2016-2017学年江苏省南京市江宁区八年级(下)期中数学试卷
2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。
2016-2017年第二学期八年级数学期中试卷及答案

2016-2017学年度第二学期期中考试八年级数学试卷一、选择题.(本大题共个10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题意)1、下图中是中心对称图形的是( )2、已知a <b ,则下列不等式一定成立的是( ) A.a+3>b+3 B.2a >2b C.-a <-b D.a-b <03、如图,用不等式表示数轴上所示的解集,正确的是()A.x <-1 或x ≥3 B .x ≤-1或x >3 C.-1≤x <3 D.-1<x ≤34、已知三角形三边长分别为3,1-2a ,8,则a 的取值范围是( ) A.5<a <11 B. 4<a <10 C. -5<a <-2 D. -2<a <-55、不等式组4x x m>⎧⎨>⎩的解集是4x >,那么m 的取值范围是( )A.m ≥4B.m ≤4C.3≤x <4D.3<x ≤46、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5, 则线段DE 的长为( )A . 5B . 6C .7D .8 7、如图,已知一次函数y =kx+b ,观察图象回答问题: 当kx+b>0,x 的取值范围是 ( ) A.x >2.5 B.x <2.5 C.x >-5 D.x <-58、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2米,其侧面如图所示(单位:米),则小明至少要买( )平方米的地毯。
A .10 B .11 C .12 D .13-10123-1 0 -3 -53 x y-1 1 3 -2 1-2-42.56题图 8题图7题图9、如图,在△ABC 中,∠ACB=90°,∠A=30°,AB 的垂直平分线分别交AB 和AC于点D ,E,AE=2,CE=( )A . 1B .2C . 3D .510、如图,△ABC 绕A 逆时针旋转使得C 点落在BC 边上的F 处,则对于结论 ①AC =AF ; ②∠FAB =∠EAB ; ③EF =BC ; ④∠EAB =∠FAC , 其中正确结论的个数是( )A.4个B.3个C.2个D. 1个二、填空题.(本大题共4个小题,每小题4分,共24分,把答案写在题中的横线上) 11.不等式2x -3≥x 的解集是12、全等三角形的对应角相等的逆命题是命题。
【江宁】2016-2017学年第二学期初二数学期中试卷及答案

A.平行四边形
B.矩形
C.菱形
D.正方形
A
D
B
Cl
【答案】A 【解析】本题考察了平行四边形的判定,由 AD BC , AB DC 可知,两组对边分别相等的四边形是 平行四边形.
4.如图是某班 45 名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),
则捐款人数最多的一组是( ).
⑨⑧ ⑦
⑩
⑥
①
④⑤
②③
图(a)
【答案】(1 )①④ ( 2 )见解析 【解析】( 2 )如图.
A
C
B
B1
O
C1
A1
A
C
B O
图(b)
18.( 8 分)如图,在平行四边形 ABCD 中,点 E 、 F 分别在 AD 、 BC 上,且 AE CF . (1)求证: △AEB ≌△CFD . ( 2 )求证:四边形 BFDE 是平行四边形.
全校的 35% ,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理
化建议.
【答案】见解析
【解析】(1 ) m 280 , n 245 , a 40% , b 10% .
原人数 105 700 (人), 15%
n 700 35% 245 (人),
∴ DE ∥ BF , ∴四边形 BFDE 为平行四边形.
19.( 8 分)如图,某校根据学生上学方式的一次抽样调查结果,若该校共有若干名学生. 上学的方式 步行 骑车 乘车 其他
登陆官网获取更多资料及课程信息:
南京中小学辅导 1对1、3人班、8人班
A.
B.
C.
2016-2017学年度八年级第二学期期中数学试卷(终极版)

12016—2017学年第二学期期中考试八(下)数学试卷满分:120分;考试时间:120分钟;一、选择题(每小题4分,共40分)1.下列二次根式是最简二次根式的是( ) A.21B.2.0C. 3D. 82.下列命题中是真命题的是( )A .两边相等的平行四边形是菱形B .一组对边平行一组对边相等的四边形是平行四边形C .两条对角线相等的平行四边形是矩形D .对角线互相垂直且相等的四边形是正方形3.把 )A ....4.已知a 、b 、c 是三角形的三边长,如果满足(a -9)2c 15-=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形5.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 336.菱形的周长为16,且有一个内角为60°,则此菱形的面积为( ) A. 43 B. 83 C. 103 D. 1237.如图1,在矩形ABCD 中,对角线BD AC 、相交于点 60,=∠AOB O 5=AB ,则AD 的长是( )A .25B .35C .5D .108.如图2,在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ) .A 、15°B 、17°C 、16°D 、32°9.如图3,菱形ABCD 的边长为4cm,∠ABC=600,且M 为BC 的中点,P 是对角线BD上的一动点,则PM+PC 的最小值为( ).A .4 cmBC .D .10.如图4,矩形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为 ( )二、填空题(每小题4分,共20分) 11.当x 满足 时,xx+1在实数范围内有意义. 12.如图5,数轴上A B ,两点表示的数分别为1-B 到A 的距离与点C 到A 的距离相等,则点C 所表示的数为___________ A DCA B C N DM D A D CP BMA 图2 图3图4513.如图6所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D、E、F分别是AB、BC、CA214.如图7,平行四边形ABCD中,A(3,2),B(5,-3)则点C的坐标为15.如图8,△ABC中,AB=10cm,AC=8cm,点E为是BC的中点,若AD平分∠BAC,C D⊥AD,线段DE的长为____________.三、计算与化简题(第17题8分,第18题8分,共16分)17.计算:⑴⎛÷⎝2+3a18.(本题8分)实数a、b、c在数轴上的位置如图所示,化简:四、解答题(共44分)1 9.(本题10分)已知,3232,3232+-=-+=yx求值:22232yxyx+-.20.(本题12分)如图10所示的一块地,已知mAD4=,mCD3=, AD⊥DC,mAB13=,mBC12=,求这块地的面积.AADECBA图2a c b+-х图82321.(本题10分)如图11,在四边形ABCD 中,AB=CD ,BF=DE ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F .(1)求证:△ABE ≌△CDF ;(2)若AC 与BD 交于点O ,求证:AO=CO .23.(本题12分)如图13,四边形ABCD 是菱形,AC=8,DB=6,DE ⊥AB 于点E ,(1)求DE 的长;(2)连接OE ,求证:∠OED=∠ACD图11AEBO C D。
南京XX中学八年级下期中数学试卷及答案-精校

2016-2017学年江苏省南京XX中学八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题纸上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,下列事件中,必然事件是()A.该卡片标号小于6 B.该卡片标号大于6C.该卡片标号是奇数D.该卡片标号是33.(2分)下列性质中,矩形具有而菱形不一定具有的性质是()A.四条边相等 B.对角线互相平分C.对角线相等 D.对角线互相垂直4.(2分)下列各式计算正确的是()A. B.C.D.5.(2分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2 B.3 C.D.46.(2分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED 为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°二、填空题(本大题共10小题,每小题2分,共计20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.(2分)当x 时,分式的值为0.8.(2分)分式方程的解为x= .9.(2分)分式与的最简公分母是.10.(2分)在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.11.(2分)一个圆形转盘被等分成五个等分的扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数)= ,指针指向标有奇数所在区域的概率为P (奇数)= ,则P(偶数)P(奇数)(填“>”“<”或“=”).12.(2分)如图,△ABC绕点A顺时针旋转100°得到△AEF,若∠C=60°,∠E=100°,则α的度数为.13.(2分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.14.(2分)如图所示,正方形ABCD与菱形PQCD的面积分别为25cm2和20cm2,阴影部分的面积为cm2.15.(2分)已知x为整数,且分式的值为整数,则x可取的值为.16.(2分)在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换得到的点A的坐标是.2014三、解答题(本大题共有10小题,共68分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)计算:(1)﹣(2)﹣a﹣1.18.(5分)解方程:﹣=1.19.(5分)若x+y=6,xy=﹣2,求+的值.20.(7分)在计算的过程中,三位同学给出了不同的方法:甲同学的解法:原式=;乙同学的解法:原式==1;丙同学的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.(1)请你判断一下,同学的解法从第一步开始就是错误的,同学的解法是完全正确的.(2)乙同学说:“我发现无论x取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.21.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC绕坐标原点O逆时针旋转90°得到△A1B1C1;②△ABC关于坐标原点O中心对称的△A2B2C2.(2)△A1B1C1中顶点B1坐标为.22.(7分)投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有.(填序号)①向上一面点数为1点和3点的可能性一样大;②投掷6次,向上一面点数为1点的一定会出现1次;③连续投掷2次,向上一面的点数之和不可能等于13.(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由.(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)23.(6分)在四边形ABCD中,对角线AC与BD交于点O,△ABO≌△CDO.(1)求证:四边形ABCD为平行四边形;(2)若∠ABO=∠DCO,求证:四边形ABCD为矩形.24.(7分)某公司研发1000件新产品,需要精加工后才能投放市场.现在甲、乙两个工厂加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天,而乙工厂每天加工的件数是甲工厂每天加工件数的1.25倍,公司需付甲工厂加工费用每天100元,乙工厂加工费用每天125元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)两个工厂同时合作完成这批产品,共需付加工费多少元?25.(8分)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD 内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.26.(7分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),直线BC 经过点B(﹣8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转角度α得到四边形OA′B′C′,此时边OA′与边BC交于点P,边B′C′与BC的延长线交于点Q,连接AP.(1)四边形OABC的形状是.(2)在旋转过程中,当∠PAO=∠POA,求P点坐标.(3)在旋转过程中,当P为线段BQ中点时,连接OQ,求△OPQ的面积.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题纸上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(2分)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,下列事件中,必然事件是()A.该卡片标号小于6 B.该卡片标号大于6C.该卡片标号是奇数D.该卡片标号是3【解答】解:A、∵从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,∴该卡片标号小于6,是必然事件,故此选项正确;B、该卡片标号大于6,是不可能事件,故此选项错误;C、该卡片标号是奇数,是随机事件,故此选项错误;D、该卡片标号是3,是随机事件,故此选项错误;故选:A.3.(2分)下列性质中,矩形具有而菱形不一定具有的性质是()A.四条边相等 B.对角线互相平分C.对角线相等 D.对角线互相垂直【解答】解:矩形的对角线相等且平分,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的为对角线相等,故选:C.4.(2分)下列各式计算正确的是()A. B.C.D.【解答】解:A、原式不能合并,错误;B、+=,本选项错误;C、()2=,本选项错误;D、﹣=﹣=,本选项正确,故选:D.5.(2分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2 B.3 C.D.4【解答】解:在△ABC中,D、E分别是BC、AC的中点∴DE∥AB∴∠EDC=∠ABC∵BF平分∠ABC∴∠EDC=2∠FBD在△BDF中,∠EDC=∠FBD+∠BFD∴∠DBF=∠DFB∴FD=BD=BC=×6=3.故选:B.6.(2分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED 为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AC ED,∴四边形ACED为平行四边形,当AC=BC时,则DE=EC,∴平行四边形ACED是菱形.故选:B.二、填空题(本大题共10小题,每小题2分,共计20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.(2分)当x =1 时,分式的值为0.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:=1.8.(2分)分式方程的解为x= 2 .【解答】解:去分母得:2(x+1)=3x,去括号得:2x+2=3x,移项得:2x﹣3x=﹣2,合并同类项得:﹣x=﹣2,把x的系数化为1得:x=2,检验:把x=2代入最简公分母x(x+1)=6≠0,故原分式方程的解为:x=2.故答案为:2.9.(2分)分式与的最简公分母是12a3bc .【解答】解:分式与的最简公分母是12a3bc,故答案为:12a3bc.10.(2分)在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球20 个.【解答】解:∵某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,∴摸到黄球的概率=1﹣35%﹣55%=10%,∴口袋中黄球的个数=200×10%=20,即口袋中可能有黄球20个.故答案为20.11.(2分)一个圆形转盘被等分成五个等分的扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数)= ,指针指向标有奇数所在区域的概率为P(奇数)= ,则P(偶数)<P(奇数)(填“>”“<”或“=”).【解答】解:转动转盘一次,共有5种可能的结果,其中是奇数的有1,3,5占三种,所以P(奇数)=.P(偶数)=,P(偶数)<P(奇数),故答案为:;;<12.(2分)如图,△ABC绕点A顺时针旋转100°得到△AEF,若∠C=60°,∠E=100°,则α的度数为80°.【解答】解:∵△ABC绕点A顺时针旋转100°得到△AEF,∴∠EAB=100°,∠F=∠C=60°,在△AEF中,∠EAF=180°﹣∠E﹣∠F=180°﹣100°﹣60°=20°,∴∠EAF=∠BAE﹣∠EAF=80°.故答案为80°.13.(2分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 16 .【解答】解:∵四边形ABCD 是矩形, ∴BD=AC ,DO=BO ,AO=CO , ∴OD=OA ,∵∠AOB=120°, ∴∠DOA=60°,∴△AOD 是等边三角形, ∴DO=AO=AD=OC=4, ∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形, ∴四边形CODE 是菱形,∴四边形CODE 的周长为:4OC=4×4=16, 故答案为:16. 14.(2分)如图所示,正方形ABCD 与菱形PQCD 的面积分别为25cm 2和20cm 2,阴影部分的面积为 11 cm 2.【解答】解:∵正方形ABCD 的面积是25cm 2, ∴AB=BC=BP=PQ=QC=5cm ,又∵S 菱形BPQC =PQ ×EC=5×EC=20cm 2, ∴S 菱形BPQC =BC•EC, 即20=5•EC, ∴EC=4cm ,在Rt △QEC 中,EQ==3cm ; ∴PE=PQ ﹣EQ=2cm ,∴S 阴影=S 正方形ABCD ﹣S 梯形PBCE =25﹣×(5+2)×4=25﹣14=11(cm 2) 故答案为:11.15.(2分)已知x 为整数,且分式的值为整数,则x 可取的值为 0,2,3 .【解答】解:=,∵的值为整数,∴x﹣1=1、2、﹣1、﹣2,①当x﹣1=1时,x=2;②当x﹣1=2时,x=3;③当x﹣1=﹣1时,x=0;④当x﹣1=﹣2时,x=﹣1,∵x2﹣1≠0,∴x≠±1,∴x=﹣1不符合题意.综上,可得x可取的值为0,2,3.故答案为:0,2,3.16.(2分)在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换的坐标是(0,2).得到的点A2014【解答】解:由题意第一次旋转后的坐标为(﹣,﹣),第二次旋转后的坐标为(0,﹣2),第三次旋转后的坐标为(,﹣),第四次旋转后的坐标为(2,0),第五次旋转后的坐标为(,),第六次旋转后的坐标为(0,2),第七次旋转后的坐标为(﹣,),第八次旋转后的坐标为(﹣2,0)因为2014÷8=251…6,所以把点A经过连续2014次这样的变换得到的点A的坐标是(0,2).2014故答案是:(0,2).三、解答题(本大题共有10小题,共68分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)计算:(1)﹣(2)﹣a﹣1.【解答】解:(1)原式===;(2)原式==.18.(5分)解方程:﹣=1.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.19.(5分)若x+y=6,xy=﹣2,求+的值.【解答】解:∵x+y=6、xy=﹣2,∴+=﹣3,则+=(+)2﹣=62﹣=36+1=37.20.(7分)在计算的过程中,三位同学给出了不同的方法:甲同学的解法:原式=;乙同学的解法:原式==1;丙同学的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.(1)请你判断一下,丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的.(2)乙同学说:“我发现无论x取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.【解答】解:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的;故答案为:丙,乙;(2)不合理,理由:∵当x≠±2时, =﹣===1,∴乙同学的话不合理,21.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC绕坐标原点O逆时针旋转90°得到△A1B1C1;②△ABC关于坐标原点O中心对称的△A2B2C2.(2)△A1B1C1中顶点B1坐标为(﹣1,﹣6).【解答】解:(1)①如图所示,△A1B1C1即为所求;②如图所示,△A2B2C2即为所求;(2)由图可知,△A1B1C1中顶点B1坐标为(﹣1,﹣6),故答案为:(﹣1,﹣6)22.(7分)投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有①③.(填序号)①向上一面点数为1点和3点的可能性一样大;②投掷6次,向上一面点数为1点的一定会出现1次;③连续投掷2次,向上一面的点数之和不可能等于13.(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是.你同意他的说法吗?说说你的理由.(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)【解答】解:(1)投掷一枚质地均匀的正方体骰子,①向上一面点数为1点和3点的可能性一样大,此选项正确;②投掷6次,向上一面点数为1点的不一定会出现1次,故此选项错误;③连续投掷2次,向上一面的点数之和不可能等于13,此选项正确;故答案为:①③;(2)是小明投掷正方体骰子,向上一面点数为6点的频率,不是概率.一般地,在一定条件下大量重复同一试验时,随机事件发生的频率会在某个常数附近摆动,只有当试验次数很大时,才能以事件发生的频率作为概率的估计值.(3)本题答案不唯一,如图所示:.23.(6分)在四边形ABCD中,对角线AC与BD交于点O,△ABO≌△CDO.(1)求证:四边形ABCD为平行四边形;(2)若∠ABO=∠DCO,求证:四边形ABCD为矩形.【解答】(1)证明:∵△ABO≌△CDO,∴AO=CO,BO=DO,∴AC、BD互相平分,∴四边形ABCD是平行四边形;(2)证明:∵△ABO≌△CDO,∴∠BAO=∠DCO,∵∠ABO=∠DCO,∴∠ABO=∠BAO,∴AO=B O,又∵AO=CO,BO=DO,∴AC=BD,∴▱ABCD是矩形(对角线相等的平行四边形是矩形).24.(7分)某公司研发1000件新产品,需要精加工后才能投放市场.现在甲、乙两个工厂加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天,100元,乙工厂加工费用每天125元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)两个工厂同时合作完成这批产品,共需付加工费多少元?【解答】解:(1)设甲工厂每天加工x件新产品,则乙工厂每天加工1.25x件新产品,由题意得:,解得:x=20,经检验,x=20是原方程的根.1.25x=1.25×20=25.答:甲、乙两个工厂分别每天加工20,25件新产品;(2)由题意,得=5000(元).答:两个工厂同时合作完成这批产品,共需付加工费5000元.25.(8分)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD 内部,延长A F交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.【解答】解:(1)猜想线段GF=GC,证明:连接EG,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵EG=EG,∠C=∠EFG=90°,∴△ECG≌△EFG(HL),∴FG=CG;(2)(1)中的结论仍然成立.证明:连接EG,FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴∠EFC=∠ECF,∵矩形ABCD改为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.26.(7分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),直线BC 经过点B(﹣8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转角度α得到四边形OA′B′C′,此时边OA′与边BC交于点P,边B′C′与BC的延长线交于点Q,连接AP.(1)四边形OABC的形状是矩形.(2)在旋转过程中,当∠PAO=∠POA,求P点坐标.(3)在旋转过程中,当P为线段BQ中点时,连接OQ,求△OPQ的面积.【解答】解:(1)∵点A的坐标为(﹣8,0),点B(﹣8,6),C(0,6),∴∠COA=∠OAB=∠B=90°,∴四边形OABC是矩形.故答案为:矩形;(2)如图1,过点P作PE⊥AO于点E,∵∠PAO=∠POA,∴PA=PO,∴AE=EO=4,∴P(﹣4,6);(3)如图2,在Rt△OCQ和Rt△OC'Q中,,∴Rt△OCQ≌Rt△OC'Q(HL),∴∠OQC=∠OQC',又∵OP∥C'Q,∵∠POQ=∠OQC',∴∠POQ=∠PQO,∴PO=PQ,∵BP=QP,∴BP=OP=x,在Rt△OPC中,x2=(8﹣x)2+62,解得:x=.故S=×CO×PQ=×6×=.△OPQ。
江苏省2016-2017学年度八年级下学期期中考试数学试题7

江苏省2016-2017学年度八年级下学期期中考试数学试题(考试时间:120分钟 试卷总分:150分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求的,请将正确选项前的字母代号填写在答题纸相....应位置上.....) 1.下列四个图形中,是中心对称图形的是 ( ▲ )2.下列调查适合采用“普查”的是 ( ▲ ) A .了解在校大学生的主要娱乐方式 B .了解某个班级学生的体重 C .一批灯泡的使用寿命 D .调查《新闻联播》电视栏目的收视率3.100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是(▲) A .红球一定刚好4个 B .红球不可能少于4个 C .红球可能多于4个 D .抽到的白球一定比红球多4.如果把分式yx xy中的x 和y 都扩大2倍,则分式的值 ( ▲ ) A .扩大为4倍; B .扩大为2倍; C .不变; D .缩小2倍 5.已知,在□ABCD 中,若∠A+∠C =200°,则∠B 的度数是 (▲) A.100° B.160° C.80° D.60° 6.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是 ( ▲ ) A . y 3<y 1<y 2B . y 1<y 2<y 3C . y 2<y 1<y 3D . y 3<y 2<y 17.如图,已知E 是□ABCD 的边CD 的中点,AD 、BE 的延长线相交于点F ,若DF =3,DE =2,则□ABCD 的周长为 ( ▲ ) A.5 B.7 C.10 D.14第8题图第7题图8.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ▲ )A .8B .3C .4D .32 二.填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题纸相应位置上.........) 9.某校为了解该校1300名毕业生的数学考试成绩,从中抽查了130名考生的数学成绩.在这次调查中,样本容量是 ▲ .10.“任意打开一本200页的数学书,正好是第35页”,这是___▲____事件. 11.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为31,那么袋中共有 ▲ 个球.12.若分式22+-x x 的值为0,则x = ▲ .13.若2,3a b =则a a b=+ ▲ . 14.□ABCD 的周长为30,对角线AC 、BD 相交于点O ,若△AOB 的周长比△BOC 的周长少3,则AB = ▲ .17.关于x 的方程11x =-的解是正数,则a 的取值范围是 ▲ .18.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =3x-(x <0)的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D在x 轴上,则平行四边形ABCD 的面积为 ▲ .第18题图三、解答题(本大题共10小题,共96分.请在答题纸指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.) 19. (本题8分) (1)化简:221b a a b a b a b ⎛⎫-÷⎪--+⎝⎭; (2)解方程:21122x x x=--- .20.(本题8分)先化简:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后请在33<<-x 中择一个你喜欢的整数..代入求值.21.(本题8分)正方形网格中(网格中的每个小正方形边长是1),ABC ∆的顶点均在格点上,请在所给的直角坐标系中解答下列问题:⑴ 作出ABC ∆绕点A 逆时针旋转90°的11AB C ∆,再作出11AB C ∆关于原点O 成中心对称的122A B C ∆.⑵ 点1B 的坐标为 ,点2C 的坐标 为 .⑶ ABC ∆经过怎样的旋转可得到122A B C ∆,24.(本题10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.ABCDEFA ′B ′25.(本题10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(本题10分)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处,已知AD=10,CD=4,B′D=2. (1)求证:B ′E =BF ;(2)求AE 的长.27.(满分12分)如图,一次函数411+=x k y 与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C . (1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点。
江苏省2016-2017学年度八年级下学期期中复习考试数学试题

江苏省2016-2017学年度八年级下学期期中复习考试数学试题一、选择题:(本大题共8小题,每小题2分,共16分.)1.若分式32x-有意义,则x的取值范围是()A.x≠2 B.x>2 C.x>0且x≠2 D.x<22.能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD ,AD=BC D.AB=AD,CB=CD3.已知点M(-2,3)在双由线y=kx上,则下列各点一定不在该双曲线上的是()A.(3,-2) B.(-2,-3) C.(2,-3) D.(-3,2)4.代数式45x,42x y+,122++πx,52,1b,12xx+中,是分式的有()A.2个B.3个C.4个D.5个5.若分式xyx y+中的x和y都扩大2倍,那么分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍6.反比例函数6yx=与3yx=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.32错误!未找到引用源。
B.2 C.3 D.17.当m=时,分式22mm--的值为零.轴负方向平移a个单位长度后,二、填空题:(本大题共10小题,每小题2分,共20分.)9.点(2,a)在反比例函数6yx=图象上,则a= .10.如图,在菱形ABCD中,∠ABC=60°,AC=4,则菱形ABCD的周长是___________.11.若关于x的方程222x mx x++--=2有增根,则增根x=_______.m=_______.第10题 第12题 第15题 第18题12.如图, ABCD 中, AD =5, AB =3,AE 平分∠BAD 交BC 边于点E ,则EC =_______.13.已知y kx =(0k >)与2y x=交于点11(,)A x y 、22(,)B x y ,则123x y = . 14.若点()13y -,、()22y -,、()31y ,在反比例函数3y x -=的图像上,则y 1、y 2、y 3的大小关系是 .(用>连接)15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y 6x= (x >0)的图象上,则点C 的坐标为_______.16.三角形的三条中位线长分别是3cm ,4cm ,5cm ,那么这个三角形的周长是_____ cm ,面积是____ cm 2. 17.已知一次函数5y x =-+和反比例函数3y x -= 交于点A (a ,b ),则11a b+= . 18.如图, ABCD 中, 对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′ 的长为________________.三、解答题:(本大题共9题,共64分)19. (1) 化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭ (2) 已知:32-=x ,32+=y ,求代数式22xy y x +-值.20.解方程:(1).23611x x =-- (2)221211239y y y y y -+=-+--21.先化简311x x x x ⎛⎫- ⎪-+⎝⎭·21x x -,再从1、-1、01四个数中选取你认为满意的数求分式的值.22.已知:如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,点E 、F 在直线AC 上,且AE =CF ,求证:四边形EBFD 是平行四边形.23.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3.(1)求证:BN =DN ;(2)求△ABC 的周长.24.已知:如图,一次函数y 1=k 1x +b 与反比例函数y 2=2k x的图象交于点A (4,m )和B (n ,-2),与y 轴交于点C .P 是反比例函数图象上的点,PE 垂直于x 轴,△OPE 的面积是8 .(1)求一次函数和反比例函数的解析式.(2)根据函数图象可知,求当y 1>y 2时,x 的取值范围.25.如图:四边形ABCD 中,AD //BC ,AD =9cm,BC =6cm ,点P 、Q 分别从点A 、C 同时出发,点P 以2cm/s 的速度由点A 向点D 运动,点Q 以1cm/s 的速度由点C 向点B 运动。
江苏2016-2017学年八年级下学期期中考试数学试题

江苏省2016-2017学年度第二学期期中考试八年级数学试题(考试时间:120分钟,满分150分) 成绩亲爱的同学:在展示你学习成果的同时,希望你能认真审题,看清要求,仔细答题,发挥出自己的最好水平。
祝你成功!一、细心选一选 ,看完四个选项再做决定 (本大题共6小题,每小题3分,共18分。
每题只有一个符合题意,请把你认为正确的选项前的字母填写在下面的方框中。
)1、下列图案中既是中心对称图形,又是轴对称图形的是( )2、下列说法正确的是( ).A .形如AB 的式子叫分式 B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分子等于零,分式的值就等于零 3、下列有四种说法:①要了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件。
其中,正确的说法是( )A .①②③B .①②④C .①③④D .②③④4、某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是( ) A .121 B .13 C .125 D .125、下列等式中不成立的是( )A .y x y x y xy x -=-+-222B .y x y x --22=x -y C .yx yxy x xy -=-2 D .xy x y y x x y 22-=- 6、如上图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则AM 的最小值为( ) A .1 B .1.2 C .1.3 D .1.5二、认真填一填,要相信自己的能力(本大题共10小题,每题3分,共30分,请把正确的答案写在横线中。
)7、当x 时,分式242x x -+有意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省南京市江宁区八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)(2017•牡丹江)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)(2015秋•肥城市期末)在以下问题中,不适合用普查的是()A.旅客上飞机前的安全检查B.学校招聘教师对应聘人员的面试C.了解某班学生的课外读书时间D.了解一批灯泡的使用寿命3.(2分)(2015•和平区一模)如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.正方形4.(2分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元5.(2分)(2010•徐州)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万6.(2分)(2017春•南京期中)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=4,DE=2,则平行四边形ABCD的面积最大为()A.12 B.18 C.24 D.32二、填空题(本大题共有10小题,每小题2分,共20分,在答题卡相应位置上)7.(2分)(2017春•南京期中)一个不透明的布袋里装有9个只有颜色不同的球,其中3个红球,2个白球,4个蓝球,从布袋中随机摸出一个球,摸出的球概率最大的是.(填红球、白球、蓝球)8.(2分)(2017春•南京期中)如图是小芹3月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是.9.(2分)(2014•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是.(填序号)10.(2分)(2017春•南京期中)如图,将△ABC绕点C按顺时针方向旋转64°至△A′B′C,使点A′落在BC的延长线上.则∠ACB′=度.11.(2分)(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.12.(2分)(2017春•南京期中)矩形ABCD对角线相交点O,DE∥AC,CE∥BD,若AD=4,CD=3,则四边形ODEC的面积为.13.(2分)(2017春•江宁区期中)如图,在平行四边形ABCD中,点E在AD上,BD平分∠EBC.若平行四边形ABCD的周长为10,则△AEB的周长为.14.(2分)(2014•泰安)七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有户.15.(2分)(2017春•南京期中)如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A=.16.(2分)(2017春•南京期中)如图,在矩形ABCD中,AD=4,CD=3,对角线AC的垂直平分线分别交AD、BC于点E、F,垂足为O,则EF的长为.三、解答题(共9小题,共68分,在答题卡相应位置上)17.(6分)(2017春•南京期中)(1)如图(a)在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号可以为.(2)如图(b),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.18.(8分)(2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.19.(8分)(2017春•南京期中)如图,某校根据学生上学方式的一次抽样调查结果,若该校共有若干名学生.(1)表格中m=,n=,a=,b=.(2)根据抽样调查的结果,将所有学生上学方式的情况绘制成扇形统计图.(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的35%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议.20.(6分)(2017春•江宁区期中)某批足球的质量检测结果如下:(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.21.(8分)(2017春•南京期中)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)表中m=,n=,p=.(2)这次被调查的学生有多少人?并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?22.(8分)(2017春•江宁区期中)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC.(2)当∠DAB=60°时,四边形BECD为菱形吗?请说明理由.23.(8分)(2017春•江宁区期中)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点.(1)求证:CE=DF.(2)连接DE、EF,证明四边形CDEF为矩形.24.(8分)(2017春•江宁区期中)如图,在四边形ABCD中,AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,顺次连接E、G、F、H.(1)求证:四边形EGFH是菱形.(2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由.(3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.(直接写出结果)25.(8分)(2017春•南京期中)探索与发现探索:如图,在直角坐标系中,正方形ABCO的点B坐标(4,4),点A、C分别在y轴、x轴上,对角线AC上一动点E,连接BE,过E作DE⊥BE交OC于点D.(1)证明:BE=DE.小明给出的思路为:过E作y轴的平行线交AB、x轴于点F、H.请完善小明的证明过程.(2)若点D坐标为(3,0),则点E坐标为.若点D坐标为(a,0),则点E坐标为.发现:在直角坐标系中,点B坐标(5,3),点D坐标(3,0),找一点E,使得△BDE为等腰直角三角形,直接写出点E坐标.2016-2017学年江苏省南京市江宁区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)(2017•牡丹江)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)(2015秋•肥城市期末)在以下问题中,不适合用普查的是()A.旅客上飞机前的安全检查B.学校招聘教师对应聘人员的面试C.了解某班学生的课外读书时间D.了解一批灯泡的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、旅客上飞机前的安全检查,是事关重大的调查,适合普查;B、学校招聘教师对应聘人员的面试是事关重大的调查,适合普查;C、了解某班学生的课外读书时间,调查范围小,适合普查;D、了解一批灯泡的使用寿命,是具有破坏性的调查,适合抽样调查,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(2分)(2015•和平区一模)如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.【解答】解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选:A.【点评】本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.4.(2分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(2分)(2010•徐州)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【分析】样本容量是指样本中包含个体的数目,没有单位,根据这个定义即可确定此题的样本容量.【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.【点评】样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量6.(2分)(2017春•南京期中)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=4,DE=2,则平行四边形ABCD的面积最大为()A.12 B.18 C.24 D.32【分析】由在▱ABCD中,∠ABC的平分线交AD于点E,易证得△ABE是等腰三角形,求出AD,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=4,∴AD=AE+DE=6,当平行四边形ABCD是矩形时,面积最大=AB•AD=4×6=24;故选:C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△ABE是等腰三角形是解此题的关键.二、填空题(本大题共有10小题,每小题2分,共20分,在答题卡相应位置上)7.(2分)(2017春•南京期中)一个不透明的布袋里装有9个只有颜色不同的球,其中3个红球,2个白球,4个蓝球,从布袋中随机摸出一个球,摸出的球概率最大的是蓝球.(填红球、白球、蓝球)【分析】根据:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,可得:哪种颜色的球的数量越多,则哪种颜色的球摸出的概率就越大,据此判断即可.【解答】解:∵4>3>2,∴蓝球最多,白球最少,∴摸出的球概率最大的是蓝球.故答案为:蓝球.【点评】此题主要考查了概率公式和应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.8.(2分)(2017春•南京期中)如图是小芹3月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是 1.5小时.【分析】根据算术平均数的概念求解即可.【解答】解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为:=1.5.故答案为1.5小时.【点评】本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.9.(2分)(2014•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:①是随机事件;②是不可能事件;③是随机事件;④是必然事件.故答案是:①③.【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(2分)(2017春•南京期中)如图,将△ABC绕点C按顺时针方向旋转64°至△A′B′C,使点A′落在BC的延长线上.则∠ACB′=52度.【分析】由旋转性质得∠BCB′=∠ACA′=64°,继而可得答案.【解答】解:由旋转性质知,∠BCB′=∠ACA′=64°,∵点A′落在BC的延长线上,∴∠ACB′=180°﹣∠BCB′﹣∠ACA′=52°,故答案为:52.【点评】本题主要考查旋转,掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.11.(2分)(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=12.【分析】根据折线图即可求得a、b的值,从而求得代数式的值.【解答】解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.(2分)(2017春•南京期中)矩形ABCD对角线相交点O,DE∥AC,CE∥BD,若AD=4,CD=3,则四边形ODEC的面积为6.【分析】根据S=S矩形ABCD以及四边形OCED的面积=2S△ODC即可解决问题.△ODC【解答】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,矩形ABCD的面积=4×3=12,∴△OCD的面积=矩形ABCD的面积=3,∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∴四边形ODEC的面积=2△OCD的面积=2×3=6;故答案为:6.【点评】此题考查了矩形的性质、平行四边形的判定与性质;记住矩形的对角线把矩形分成面积相等的4个三角形,属于中考常考题型.13.(2分)(2017春•江宁区期中)如图,在平行四边形ABCD中,点E在AD上,BD平分∠EBC.若平行四边形ABCD的周长为10,则△AEB的周长为5.【分析】证出BE=DE,得出△AEB的周长=AB+AD即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵BD平分∠EBC,∴∠EBD=∠ADB,∴∠EBD=∠ADB,∴BE=DE,∴△AEB的周长=AB+BE+AE=AB+DE+AE=AB+AD,∵▱ABCD的周长为10,∴AB+AD=5,∴△ABE的周长=AB+AD=5;故答案为:5.【点评】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等.平行四边形的对角线互相平分.14.(2分)(2014•泰安)七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有560户.【分析】根据=总数之间的关系求出5<x≤10的频数,再用整体×样本的百分比即可得出答案.【解答】解:根据题意得:=100(户),15<x≤20的频数是0.07×100=7(户),5<x≤10的频数是:100﹣12﹣20﹣7﹣3=58(户),则该小区月均用水量不超过10m3的家庭约有×800=560(户);故答案为:560.【点评】此题考查了用样本估计总体和频数、频率、总数之间的关系,掌握=总数,样本估计整体=整体×样本的百分比是本题的关键.15.(2分)(2017春•南京期中)如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A=110°.【分析】先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,求出∠D=70°,即可得出∠A的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB,AB∥CD,∴∠2=∠3,∠A+∠D=180°,∵BE=BC,CE=CD,∴BE=BC=10,CE=CD=6,∠1=∠2,∠3=∠D,∴∠1=∠2=∠3=∠D,∵∠EBC=40°,∴∠D=∠1=∠3=70°,∴∠A=180°﹣70°=110°;故答案为:110°.【点评】本题考查了等腰三角形的性质及平行四边形的性质,根据题意得出∠1=∠2=∠3=∠D是解答此题的关键.16.(2分)(2017春•南京期中)如图,在矩形ABCD中,AD=4,CD=3,对角线AC的垂直平分线分别交AD、BC于点E、F,垂足为O,则EF的长为.【分析】设AE=x,则ED=4﹣x,利用勾股定理列方程:x2=32+(4﹣x)2,求出x 的值,再利用勾股定理计算OE的长,由全等证明OE=OF,从而得出EF=2OE.【解答】解:连接EC,设AE=x,则ED=4﹣x,∵EF是AC的中垂线,∴EC=AE=x,在Rt△EDC中,x2=32+(4﹣x)2,x=,∴AE=CE=,∵四边形ABCD是矩形,∴∠ADC=90°,在Rt△ADC中,AC=5,∴OC=AO=,在Rt△EOC中,EO===,∵AD∥BC,∴∠DAC=∠ACB,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴OE=OF,∴EF=2OE=2×=,故答案为:.【点评】本题考查了矩形的性质、线段垂直平分线的性质、全等三角形的性质和判定、勾股定理,在矩形中,通常设未知数,利用勾股定理列方程可求得线段的长,并熟练掌握矩形的性质.三、解答题(共9小题,共68分,在答题卡相应位置上)17.(6分)(2017春•南京期中)(1)如图(a)在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号可以为①④.(2)如图(b),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.【分析】(1)直接利用中心对称图形的定义分析得出答案;(2)直接利用中心对称图形的定义得出对应点位置进而得出答案.【解答】解:(1)如图a所示:图中阴影部分构成中心对称图形是①④,故答案为:①④;(2)如图b,△A1B1C1,即为所求.【点评】此题主要考查了利用旋转设计图案,正确把握中心对称图形的性质是解题关键.18.(8分)(2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC 边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.19.(8分)(2017春•南京期中)如图,某校根据学生上学方式的一次抽样调查结果,若该校共有若干名学生.(1)表格中m=280,n=245,a=40%,b=10%.(2)根据抽样调查的结果,将所有学生上学方式的情况绘制成扇形统计图.(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的35%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议.【分析】(1)首先根据乘车的人数和所占的百分比确定总人数,然后确定n的值和m的值,从而求得各自所占的百分比即可;(2)根据每种情况所占的百分比作出扇形统计图即可.(3)利用节能减排角度分析得出答案即可.【解答】解:(1)∵乘车的有105人,占15%,∴调查的总人数为105÷15%=700人,∴n=700×35%=245人,m=700﹣245﹣105﹣70=280人,a=280÷700=40%,b=70÷700=10%,故答案为:280,245,40%,10%;(2)由(1)得扇形统计图为:(3)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).【点评】此题主要考查了扇形图与条形图的综合应用以及抽样调查的随机性,根据扇形图得出各部分所占比例是解题关键.20.(6分)(2017春•江宁区期中)某批足球的质量检测结果如下:(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.【分析】(1)根据频率=频数÷总数计算可得;(2)由表格中数据在坐标系内用点描出来,再用线段依次相连即可得;(3)根据频率估计概率,频率都在0.95左右波动,所以任意抽取的一只足球是合格品的概率估计值是0.95.【解答】解:(1)完成表格如下:(2)如图所示:(3)从这批足球任意抽取的一只足球是合格品的概率估计值0.95,因为从折线统计图中可知,随着实验次数的增大,频率逐渐稳定到常数0.95附近,所以从这批足球任意抽取的一只足球是合格品的概率估计值0.95.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.21.(8分)(2017春•南京期中)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)表中m=36,n=96,p=0.25.(2)这次被调查的学生有多少人?并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?【分析】(1)根据题意可以求得本次调查的学生数,从而可以求得m、n、p的值;(2)根据统计图中的数据可以求得本次调查的学生数并把统计图补充完整;(3)根据统计图表格中的数据可以估计该校全体学生中选择B选项的有多少人.【解答】解:(1)由统计图可得,本次抽查的学生有:48÷0.2=240(人),m=240×0.15=36,n=240×0.4=96,p=60÷240=0.25,故答案为:36,96,0.25;(2)由统计图可得,本次抽查的学生有:48÷0.2=240(人),由(1)知,m=36,n=96,补全的条形统计图如右图所示;(3)由题意可得,该校全体学生中选择B选项的有:1600×0.25=400(人),即该校全体学生中选择B选项的有400人.【点评】本题考查条形统计图、用样本估计总体、频数分布表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)(2017春•江宁区期中)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC.(2)当∠DAB=60°时,四边形BECD为菱形吗?请说明理由.【分析】(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;【解答】(1)证明:四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD 是平行四边形,∴BD=EC;(2)解:结论:四边形BECD是菱形.理由:∵四边形ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ADB,△DCB是等边三角形,∴DC=DB,∵四边形BECD是平行四边形,∴四边形BECD是菱形.【点评】本题考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.23.(8分)(2017春•江宁区期中)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点.(1)求证:CE=DF.(2)连接DE、EF,证明四边形CDEF为矩形.【分析】(1)利用三角形中位线定理,直角三角形斜边中线的性质即可证明.(2)只要证明四边形CDEF是平行四边形即可.【解答】(1)证明:∵AD=DC,CF=FB,∴DF=AB,∵△ACB是直角三角形,AE=EB,∴CE=AB,∴CE=DF.(2)证明:连接DE、EF,如图所示.∵D、E、F分别是AC、AB、BC的中点,∴DE、EF为△ABC的中位线,∴DE∥BC,EF∥AC,∴四边形CDEF为平行四边形.∵∠ACB=90°,∴平行四边形CDEF为矩形.【点评】本题考查三角形中位线定理、直角三角形斜边中线的性质、平行四边形的判定.矩形的判定等知识,解题的关键是熟练掌握三角形中位线定理,直角三角形斜边中线的性质,掌握矩形的判定方法,属于中考常考题型.24.(8分)(2017春•江宁区期中)如图,在四边形ABCD中,AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,顺次连接E、G、F、H.(1)求证:四边形EGFH是菱形.(2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由.(3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.(直接写出结果)【分析】(1)根据三角形中位线的性质得到EG=AB,EH=CD,HF=AB,EG ∥AB,HF∥AB,根据菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠ABC=∠HFC,∠DCB=∠GFB,根据平角的定义得到∠GFH=90°,于是得到结论;(3)由平行线的性质得到∠ABC=∠HFC,∠DCB=∠GFB,根据平角的定义即可得到结论.【解答】解:(1)∵E、F、G、H分别为AD、BC、BD、AC的中点,∴EG=AB,EH=CD,HF=AB,EG∥AB,HF∥AB,∴四边形EGFH是平行四边形,EG=EH,∴四边形EGFH是菱形;(2)当∠ABC+∠DCB=90°时,四边形EGFH为正方形,理由:∵GF∥CD,HF∥AB,∴∠ABC=∠HFC,∠DCB=∠GFB,∵∠ABC+∠DCB=90°,∴∠GFH=90°,∴菱形EGFH是正方形;(3)∠GFH+∠ABC+∠DCB=180°,理由:∵GF∥CD,HF∥AB,∴∠ABC=∠HFC,∠DCB=∠GFB,∵∠BFG+∠GFH+∠HFC=180°,∴∠GFH+∠ABC+∠DCB=180°.。