin()3αβ-=则
tan tan β
α=
( ) A 、
32 B 、23
C 、35
D 、15
6.已知函数1
()1(01)x f x a a a -=+>≠且的图象恒过定点P ,且P 在直线240
mx ny +-=上,则m n +的值等于( )
A 、1-
B 、2
C 、1
D 、3
7.若正方体的棱长为2,则它的外接球的半径为( ) A
B
、 C
D
8.函数2log (01)
()1()(1)2
x
x x f x x <≤⎧⎪
=⎨>⎪⎩的值域是( ) A 、1(,)
2-∞ B 、1(,)2+∞
C 、1(0,)2
D 、(,0)-∞
9.已知过点P (2,2)的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则
a 的值是( )
A 、12-
B 、2-
C 、1
2
D 、2-
10.已知函数()lg f x x =,若0a
b <<且()()f a f b =
,则2a b +的最小值是( )
A
B 、
C 、
D 、
二、填空题(本大题共5小题,每小题4分,共20分) 11.逻辑式ABC ABC AB A +++= 。
12.题12图是一个程序框图,则输出的值是 。
题12图
13.
14.某班级从甲、乙、丙三名同学中选一名代表在开学典礼上发言,全班同学参加了投票,得票情况统计如题14表及题14图,则同学乙得票数为 。
题14表 题14图
15.在平面直角坐标系中,已知ABC ∆的两个顶点为A (-4,0)
和C (4,0),第三个顶点B
在椭圆
22
1259x y +=上,则sin sin sin B A C
=+ 。
15%
三、解答题(本大题共8小题,共90分)
16.(8分)设函数()f x 是定义在实数集R 上的奇函数,且当0x ≥时
12()3(1)x f x x m +=+-+,(1)求实数m 的范围;(2)求230x x m -+<不等式的解集。
17.已知函数()log (0,1)a f x k x a a =+>≠的图像过点(8,2)A 和点(1,1)B -。
(1)求常数
k a 和的值;
(2)求111
(3)(5)(7)()()()357
f f f f f f +++++的值。
18.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足22
2()AB AC a b c =-+;(1)
求角A 的大小;(2)若角ABC
a S ==
b 和
c 。
19.盒中共装有9张各写一个字母的卡片,其中4张卡片上的字母是x ,3张卡片上的字母是y ,2张卡片上的字母是z ,现从中任取3张卡片,求下列事件的概率。
(1)A ={3张卡片上的字母完全相同};(2)B ={3张卡片上的字母互不相同};(3)C ={3张卡片上的字母不完全相同}。
20.已知数列{}n a 的前n 项和为n S ,11a =,且满足121()n n a S n N +
+-=∈。
(1)求数列{}
n a 的通项公式;(2)设31log n n b a +=,求数列{}n b 的前n 项和n T ;(3)设1
2n n
c T =
,求数列{}n c 的前100项和100R 。
21.(10分)某职校毕业生小李一次性支出72万元购厂创业,同年另需投入经费12万元,以后每年比上一年多投入4万元,假设每年的销售收入都是50万元,用()f n 表示前n 年的总利润。
注:()f n =前n 年的总收入-前n 年的总支出-购厂支出。
(1)问:小李最短需要多长时间才能收回成本;(2)若干年后,为转型升级,进行二次创业。
现有如下两种处理方案:方案一,年平均利润最大时,以48万元出售该厂;方案二,纯利润总和最大时,以15万元出售该厂。
问,哪个方案更好?
22.(12分)某学校租用车辆接送188名师生参观爱国主义教育基地,若租车公司现有6辆中巴和8辆大巴可用。
每辆中巴可载客18人,大巴40人。
已知租用一辆中巴的费用为110元,大巴250元,问学校应租用中巴、大巴各多少辆,才能使费用最少?最少费用是多少元?
23.(14分)在平面直角坐标系中,已知椭圆E :22221x y a b
+=(0)a b >>的离心率e =,
过右焦点(,0)F x ,且垂直于x 轴的直线被椭圆E ,设直线(0)y t t =>与椭圆E 交于不同的两点A 、B ,以线段AB 为直径作圆M 。
(1)求椭圆E 的标准方程;(2)
若圆M 与x 轴相切,求圆M 的方程;(3)过点22
P 作圆M 的弦,求最短弦的长。
江苏省2015年普通高校对口单招文化统考
数 学答案
1.B
2.D
3.A
4.C
5.D
6.B
7.C
8.A
9.D 10.B
11.1 12.2111 13.36 14.22
15.45
16.答:(1)m =-4,(2)(1,4)- 17.答:(1)1,2k a =-=,(2)6- 18.答:(1)2
3
A π=
,(2)4b c == 19.答(1)3343395
()84C C P A C +==,(2)111
4323
92()7
C C C P B C ==,(3)79()1()84P C P A =-= 20.答(1)1
3n n a -=,(2)(1)2
n n n T +=
,(3)100
101
21.解(1)2(1)
()50[124]72240722
n n f n n n n n -=-+
⨯-=-+- ()0218f n n >⇒<<,所以,小李最短需要2年时间才能收回成本。
(2)方案一:年平均利润2()2407236
402()4022616f n n n n n n n
-+-==-+≤-⨯⨯= 当且仅当36
n n
=即6n =时,年平均利润最大为16万元,此时总利润为16648144⨯+=万元;
方案二:2
2
()240722(10)128f n n n n =-+-=--+
当10n =时,纯利润总和最大128万元,此时总利润为12815143+=万元; 因为144>143,所以方案一更好。
22.解:设应租用中巴、大巴分别为,x y 辆,费用为z 则min 110250z x y =+
184018806
08x y x y +≥⎧⎪
≤≤⎨⎪≤≤⎩
当6,2x y ==时,min 1160z =元
23.解:(1)
22
1124
x y += (2)因为点(,)t t 在椭圆上,
所以221,124
t t t +==,所以圆M
的方程为22
(3x y +-= (3
)因为22332+=<
,所以点P 在圆M 内。
圆M 的圆心为
M
最短弦过点P 且垂直于MP , 弦长
===。