人教版七年级数学上册第一章达标测试卷
人教版七年级数学上册第一章测试题及答案
人教版七年级数学上册第一章测试题及答案第一章 达标测试卷一、选择题(每题4分,共48分)1.如果水位上升3米记为+3,那么水位下降5米应记为( )A .+5B .-5C .+3D .-32.在下列数-56,+1,6.7,-15,0,722,-1,25%中,是整数的有( )A .2个B .3个C .4个D .5个3.在0.5,0,1,-2这四个数中,最小的数是( )A .0.5B .0C .1D .-24.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A .-6B .2C .-6或2D .都不正确5.下列各组数中,互为相反数的是( )A .-(+2)和-2B .-[-(-6)]和-6C .+2和+3D .+(-4)和-(-4)6.下列说法正确的有( )①近似数7.4与7.40的意义相同;②近似数8.0精确到十分位;③近似数9.62精确到百分位;④由四舍五入法得到的近似数6.96×104精确到百分位.A .1个B .2个C .3个D .4个7.超市出售的三种品牌月饼的包装袋上,分别标有质量为:(500±5)g 、(500±10)g 、(500±20)g 的字样,从中任意拿出两袋,它们的质量最多相差( )A .10 gB .20 gC .30 gD .40 g8.已知一个数的倒数的相反数为315,则这个数为( )A.165B.516 C .-165 D .-5169.下列说法正确的是( )A .两个负有理数,大的离原点远B .|a |是正数C .两个有理数,绝对值大的离原点远D .-a 是负数10.当a <0时,化简|a |-a a 的结果是( )A .-2B .0C .1D .211.已知a ,b 互为相反数,c 是绝对值最小的负整数,m ,n 互为倒数,则a +b 3+c 2-4mn的值等于( )A .1B .2C .3D .-312.如图,A ,B 两点在数轴上表示的数分别为a ,b ,(第12题)下列结论:①a -b >0;②a +b <0;③(b -1)(a +1)>0;④b -1|a -1|>0. 其中正确的是( )A .①②B .③④C .①③D .①②④ 二、填空题(每题4分,共24分)13.神舟十一号飞船绕地球飞行一周约42 500 000米,这个数用科学记数法表示是________米.14.在数轴上距原点3个单位长度的点表示的数是________.15.计算17÷3×13的结果等于__________.16.比较大小:-67______-56(用“>”“=”或“<”填空).17.观察下列数据,按规律在横线上填上适当的数:1,-34,59,-716,925,________.18.已知|x |=a ,|y |=b ,给出下列结论:①若x -y =0,则a -b =0;②若a -b =0,则x -y =0;③若a +b =0,则x +y =0. 其中正确的结论有__________(将所有正确结论的序号填写在横线上).三、解答题(每题8分,共16分)19.计算:(1)(-5.5)+(-3.2)-(-2.5)-4.8;(2)(-1)2 019+(-2)×(-3)+(-2)3.20.如图,在数轴上表示下列各数,并把它们用“<”号连接起来.3,-(-1),-1.5,0,-|-2|,-312.(第20题)四、解答题(每题10分,共50分)21.计算:(能用简便方法的要用简便方法)(1)⎝ ⎛⎭⎪⎫-34-59+712÷136;(2)124÷⎝ ⎛⎭⎪⎫-114×⎝ ⎛⎭⎪⎫-56÷⎝ ⎛⎭⎪⎫-316-0.25÷14.22.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-3.请通过计算说明:(1)当他卖完这8套儿童服装后是盈利了还是亏损了?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?23.若|a |=5,|b |=3,(1)求a +b 的值; (2)若a +b <0,求a -b 的值.24.已知有理数a ,b 在数轴上对应的点的位置如图所示.(第24题)(1)在数轴上标出-a ,-b 对应的点;(2)用“>”或“<”填空:a +b ______0,b -a ______0;(3)化简|a +b |+|b -a |+|b |-|2a |.25.如图,点A 在数轴上所对应的数为-2.(1)点B 在点A 右边距A 点4个单位长度处,则点B 所对应的数是__________;(2)在(1)的条件下,点A 以每秒2个单位长度的速度沿数轴向左运动,点B 以每秒2个单位长度的速度沿数轴向右运动,当点A 运动到-6所对应的点处时,A 、B 两点间距离为__________;(3)在(2)的条件下,现A 点静止不动,B 点以每秒2个单位长度的速度沿数轴向左运动,经过多长时间A 、B 两点相距4个单位长度?(第25题)五、解答题(共12分)26.观察按下列规则排成的一列数:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,….(1)25是第________个数,第20个数为________,第50个数为________(不写过程,直接写答案);(2)将从左起第m个数记为F(m),当F(m)=22 019时,求m的值和这m个数的积.答案一、1.B 2.C 3.D 4.B 5.D 6.B7.D8.D9.C10.A11.D12.B二、13.4.25×10714.±315.17916.<17.-113618.①③三、19.解:(1)原式=-5.5+2.5-(3.2+4.8)=-3-8=-11.(2)原式=-1+6+(-8)=5+(-8)=-3.20.解:数轴上表示数略.-312<-|-2|<-1.5<0<-(-1)<3.四、21.解:(1)原式=(-34-59+712)×36=-34×36-59×36+712×36=-27-20+21=-26.(2)原式=124×⎝⎛⎭⎪⎫-45×⎝⎛⎭⎪⎫-56×⎝⎛⎭⎪⎫-619-14×4=-124×45×56×619-1=-1114-1=-11114.22.解:(1)55×8+2-3+2+1-2-1-3=436(元),436元>400元,436-400=36(元).答:当他卖完这8套儿童服装后盈利了,盈利了36元.(2)436÷8=54.5(元).答:每套儿童服装的平均售价是54.5元.23.解:由题意可得a=±5,b=±3.(1)①当a=5,b=3时,a+b=5+3=8;②当a=-5,b=3时,a+b=-5+3=-2;③当a=5,b=-3时,a+b=5+(-3)=2;④当a=-5,b=-3时,a+b=-5+(-3)=-8.(2)因为a+b<0,所以a=-5,b=±3.当a=-5,b=-3时,a-b=-5-(-3)=-2;当a=-5,b=3时,a-b=-5-3=-8.24.解:(1)略.(2)<;<(3)原式=-a-b-b+a-b-2a=-2a-3b.25.解:(1)2(2)12(3)①当点B在点A的右边距A点4个单位长度时,(12-4)÷2=4(秒).②当点B在点A的左边距A点4个单位长度时,(12+4)÷2=8(秒).五、26.解:(1)17;5 2;56(2)m=(1+2 019)×2 019×12+2=2 039 192.这m个数的积=11×⎝⎛⎭⎪⎫12×21×⎝⎛⎭⎪⎫13×22×31×…×12 020×22 019=1×1×1×…×12 020×22 019=12 039 190.。
【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)
人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。
人教版七年级数学上册第一章达标检测卷附答案
人教版七年级数学上册第一章达标检测卷一、选择题(每题3分,共30分)1.如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃ 2.-12 022的相反数是( )A .12 022B .-12 022 C .2 022 D .-2 022 3.下列各数中,最小的数是( )A .-3B .0C .1D .24.有理数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1-m >1C .mn >0D .m +1>05.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106 吨.用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106B .16×106C .1.6×107D .16×10127.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .MB .NC .PD .O 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-11 10.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5 二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 022的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米. 14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________. 17.有5袋苹果,以每袋50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________. 18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.19.按照如图所示的计算程序,若x =2,则输出的结果是________.20.某校建立了一个身份识别系统,图①是某名学生的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行所代表的数字从左往右依次记为a ,b ,c ,d ,那么可以转换为该生所在的班级序号,其序号为a ×23+b ×22+c ×21+d ,如图①,第一行数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生,则图②识别图案的学生所在班级序号为________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分) 21.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd 的值.24.若“⊗”表示一种新运算,规定a ⊗b =a×b +a +b ,请计算下列各式的值. (1)-6⊗2; (2)[(-4)⊗(-2)]⊗12.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上). (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?27.观察下列等式并回答问题.第1个等式:a1=11×3=12×⎝⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝⎛⎭⎪⎫13-15;第3个等式:a3=15×7=12×⎝⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝⎛⎭⎪⎫17-19;….(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A2.A3.A4.B5.D6.C 7.A8.C9.B10.A二、11.-3;-1 2 02212.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-2620.6三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|. 22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗1 2=2×12+2+12 =312.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m),第三次:8+5=13(m),第四次:13-6=7(m),第五次:7+12=19(m),第六次:19-9=10(m),第七次:10+4=14(m),第八次:14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m.(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.。
人教版七年级数学上册第一章测试题及答案
人教版七年级数学上册第一章测试题及答案人教版七年级数学上册第一章测试题及答案一、选择题(每题4分,共48分)1.水位下降5米应记为-5.2.整数有3个,分别是-6、+1、-15.3.最小的数是-2.4.点M向右移动4个单位长度后,表示的数是2.5.互为相反数的是-(+2)和-2.6.正确的说法有①、②、③、④。
7.两袋月饼的质量最多相差20g。
8.这个数为-5/16.9.正确的是B。
10.当a<0时,化简|a|-a的结果是2a。
11.3/c2-4mn的值等于1.12.正确的结论是③④。
二、填空题(每题4分,共24分)13.神舟十一号飞船绕地球飞行一周约42.5×10^6米。
14.距原点3个单位长度的点表示的数是3或-3.15.计算17÷3×3的结果等于17.16.比较大小:-7 >-6.17.观察下列数据,按规律在横线上填上适当的数:1,-4,9,-16,25,-36.18.已知|x|=a,|y|=b,给出下列结论:①若x-y=a-b,则结论正确;②若a-b=x-y,则结论错误;③若a+b=0,则结论正确。
正确的结论有①和③。
19.1) (-5.5)+(-3.2)-(-2.5)-4.8 = -5.5 - (-3.2) - (-2.5) - 4.8 = -5.5 + 3.2 - 2.5 - 4.8 = -9.6;2) (-1)2019+(-2)×(-3)+(-2)3 = -1 - 6 - 8 = -15.20.3.-2.-1.5.-1.0.1.3/2.2.3.21.1)357 1491236357/4 - 9/4 + 12)/36 = 87/144;1511 12)24146360.25÷46)×(-1/4)×(-1/2) - 0.25/4 = 3/16.22.1) 盈利了2元,因为所有数的和为2;2) 平均售价为50元,因为总共售价为400+2=402元,平均售价为402/8=50.25元,但是题目要求精确到小数点后一位,所以为50元。
人教版七年级上册数学第一章测试卷
第一章有理数章节同步训练人教版数学七年级上册一、单选题1.体育老师对六年级学生进行了仰卧起坐测试.以每分钟25个为达标,记作0.小明的成绩记作2-,则他仰卧起坐的个数是()A .27B .24C .23D .252.下列各数中:()553025.827-----+,,,,,负数有()A .1个B .2个C .3个D .4个3.下列说法正确的是()A .正分数和负分数统称为分数B .正整数和负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是整数就是负数4.随着国际油价的波动和国内成品油价格调整机制的运行,92号汽油的价格也随之变化.如果每升92号汽油的价格上涨0.2元,记作0.2+元,那么0.1-元表示每升92号汽油的价格()A .上涨0.1元B .上涨0.3元C .下降0.1元D .下降0.3元5.有理数2024-的相反数是()A .12024B .12024-C .2024D .2024-6.数轴上表示数a 和4a +的点到原点的距离相等,则a 为()A .4-B .4C .2D .2-7.实数a 、b 在数轴上的对应点的位置如图所示,下列结论正确的是()A .2a <-B .2b <C .a b <D .a b->8.式子21x -+的最小值是()A .0B .1C .2D .39.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .110.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4二、填空题11.15⎛⎫--=⎪⎝⎭,()3+-=()2⎡⎤-+-=⎣⎦12.若5x -与5互为相反数,则x =.13.不小于133-且不大于4的所有非负整数是.(一一列出)14.已知21519a a b b ++-+-++=,则ab 的最大值为;ab 的最小值为.15.如图,点A 和B 在数轴上表示的数分别是20-和40,点C 在线段..AB 上移动,图中的三条线段AB AC 、和BC ,当其中有一条线段的长度是另外一条线段长度的2倍时,则点C 在数轴上表示的数为.三、解答题16.化简:(1) 2.5-+;(2)()3.4--;(3)4+-;(4)()3--.17.把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.18.如图所示,点A 、点B 在数轴上,点C 表示 3.5--,点D 表示()2--,点E 表示122-.(1)点A 表示______,点B 表示______;(2)在数轴上表示出点C ,点D ,点E ;19.某中学开展“阅读之星,书香班级”活动,七(1)班上周星期一至星期五的借书记录如下表,超过30册的部分记为正,少于30册的部分记为负.星期一星期二星期三星期四星期五3+2-5+4+7-问:上周星期一至星期五该班一共借书多少册?20.数轴上有A,B,C三点.已知点A,B表示的数互为相反数,点A在点B的左边,且点A,B相距6个单位长度,点A,C相距2个单位长度.问:点A,B,C表示的数各是多少?参考答案:1.C2.C3.A4.C5.C6.D7.C8.B9.C10.B11.153-212.013.0,1,2,3,4,14.510-15.0或10或2016.(1) 2.5-(2)3.4(3)4(4)317.(1)②⑥⑦(2)①③⑤⑧(3)②④⑤⑦(4)①③⑥⑧18.(1)1-;3(2)19.上周星期一至星期五该班一共借书153册;20.点A,B,C表示的数为3-,3,5-或3-,3,1-.。
人教版七年级上册数学第一章达标测试题(附答案)
人教版七年级上册数学第一章达标测试题(附答案)一、单选题1.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61 700 000,这个数用科学记数法表示为()A. B. C. D.2.-的倒数为()A. B. - C. 1988 D. -19883.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A. |b|<2<|a|B. 1﹣2a>1﹣2bC. ﹣a<b<2D. a<﹣2<﹣b4.若,则的值为()A. 6B. -6C. 8D. -85.下列式子计算不正确的是()A. +(-3)=-3B. -(-3)=3C. |-3|=-3D. -|-3|=-36.实数a、b、c在数轴上的位置如图所示,化简:的结果是A. a–2cB. –aC. aD. 2b–a7.若非零且互为相反数,互为倒数,m的绝对值为2,则值为()A. -4B. 0C. 2D. 48.A为数轴上表示3的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C表示的数是()A. 0B. 1C. 2D. 39.适合|2a+5|+|2a-3|=8的整数a的值有()A. 4个B. 5个C. 7个D. 9个10.已知整数a、b,c,d在数轴上对应的点如图所示,其中|b|<|a|=|c|<|d|,则下列各式:①a+b+c+d >0,②b﹣a=b+c,③a c<d c,④ +﹣=0,⑤ >﹣,其中一定成立的有()A. 2个B. 3个C. 4个D. 5个二、填空题11.长春市奥林匹克公园于2018年年底建成,它的总占地面积约为528000平方米,528000这个数字用科学记数法表示为________.12.如果水位升高3m时水位变化记作+3m,那么水位下降8m时水位变化记作________.13.的相反数是________.14.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 ________15.一辆公交车上原有16人,经过3个站点时乘客上、下车情况如下(上车人数记为正,下车人数记为负,单位:人):-3,+4;-5,+7;+5,-11.此时公交车上有________人.16.定义一种新运算:新定义运算a*b=a×(a-b)3,则3*4的结果是________。
七年级数学上册第一章 有理数 单元测试卷(人教版 2024年秋)
七年级数学上册第一章有理数单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.[2023·扬州]-3的绝对值是()A.-3B.3C.±3D.132.下列各数-2,2,-5,0,π,0.0123中,非负数的个数有() A.1个 B.2个 C.3个 D.4个3.[真实情境题航空航天]2024年5月3日,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度是零下150℃,应记作() A.+150℃ B.-150℃C.+276℃D.-276℃4.[新考法概念辨析法]下列说法中正确的是()A.负有理数是负分数B.-1是最大的负数C.正有理数和负有理数组成全体有理数D.零是整数5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n,q互为相反数,则m,n,p,q四个数中,负数有()A.1个B.2个C.3个D.4个6.下列化简正确的是()A.-[-(-10)]=-10B.-(-3)=-3C.-(+5)=5D.-[-(+8)]=-87.[情境题生活应用]化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数,不足的部分记为负数,它们中质量最接近标准的是()A BC D8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<-1C.m>-nD.|m|>|n|9.[2024·泰安泰山区期中]数轴上表示整数的点称为整数点,某数轴的单位长度是1cm,若在这个数轴上随意画一条长15cm的线段AB,则AB盖住的整数点的个数共有()A.13或14个B.14或15个C.15或16个D.16或17个10.[新视角动点探究题]如图,一个动点从原点O开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2025秒时所对应的数是()A.-405B.-406C.-1010D.-1011二、填空题(每题3分,共18分)11.用“>”或“<”填空:-7-9.12.一种袋装面粉标准净重为50kg,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把51kg记为+1kg,那么一袋面粉净重49kg记为kg.13.已知b,c满足|b-1|+-0,则b+c的值是. 14.在数轴上,有理数a与-1所对应的点之间的距离是5,则a =.15.下列说法:①若|a|=a,则a>0;②若a,b互为相反数,且ab≠0,则=-1;③若|a|=|b|,则a=b;④若a<b<0,则|b-a|=b-a.其中正确的有.(填序号)16.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点表示的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.三、解答题(共72分)17.(8分)[母题2024·重庆万州区月考·教材P16习题T1]把下列各数填入相应的大括号内:-0.1,+(-4),6%,20,0,-0.030030 003…,227,2.0·1·.负有理数集合:{,…};非负整数集合:{,…};负整数集合:{,…};正数集合:{,…}.18.(6分)比较下列各组数的大小:(1)|-0.02|与-|-0.2|;(2)-π与-|-3.14|.19.(10分)如图,数轴上点A,B,C,D,E表示的数分别为-4,-2.5,-1,0.5,2.(1)将点A,B,C,D,E表示的数用“<”连接起来;(2)若将原点改在点C,则点A,B,C,D,E表示的数分别为多少,并将这些数用“<”连接起来.20.(10分)[2024·杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?21.(12分)[新视角知识情境化]数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合的思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图①,在数轴上点A表示的数是,点B表示的数是,A,B两点间的距离是.(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为.(3)如图②,小明将刻度尺放在了图①中的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B对应刻度尺上的刻度4.8cm,点E对应刻度1.2cm,则数轴上点E表示的有理数是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上描出与点A的距离为2的点(用不同于A,B的其他字母表示);(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少?答案一、1.B 2.D 3.B4.D【点拨】负有理数包括负分数,负整数,故A错误;-1是最大的负整数,不存在最大的负数,故B错误;正有理数、0和负有理数组成全体有理数,故C错误.5.C6.A7.D【点拨】因为|+0.8|=0.8,|-1.2|=1.2,|1|=1,|-0.5|=0.5,0.5<0.8<1<1.2,所以D选项中的砝码是最接近标准的.8.C9.C【点拨】当线段AB的端点在整数点时,盖住16个整数点;当线段AB的端点不在整数点,即在两个整数点之间时,盖住15个整数点.10.A【点拨】一个动点从原点O开始向左运动,每秒运动1个单位长度,并且每向左运动3秒就向右运动2秒,所以该点的运动周期为5秒,且每5秒向左运动一个单位长度,因为2025÷5=405.所以该点运动到2025秒时对应的数为-405.二、11.>12.-113.112【点拨】因为|b-1|+-0,所以b-1=0,c-12=0.所以b=1,c=12.所以b+c=112.14.4或-615.②④【点拨】①|a|=a,即绝对值等于本身,则a≥0,故①错误;②若a,b互为相反数,且ab≠0,则b=-a≠0,所以=-=-1,故②正确;③两个数的绝对值相等,则这两个数相等或互为相反数,故③错误;④若a<b<0,则b-a>0,因为正数的绝对值等于它本身,所以|b-a|=b-a,故④正确;综上所述,②④正确.16.69;52;-72【点拨】由数轴可知-7212和-4115之间的整数点有-72,-71,…,-42,共31个;-2134和1623之间的整数点有-21,-20,…,16,共38个;故被淹没的整数点有31+38=69(个),负整数点有31+21=52(个),被淹没的最小的负整数点所表示的数是-72.三、17.【解】负有理数集合:{-0.1,+(-4),…};非负整数集合:{20,0,…};负整数集合:{+(-4),…};正数集合:6%,20,227,2.0·1·,….18.【解】(1)因为|-0.02|=0.02,-|-0.2|=-0.2,所以|-0.02|>-|-0.2|.(2)因为-|-3.14|=-3.14,π>3.14,所以-π<-|-3.14|.19.【解】(1)由数轴可知-4<-2.5<-1<0.5<2.(2)将原点改在点C,则点A,B,C,D,E所表示的数分别为-3,-1.5,0,1.5,3,将这些数用“<”连接起来为-3<-1.5<0<1.5<3.20.【解】(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).所以这10名同学的平均成绩是29.9秒.21.(1)-3;5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)由(1)得A,B两点间的距离是8,4.8÷8=0.6(cm),则数轴上1个单位长度对应刻度尺上0.6cm,1.2÷0.6=2,所以点E距离点A两个单位长度.故数轴上点E表示的有理数是-1.22.【解】(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.【解】(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点距离折点的距离为12×2024=1012.所以点M表示的数为2-1012=-1010,点N表示的数为2+1 012=1014.。
人教版七年级数学上册第一章达标测试卷含答案
人教版七年级数学上册第一章达标测试卷七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作()A.+30元B.-50元C.-30元D.+50元2.-12的相反数是()A.-2 B.-12C.2 D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为()A.2 B.3 C.4 D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183 -252.78 -196 -268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是()A.5 B.-5 C.1 D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()A B C D7.下列说法中,错误的是()A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是()A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数. A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”): (1)-715 -|13|; (2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 . 三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14. 正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}. 18.(6分)化简下列各数:)].(1)-(-68);(2)-(+0.75);(3)-[-(-2319.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)< 14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…}; 负数集合:{-12,-3,-3.1,-4,…}; 正整数集合:{15,171,…}; 负整数集合:{-3,-4,…}; 负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5; 当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。
人教版七年级数学上册 第一章 达标测试卷(word打印版+详细答案)
人教版七年级数学上册第一章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.如果零上15 ℃记作+15 ℃,那么零下9 ℃可记作()A.-9 ℃B.+9 ℃C.+24 ℃D.-6 ℃2.下列各式正确的是()A.|5|=|-5| B.-|5|=|-5|C.-5=|-5| D.-(-5)=-|5|3.一种巧克力的质量标识为“100±0.25 g”,则下列合格的是() A.99.80 g B.100.30 gC.100.51 g D.100.70 g4.若有理数a,b在数轴上所对应的点如图所示,则下列大小关系正确的是()(第4题)A.-a<0<b B.-b<a<0C.a<0<-b D.0<b<-a5.A,B,C三个地方的海拔分别是124 m、38 m、-72 m,那么最低点比最高点低()A.196 m B.-196 mC.110 m D.-110 m6.-134的倒数是()A.-73 B.45C.-47 D.437.在(-2)5,(-3)4,-22,(-3)2这四个数中,负数有() A.0个B.1个C.2个D.3个8.下列运算正确的是()A.(-6)+(-2)=+(6+2)=+8B.(-5)-(+6)=+(6+5)=+11C.(-3)-(-2)=-(3-2)=-1D.(+8)-(-10)=-(10-8)=-29.下列说法错误的有()①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A.1个B.2个C.3个D.4个10.若(x-1)2+|2y+1|=0,则y-x的值是()A.12B.-12C.32D.-3211.数轴上一点a表示的有理数为-5,若将a点向右平移4个单位长度,则此时a点表示的有理数为()A.-5 B.4 C.1 D.-1 12.数轴上到点-2的距离为5的点表示的数为()A.-3 B.-7C.3或-7 D.5或-313.如图是小明同学完成的作业,他做对的题数是()(第13题)A.1 B.2 C.3 D.4 14.如图,半径为1的圆沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()(第14题)A.-2π B.3-2π C.-3-2π D.-3+2π15.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7 B.-3或-7C.-3 或7 D.3或-716.观察下列算式,用你发现的规律得出22 021的个位数字是() 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A.2 B.4 C.6 D.8二、填空题(17题3分,其余每空2分,共11分)17.比较大小:-0.6________-23.18.-⎝ ⎛⎭⎪⎫-512的倒数是________,-42的相反数是________.19.一个点A 从数轴上表示2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;第二次先向左移动3个单位长度,再向右移动4个单位长度;第三次先向左移动5个单位长度,再向右移动6个单位长度;…… (1)第五次移动后这个点在数轴上表示的数是________; (2)第n 次移动后这个点在数轴上表示的数是________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.把下列各数填在相应的大括号中.-312,0.3,0,-3.4,12,-9,412,-2. 正数:{ …}; 负分数:{ …}; 负数:{ …}; 整数:{ …}.21.把下列各数在如图所示的数轴上表示出来,并按从小到大的顺序排列,用“<”号连接起来:-52,2,-4,3.5.(第21题)22.计算:(1)213-⎝ ⎛⎭⎪⎫+325-⎝ ⎛⎭⎪⎫+813+⎝ ⎛⎭⎪⎫-835;(2)(-24)×⎝ ⎛⎭⎪⎫13+14-18;(3)(-4)÷⎝ ⎛⎭⎪⎫-43×2+(-1)2 021×(-6).23.有10筐白菜,以每筐25 kg为标准,超过的千克数用正数来表示,不足的千克数用负数来表示,记录如下:(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这10筐白菜可以卖多少元?24.(1)若|a|=3,则a=________,若|a|=0,则a=________;(2)若|a|=|3|,则a=________,若|a|=|-3|,则a=________;(3)若|-a|=4,求a的值;(4)若|-a|=|-5|,求a的值.25.为庆祝中华人民共和国成立70周年,2019年10月1日凌晨2点,参加我国建国70周年阅兵活动的各个部队方阵已经在东长安街集结完毕.阅兵副总指挥为了协调各项准备工作,他的指挥车在东西走向的东长安大街来回奔波于各个方阵之间,若他从A出发,如果规定向东为正,向西为负,到早上7点整他的行车里程(单位:km)如下:+15,-4,+5,-1,+10,-3,-2,+12,+4,-10,+6.(1)到早上7点整时,他的指挥车在出发点A的什么位置?距出发点A多远?(2)若指挥车耗油量为a L/km,从凌晨2点到早上7点整时他的指挥车共耗油多少升?26.(1)如图,在数轴上标出数-4.5,-2,1,3.5所对应的点A,B,C,D;(第26题)(2)C,D两点间的距离为______,B,C两点间的距离为__________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点间的距离为________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动,已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,设运动时间为t秒.①当t为何值时,P,Q两点重合?②当t为何值时,P,Q两点间的距离为1?答案一、 1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.C 9.C 10.D 11.D 12.C 13.C14.B 点拨:由题意得AB =2πr =2π,点A 到原点的距离为3,则点B 到原点的距离为2π-3,因为点B 在原点的左侧,所以点B 所表示的数为-(2π-3)=3-2π,故选B. 15.A 16.A二、17.> 18.211;16 19. (1)7 (2)n +2三、20.解:正数:{0.3,12,412,…};负分数:{-312,-3.4,…};负数:{-312,-3.4,-9,-2,…};整数:{0,12,-9,-2,…}.21.解:如图.(第21题)-4<-52<2<3.5.22.解:(1)原式=⎝ ⎛⎭⎪⎫213-813+⎝ ⎛⎭⎪⎫-325-835=-6-12 =-18.(2)原式=(-24)×13+(-24)×14-(-24)×18 =(-8)+(-6)-(-3) =-11.(3)原式=(-4)×⎝ ⎛⎭⎪⎫-34×2+(-1)×(-6) =6+6 =12.23.解:(1)从表格可知,最重的一筐比最轻的一筐重2.5-(-3)=5.5(kg).所以10筐白菜中,最重的一筐比最轻的一筐重5.5 kg. (2)1×(-3)+3×(-2)+2×0+2×1+2×2.5=-2(kg), 所以与标准质量比较,10筐白菜总计不足2 kg. (3)(25×10-2)×2.6=644.8(元), 所以出售这10筐白菜可以卖644.8元. 24.解:(1)±3;0(2)±3;±3(3)因为|-a |=4,所以|-a |=|a |=4,所以a =±4. (4)因为|-a |=|-5|, 所以|a |=5,所以a =±5.25.解:(1)(+15)+(-4)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-10)+(+6)=32(km),所以到早上7点整时,他的指挥车在出发点A 的东边,距出发点A 32 km. (2)|+15|+|-4|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-10|+|+6|=72(km), a ×72=72a (L).所以从凌晨2点到早上7点整时他的指挥车共耗油72a L. 26.解:(1)如图所示.(第26题)(2)2.5; 3(3)|a-b|(4)①依题意有2t-t=3,解得t=3.故当t为3时,P,Q两点重合.②依题意有2t-t=3-1,解得t=2;或2t-t=3+1,解得t=4.故当t为2或4时,P,Q两点间的距离为1.。
人教版数学七年级上册第一章测试题含答案
人教版数学七年级上册第一章有理数一、选择题(每小题3分, 共30分)1.如果将“收入100元”记作“+100元”, 那么“支出50元”应记作( )A. +50元B. -50元C. +150元D. -150元2.在有理数-4, 0, -1, 3中, 最小的数是( )A. -4B. 0C. -1D. 33.如图, 数轴上有A, B, C, D四个点, 其中表示2的相反数的点是( )A. 点AB. 点BC. 点CD. 点D4.2016年第一季度, 某市“蓝天白云、繁星闪烁”天数持续增加, 获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是( )A. 408×104B. 4.08×104C. 4.08×105D. 4.08×1065. 下列算式正确的是( )A. (-14)-5=-9B. 0-(-3)=3C. (-3)-(-3)=-6D. |5-3|=-(5-3)6.有理数(-1)2, (-1)3, -12, |-1|, -(-1), -中, 化简结果等于1的个数是( )A. 3个B. 4个C. 5个D. 6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm), 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x, 则x的值为( )A. 4.2B. 4.3C. 4.4D. 4.58.有理数a, b在数轴上的位置如图所示, 下列各式成立的是( )A. b>0B. |a|>-bC. a+b>0D. ab<09.若|a|=5, b=-3, 则a-b的值为( )A. 2或8B. -2或8C. 2或-8D. -2或-810.观察下列算式: 21=2, 22=4, 23=8, 24=16, 25=32, 26=64, 27=128, 28=256, …用你所发现的规律得出22016的末位数字是( )A. 2B. 4C. 6D. 8二、填空题(每小题3分, 共24分)11. -3的相反数是________, -2018的倒数是________.12.在数+8.3, -4, -0.8, - , 0, 90, - , -|-24|中, 负数有______________________________, 分数有______________________________.13. 绝对值大于4而小于7的所有整数之和是________.14.点A, B表示数轴上互为相反数的两个数, 且点A向左平移8个单位到达点B, 则这两点所表示的数分别是________和________.15. 如图是一个简单的数值运算程序. 当输入x的值为-1时,则输出的数值为________.输入x―→×(-3)―→-2―→输出16. 太阳的半径为696000千米, 用科学记数法表示为________千米;把210400精确到万位是________.17. 已知(a-3)2与|b-1|互为相反数, 则式子a2+b2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律, 据此规律得出a+b+c=________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来, 并用“>”把这些数连接起来.-1 , 0, 2, -|-3|, -(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎢⎡⎦⎥⎥⎤2-5×⎝ ⎛⎭⎪⎫-122÷⎝ ⎛⎭⎪⎫-14;(3)(-24)×⎝ ⎛⎭⎪⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步, 他从自己家出发, 向东跑了2km 到达小彬家, 继续向东跑了1.5km 到达小红家, 然后又向西跑了4.5km到达学校, 最后又向东, 跑回到自己家.(1)以小明家为原点, 向东为正方向, 用1个单位长度表示1km, 在图中的数轴上, 分别用点A表示出小彬家, 用点B表示出小红家, 用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min, 那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装, 准备以一定的价格出售, 如果每套儿童服装以55元的价格为标准, 超出的记作正数, 不足的记作负数, 记录如下(单位: 元): +2, -3, +2, +1, -2, -1, 0, -2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比, 在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数:第1个数: 1-;第2个数: 2-;第3个数: 3- .(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号, 两端部分必须写详细), 然后推测出结果.参考答案与解析1. B2.A3.A4.D5.B6.B7.C8. D 9.B 10.C 11.3 -12. -4, -0.8, - , - , -|-24|+8.3, -0.8, - , -13. 0 14.4 -4 15.1 16.6.96×105 21万 17.1018. 110 解析: 找规律可得c =6+3=9, a =6+4=10, b =ac+1=91, ∴a +b +c =110.19.解:数轴表示如图所示, (5分)由数轴可知-(-3.5)>2>0>-1 >-|-3|.(8分)20. 解: (1)原式=-10+4=-6.(4分)(2)原式=⎝⎛⎭⎪⎫2-54×(-4)=-8+5=-3.(8分) (3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分)21. 解: (1)如图所示: (3分)(2)2-(-1)=3(km).答: 小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m, 9000÷250=36(min). 答: 小明跑步一共用了36min.(10分)22. 解: 由题意, 得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元), (5分)所以他卖完这8套儿童服装后是盈利, 盈利37元. (8分)23. 解: (1)a =154-160=-6, b =165-160=+5.(4分)(2)学生F 最高, 学生D 最矮, 最高与最矮学生的身高相差11厘米. (8分)(3)-3+2+(-1)+(-6)+3+5=0, 所以这6名学生的平均身高与全班学生的平均身高相同, 都是160厘米.(12分)24. 解:(1)第1个数: ;第2个数: ;第3个数: .(6分)(2)第2017个数: 2017-…⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分) 高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。
人教版七年级数学上册第一章达标测试卷附答案 (2)
人教版七年级数学上册第一章达标测试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合要求的)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( ) A .向北走5 km B .向南走5 km C .向西走5 km D .向东走5 km 2.在有理数1,12,-1,0中,最小的数是( ) A .1B .12 C .-1D .03.在有理数|-1|,0,-122,(-1)2 021中,负数的个数为( ) A .1 B .2 C .3 D .44. 随着科学技术的不断提高,5G 网络已经成为新时代的“宠儿”,预计到2025年,中国5G 用户将达到816 000 000人.将816 000 000用科学记数法表示为( )A .8.16×109B .81.6×107C .8.16×108D .0.816×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=9 6.下列每对数中,不相等...的一对是( ) A .(-1)2 021和-12 021 B .(-1)2 022和12 022 C .(-1)2 022和-12 022 D .|-1|2 021和|1|2 0217.有理数m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m >nB .-n >|m |C .-m >|n |D .|m |<|n | 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是精确到千位9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( ) A .-10 B .-2 C .-2或-10 D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( ) A .12 m B .1 m C .2 m D .4 m 二、填空题(本题共6小题,每小题3分,共18分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).13.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.14.如果|a +2|+(b -3)2=0,那么a b =________.15.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.16.点P 从距原点O 1个单位长度的点A 处向原点方向运动,第一次运动到OA的中点A 1处,第二次从点A 1运动到OA 1的中点A 2处,第三次从点A 2运动到OA 2的中点A 3处,…,如此不断运动下去,则第五次运动后,点P 到原点O 的距离为________;第n 次运动后,点P 到原点O 的距离为________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”把这些数连接起来.18.(8分)计算: (1)-6+10-3+|-9|;(2)⎝ ⎛⎭⎪⎫16+79-1112×36÷⎝ ⎛⎭⎪⎫-232.19.(8分)现规定一种新运算“*”:a *b =a b -2,例如:2*3=23-2=6.试求⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-32*2*2的值.20.(8分)某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位/g) -6 -2 0 1 3 4袋数 1 4 3 4 5 3(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为(450±5)g,求该食品的抽样检测的合格率.21.(10分)某景区驾驶员接送游客,驾驶电瓶车从景区大门出发,向东走2 km 到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置;(2)若电瓶车充足一次电能行走15 km,则该驾驶员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.22.(10分)规定:在数轴上点P所表示的数记作x P,如点P在数轴上所表示的数是5,则x P=5;已知点C是线段AB(点A在点B的左边)的中点,点A,B,C在数轴上所表示的数分别是x A,x B,x C,请用x A,x B表示x C.答案一、1.C 2.C 3.B 4.C 5.B 6.C 7.C 8.C 9.C10.B 点拨:剩下的小棒长为100×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1-1100=100×1100=1(m).二、11.-4分 12.< 13.-3,-114.-8 15.-2 16.125;12n 三、17.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…};正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}. (2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).18.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10. (2)原式=(6+28-33)÷49=1÷49=94.19.解:⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-322-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.20.解:(1)450×20+(-6)×1+(-2)×4+0×3+1×4+3×5+4×3=9 000-6-8+0+4+15+12=9 017(g).则抽样检测的20袋食品的总质量为9 017 g. (2)1920×100%=95%.则该食品的抽样检测的合格率为95%. 21.解:(1)如图所示.(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该驾驶员不能在电瓶车一开始充好电而途中不充电的情况下完成此次任务.22.解:当点A,B在数轴的原点右边时,如图①.线段AB=x B-x A,OA=x A,线段AC=12AB=x B-x A2,线段OC=OA+AC=x A+x B-x A2=x B+x A2,即x C=x B+x A2;当点A在数轴的原点时,如图②. x A=0,线段AB=x B,线段AC=12AB=x B2,线段OC=AC=x B2=x B+02=x B+x A2,即x C=x B+x A2;当点A在数轴的原点的左边,点C,B在数轴的原点的右边时,如图③.线段AB=x B-x A,线段OA=-x A,线段AC=12AB=x B-x A2,线段OC=AC-OA=x B-x A2-(-x A)=x B+x A2,即x C=x B+x A2;当点A,C在数轴的原点的左边,点B在数轴的原点的右边时,如图④.线段AB=x B-x A,线段OB=x B,线段BC=12AB=x B-x A2,线段OC=BC-OB=x B-x A2-x B=-x B+x A2,即x C=x B+x A2;当点B在数轴的原点时,如图⑤. x B=0,线段AB=-x A,线段BC=12AB=-x A2,线段OC=BC=-x A2=-x A+02=-x A+x B2,即x C=x B+x A2;当点A,B在数轴的原点左边时,如图⑥. 线段AB=x B-x A,OB=-x B,线段BC=12AB=x B-x A2,线段OC=BC+OB=x B-x A2+(-x B)=-x B+x A2,即x C=x B+x A2;当点C在数轴的原点,点A在原点的左边,点B在原点的右边时,如图⑦.由已知易得x C=0=x B+x A2.综上可知,x C=x B+x A2.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示()A.支出800元B.收入800元C.支出200元D.收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为()A.1.339×1012B.1.339×1011C.0.133 9×1013D.1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________.14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了;(3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级上册数学 第一章 有理数 单元达标测试卷(含答案)
人教版七年级上册数学第一章有理数单元达标测试卷时间:100分钟满分:100分一.选择题(每小题4分,共40分)1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.32.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.54.已知数a、b在数轴上对应的点在原点两侧,并且到原点的距离相等;数x、y是互为倒数,那么2|a+b|﹣2xy的值等于()A.2 B.﹣2 C.1 D.﹣15.若|a﹣3|=3﹣a,则a的取值范围是()A.a>3 B.a<3 C.a≥3 D.a≤36.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10117.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=44,且AO=3BO,则a+b的值为()A.﹣44 B.﹣22 C.﹣55 D.﹣118.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a| C.|a|>|b| D.b﹣1<a9.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.310.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二.填空题(每小题4分,共24分)11.若x,y互为相反数,且3x﹣y=4,则xy的值为.12.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.13.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为.14.一根长12.56米的绳子刚好可以绕一个圆10圈,那么这个圆的直径大约是米.15.某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.已知a,b,c为互不相等的整数,且abc=﹣4,则a+b+c=.三.解答题(每题9分,共36分)17.计算①.。
人教版数学七年级上册第一章有理数测试卷附答案
人教版数学七年级上册第一章有理数测试卷附答案人教版七年级上册第一章测试卷一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到公里,将用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×1052.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是() A。
B.2 C.1 D.–13.我们定义一种新运算a⊕b=,例如5⊕2=,则式子7⊕(﹣3)的值为()D.﹣4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是()B.﹣205.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()D.﹣3或﹣76.下列式子中正确的是()D.(﹣2)4=﹣167.给出下列说法:①是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()B。
2个8.12的相反数与﹣7的绝对值的和是()A.59.XXX做了以下4道计算题:①(﹣1)2010=﹣1;②﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了()D。
4题10.若|a﹣4|=|a|+|﹣4|,则a的值是()B.任意一个非负数二.填空题(共6小题)11.﹣|﹣|的相反数是1.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是1/2.13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)=2.14.如果(﹣a)2=(﹣2)2,则a=±√2.15.计算:﹣1÷(﹣3)=1/3.16.如图,有理数在数轴上对应的点分别为-3/4、-1、0、3/2,化简的结果为-1 1/4、-1、0、1 1/2.三.解答题(共6小题)17.计算:1) (2)18.已知|a|=5,|b|=2,若a<b,求ab的值.a<b,说明a和b都是负数,所以ab为正数,且|a|>|b|,即|a|×|b|=ab=10.分析】题目描述了一个点在数轴上移动的过程,要求求出最终表示的数.根据题意,该点最终停留在距离起点3个单位长度的位置上,而向右移动7个单位长度再向左移动4个单位长度,实际上就是向右移动3个单位长度,因此最终表示的数就是3.故选:C.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
人教版七年级数学上册《第一章单元综合测试卷》测试题及参考答案
人教版七年级数学上册《第一章单元综合测试卷》测试题及参考答案一、选择题(每题3分,共30分)1. 下列数中,哪一个数是有理数?A. √2B. πC. 0.333...D. √-12. 下列说法中,正确的是:A. 有理数是整数和分数的统称B. 无理数是分数C. 有理数和无理数统称为实数D. 实数包括有理数和分数3. 下列数中,哪一个数是分数?A. 3B. -5C. 2/3D. √54. 下列各数中,哪一个数是正数?A. -2B. 0C. 1/2D. -1/25. 如果 a 是正数,那么下列哪一个选项是正确的?A. -a 是正数B. -a 是负数C. -a 是0D. 无法确定6. 绝对值等于3的数是:A. 3B. -3C. 3 和 -3D. 07. 下列各数中,哪一个数的绝对值最小?A. -5B. 3C. -2D. 08. 下列哪一个数的相反数是它本身?A. 0B. 1C. -1D. 29. 下列哪一个数是-2的相反数?A. 2B. -2C. 0D. -410. 下列哪一个数是2的倒数?A. 1/2B. 2C. -2D. -1/2二、填空题(每题3分,共30分)11. 有理数包括________和________。
12. 相反数的定义是:如果两个数只有符号不同,那么这两个数互为________。
13. 绝对值是一个数的________,它表示这个数到原点的________。
14. 如果一个数的绝对值是4,那么这个数可以是________或________。
15. 0的相反数是________,0的倒数是________。
16. 如果a > b,那么-a________-b。
17. 下列数中,哪个数是1/3的平方:________(填写选项前的字母)。
A. 1/9B. 3C. 9D. 1/2718. 如果一个数的平方是1,那么这个数可以是________或________。
19. 下列各数中,哪个数的平方是正数:________(填写选项前的字母)。
第1章 有理数 人教版七年级数学上册单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为 .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是 . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第一章测试题及答案第一章达标测试卷一、选择题(每题3分,共30分) 1.12的相反数是( )A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________. 13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12. 整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|; (2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b -2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m远的演播大厅里的观众,二是距北京2 900 km正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m/s,电波的速度是3×108m/s)?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.< 15.-32,-12 16.5 17.1 18.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…}; 正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-49+118-18-59=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-322-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m , 2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.24.解:(1)-8 3(2)易得t=16-(-12)4-2=282=14.此时-12-2×14=-40,即点P对应的数是-40.(3)当PQ=8时,有以下两种情况:①P,Q相遇前,t=28-82+4=103,此时点P对应的数是-12+2t=-16 3;②P,Q相遇后,t=28+82+4=6,此时点P对应的数是-12+2t=0.综上所述,点P对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m,根据题意,有m÷(-2)+m+m×(-2)=768.解得m=-512,符合第3行数的规律.此时m÷(-2)=256,m×(-2)=1 024.所以这三个数分别为256,-512,1 024.(3)存在.因为同一列的数符号相同,所以这三个数都是正数.设这一列的第一个数为2n(n为正整数).根据题意,有2n+(2n+2)+12×2n=1 282,即2n =512=29. 所以n =9.此时2n +2=514,12×2n=256. 所以这三个数分别为512,514,256.。