中考的利润问题典型题目
初三利润练习题
初三利润练习题一、选择题:1.某公司去年的销售额为1000万元,成本总额为900万元,求该公司的利润率是多少?A. 10%B. 11%C. 12%D. 13%2.某商店购进一批商品,购进价为800元,若每件商品标价1200元出售,则该商店的利润率是多少?A. 30%B. 40%C. 50%D. 60%3.某工厂生产一种产品,每个单位的成本为5元,销售价为10元,该产品的利润率是多少?A. 25%B. 50%C. 75%4.某公司去年的销售额为400万元,净利润为40万元,该公司的利润率是多少?A. 8%B. 10%C. 12%D. 14%5.某商店购进一批商品,购进价为2000元,若每件商品卖出后的利润是400元,则该商店的利润率是多少?A. 15%B. 17%C. 20%D. 25%二、计算题:1.某公司去年的销售额为800万元,成本总额为600万元,求该公司的利润率是多少?解:利润率 = (销售额 - 成本总额) / 销售额 * 100%= (800 - 600) / 800 * 100%= 200 / 800 * 100%2.某商店购进一批商品,购进价为500元,若每件商品标价750元出售,则该商店的利润率是多少?解:利润率 = (售价 - 购进价) / 购进价 * 100%= (750 - 500) / 500 * 100%= 250 / 500 * 100%= 50%3.某工厂生产一种产品,每个单位的成本为6元,销售价为12元,该产品的利润率是多少?解:利润率 = (销售价 - 成本) / 成本 * 100%= (12 - 6) / 6 * 100%= 6 / 6 * 100%= 100%4.某公司去年的销售额为600万元,净利润为60万元,该公司的利润率是多少?解:利润率 = 净利润 / 销售额 * 100%= 60 / 600 * 100%= 10%5.某商店购进一批商品,购进价为3000元,若每件商品卖出后的利润是600元,则该商店的利润率是多少?解:利润率 = 利润 / 购进价 * 100%= 600 / 3000 * 100%= 20%总结:在计算利润率时,可以使用利润率公式:利润率 = (利润 / 成本或销售额) * 100%。
中考数学利润问题专题训练
中考数学利润问题专题训练
1、某商品的进价为每件50元,售价为每件60元,每天可以卖出18件,若每件商品的售价上涨1元,则每天少卖2件,当每件商品的售价为多少元时,每天的销售利润为1500元?
2、某商品的价格为每件60元,每年销售1000件,现决定降价销售,调查发现,若每件降价1元,则每年多卖100件,如果每年销售不少于800件,那么每件商品的售价应不超过多少元?
3、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场每天要盈利1200元,每件衬衫应降价多少元?
4、某商品每件成本72元,原来按成本定价出售,每天可出售100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量减少多少件?
5、某书店一本数学辞典卖40元,可获利25%,求这本辞典的进价?。
2023年中考数学重难点专题练习-一次函数最大利润问题
2023年中考数学重难点专题练习-一次函数最大利润问题一、解答题1.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?2.2022年北京承办了第24届冬季奥林匹克运动会,某商店为了抓住冬奥会的商机,决定购买A ,B 两种冬奥会纪念品,若购进A 种纪念品20件,B 种纪念品10件,需要2000元.若购进A 种纪念品10件,B 种纪念品8件,需要1150元.(1)求购进A ,B 两种纪念品每件各需多少元?(2)若该商店购进这两种纪念品共1000件,总费用不超过60000元,销售每件A 种纪念品可获利润30元,每件B 种纪念品可获利润20元.设购进A 种纪念品a 件,请求出总利润最高时的进货方案.3.2022年翻开序章,冬奥集结号已吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受人民喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.4.某商场销售成本为每件40 元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10 件.设销售单价为x (50x ≥)元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得一周内净利润(净利润=毛利润经营费用)最大,超市对该商品定价为______元,最大毛利润为______元.5.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m 元()1060m ≤≤,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m 的取值范围.6.服装店经销甲种品牌的服装,受市场影响,现在每件降价50元销售,如果卖相同件数的服装,原价的销售额为9000元,现价销售额为8000元.(1)销售甲种品牌服装现价每件为多少元?服装店用不多于6600元且不少于6400元的资金购进这两种品牌的服装共20件.①问有几种进货方案?①乙种品牌的服装每件售价为370元,服装店决定每售出1件乙种品牌服装,返还顾客a元,要使①所有方案获利相同,求a的值.7.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?8.某商场分两次购进A,B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示购进数量/件购进所需费用/元次数A B第一次30403800第二次40303200(1)求A,B两种商品每件的进价分别是多少元;(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A,B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?得最大利润,并求出最大利润是多少?10.二十大报告中指出,要深入推进能源革命,加强煤炭清洁高效利用,加快规划建设新型能源体系,积极参与应对气候变化全球治理.为保护环境,某市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车2辆,B型公交车3辆,共需750万元;若购买A型公交车3辆,B型公交车4辆,共需1040万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1550万元,且确保这10辆公交车在该线路的年均载客总和不少于720万人次,则该公司有几种购车方案?哪种购车方案总费用最少?最少总费用是多少万元?11.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和4瓶B型消毒液共需71元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.12.疫情当前,口罩非常紧俏,某药店进货N95口罩和普通医疗口罩两种口罩共8000个惠民销售,已知15个普通医疗口罩与4个N95口罩的价格相同,3个N95口罩比5个普通医疗口罩贵2.5元.(1)求普通医疗口罩和N95口罩的单价分别是多少?(2)设进货N95口罩a个,两种型号口罩的销售总价为m元.①若两种型号口罩的销售总价不低于5400元,则至少进货N95口罩多少个?①请写出m与a之间的函数关系式;若根据实际需求,进货的普通医疗口罩不少于5000个,则该药店这一批口罩的销售总价最多是多少元?13.某体育用品店计划花7000元购进篮球和足球,已知足球比篮球进价贵20元.若花3000元购买篮球,4000元购买足球,则可以够买到相同数量的篮球和足球.(1)求篮球和足球的进价;(2)篮球的销售单价为100元,足球的销售单价为120元,求该商店将购进的篮球和足球全部售出后能获取的利润w14.“冰墩墩”和“雪容融”分别是北京2022年冬季奥运会和冬残奥运会的吉祥物.该吉祥物深受全世界人民的喜爱,某生产厂家经授权每天生产两种吉祥物挂件共600件,且当天全部售出,原料成本、销售单价及工人生产提成如下表所示:原料成本(元/件)生产提成(元/件)销售单价(元/件)“冰墩墩”36650“雪容融”28741设该厂每天制作“冰墩墩”挂件x件,每天获得的利润为y元.(1)求出y与x之间的函数关系式;(2)若该厂每天投入总成本不超过23800元,应怎样安排“冰墩墩”和“雪容融”制作量,可使该厂一天所获得的利润最大,请求出最大利润和此时两个挂件的制作量.15.某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50本精装练习本销售总额为1100元.(1)求普通练习本和精装练习本的销售单价分别是多少?(2)该商店计划再次购进500本练习本,普通练习本的数量不低于精装练习本数量的3倍,已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本x个,获得的利润为W元;①求W关于x的函数关系式①该商店应如何进货才能使销售总利润最大?并求出最大利润.16.大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次,在1~12月份中,该公司前x个月累计获得的总利闻y(万元)与销售时间x(月)之间满足二次函数关系.(1)求y与x函数关系式;(2)求9月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司所获得利润最大?最大利润为多少?参考答案:1.(1)30(2)2100元(3)9天2.(1)购进A 种纪念品每件需要75元,B 种纪念品每件需要50元(2)当购进A 种纪念品400件,B 种纪念品600件时,获得的利润最大,最大利润是24000元3.(1)“冰墩墩”销售单价为120元,“雪容融”的销售单价为80元;(2)“冰墩墩”购进200个时该旗舰店当月销售利润最大,最大利润为11600元.4.(1)100010(50100)y x x -≤≤=(2)()210709000W x =--+,当5070≤≤x 时,毛利润w 随x 的增大而增大(3)75,50005.(1)5012000y x =-+;(2)这一周该商场的最大利润为540000元,售价为120元;(3)2960m <≤6.(1)400元(2)①5种;①207.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.8.(1)A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12000元.9.(1)进价为40元,乙商品的进价为80元(2)有三种进货方案:方案1,甲种商品30件,乙商品70件;方案2,甲种商品31件,乙商品69件;方案3,甲种商品32件,乙商品68件(3)30m =时,W 最大,此时4700W =10.(1)购买A 型公交车每辆需120万元,购买B 型公交车每辆需170万元(2)该公司有五种购车方案,当采购A 型7辆,采购B 型3辆时,费用最低,最低费用为1350万元11.(1)A 型消毒液的单价为7元,B 型消毒液的单价为9元(2)最省钱的购买方案是购买A 型消毒液67瓶,购买B 型消毒液23瓶,最低费用为676元12.(1)普通医疗口罩每个0.4元,N95口罩每个1.5元(2)①2000个;①6500元13.(1)篮球进价为60元/只,足球的进价为80元/只(2)当114m =时,利润w 最大,对应的方案是购买篮球114只,足球2只14.(1)()36000600y x x =+<<(2)当每天生产“冰墩墩”400件,“雪容融”200件时,可使该厂一天所获得的利润最大,最大为4400元15.(1)普通练习本:3元;精装练习本:10元(2)21500w x =-+①;①普通练习本进375本,精装练习本进125本,利润最大,最大为750元16.(1)26y x x =-(2)11万元(3)该公司12月所获得利润最大,最大利润为17万元。
九年级数学 中考22题利润问题
九年级数学中考22题利润问题1、某软件商店经销一种销售成本为每盘40元的益智游戏软件,根据市场分析,若按每盘50元销售,一个月能售出500盘,销售单价每涨1元,月销售量就减少10盘。
(1)当销售单价定为每盘55元时,计算月销售量和月销售利润。
(2)商店想在每盘利润不低于75%的情况下,使得月销售利润达到8000元,销售单价应定为多少?2、种植能手小李的试验田可种植A种农作物或B种农作物(A、B两种农作物不能同时种植),原有的种植情况如下表。
通过参加农业科技培训,小李提高了种植技术。
现准备在原有的基础上增种农作物,以提高总产量,但根据科学种植的经验,每增种1课A种或B种农作物,都会导致单棵农作物平均产量减少0.2kg,而且,每种农作物的增种量都不能超过原有数量的80%,设A种农作物增种m棵;B种农作物增棵后,单棵平均产量为kg,B种农作物增种n棵后,单棵平均产量为kg;(2)求y A与m之间的函数关系式及y B与n之间的函数关系式;(3)求提高种植技术后小李增种何种农作物可获得最大总产量?最大总产量是多少?3、老王在本市某小区有一处80m2的楼房对外出租。
当每月的租金为500元时,可租出去一年。
经验表明,当每月的租金每增加50元时,一年中未租出去的时间将会增加一个月。
不论房子是否租出,老王每月需支付物业费21元。
(1)当每月的租金为600元时,老王的楼房一年收益是多少元?(收益=租金-费用)(2)当每月的租金定为多少元时,老王一年的收益最大?最大收益是多少元?4、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价是8元/千克。
下面是他们在活动结束后的对话。
小丽:如果以10元/千克的价格销售,那么每天可售出300千克。
小强:如果以13元/千克的价格销售,那么每天可获取利润750元。
小红:通过调查验证,我发现每天的销售量y千克与销售单价x元之间存在一次函数关系。
中考利润问题典型题目
中考利润问题典型题目1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且x=65时,y=55;x=75时,y=45.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+a b ac 442-的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
2023年中考数学高频考点突破:一次函数最大利润问题
2023年中考数学高频考点突破:一次函数最大利润问题1.体育中考对球类需求很大,某商店用1600元购进20个同种型号篮球和10个同种型号排球,每一个篮球的进价(1)若一部分龙虾运往省城批发,其余本地销售,请写出销售22吨龙虾所获利润y(元)与运往省城批发零售商的龙虾量x(吨)之间的函数表达式;(2)怎样安排这22吨龙虾的销售渠道,才能使所获利润最大?并求出最大利润.3.某校计划租用甲、乙两种客车送170名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?(2)设在甲商场实际购物金额为y甲元,在乙商场实际购物金额为y乙元,分别写出y甲,y乙关于x的函数解析式;(3)根据题意填空:①若在甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为______元;①若在同一商场购物,商品原价购物金额累计为800元,则在甲、乙两家商场中的_____商场实际购物花费金额少;①若在同一商场实际购物金额为400元,则在甲、乙两家商场中的______商场商品原价购物累计金额多13.某超市准备购进A、B两种商品,进3件A,4件B需要270元;进5件A,2件B需要310元;该超市将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.14.某土特产商店销售A,B两种铁棍山药.销售1件A种铁棍山药和2件B种铁棍山药的销售额为280元,销售2件A种铁棍山药和3件B种铁棍山药的销售额为460元.据了解,A、B两种铁棍山药的进价分别是40元/件和70元/件.(1)求每件A种铁棍山药和B种铁棍山药的销售价格;(2)商店计划购进A、B两种铁棍山药共150件,厂家规定购进A种铁棍山药不多于B种铁棍山药数量的一半,设购进A种铁棍山药a件,这150件铁棍山药的销售总利润为w元,求该商店购进A,B两种铁棍山药各多少件,才能使销售利润最大?(3)厂家为了给买家优惠让利,特推出以下两种优惠方案:方案一:在购买A种铁棍山药超过20件时,超过的部分按八折优惠,B种铁棍山药不享受优惠;方案二:两种铁棍山药均按九折销售.在(2)中保持销售总利润最大的情况下,商店选择哪种进货方案更划算?若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润(1)求y关于x的函数表达式;(2)根据物价部门的规定,商品的利润率不能超过100%,该微商应该如何定价,才能使获得的利润最大,最大利润是多少?参考答案:1.(1)篮球进价为60元,排球进价为40元;(2)篮球购进20只,排球购进40只时可获750(120)275(2140)x x 2000x +40000;目的月平均利润之和最大.12.(1)240,400,410,550.(2)0.8y x =甲(0)x >.当0200x <≤时,y x =乙;当200x >时,0.760y x =+乙.(3)①600;①乙;①甲.13.(1)A 种商品和B 种商品的进价分别是50元/件,30元/件;(2)5种;14.(1)A 种铁棍山药的销售价格为80元/件,B 种铁棍山药的销售价格为100元/件;(2)该商店购进A 种铁棍山药50件,B 种铁棍山药100件,才能使利润最大;(3)在(2)中保持销售总利润最大的情况下,商店选择方案二进货更划算.15.工厂有三种生产方案:①生产A 种产品17件,生产B 种产品33件;①生产A 种产品18件,生产B 种产品32件;①生产A 种产品19件,生产B 种产品31件.方案①获利润最大,最大利润是16.6万元.16.(1)A 图书的标价为27元,B 图书的标价为18元;(2)A 图书购进50本,B 图书购进150本时,利润最大17.(1)y =﹣5x +400;(2)当x =40时,获得的利润最大,最大利润是4000元.。
中考利润问题典型题目(20200311120819)
中考利润问题典型题目1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x。
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y kx b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y kx b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为y件,请写出y与x的函数关系式.(2)设平均每天获利为Q元,请写出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+abac 442的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元) 取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出) (1) 求y 与x 的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
初三数学利润练习题
初三数学利润练习题
1. 某商店购进一批商品,进价为每件100元,售价为每件150元。
如果该商店售出了50件商品,求该商店的利润是多少元?
2. 某工厂生产一种产品,每件产品的生产成本为200元,销售价格为300元。
如果工厂卖出了100件产品,计算工厂的总利润。
3. 一家服装店购进一批衣服,每件衣服的进价是80元,售价是120元。
如果该店卖出了60件衣服,求该店的总利润。
4. 某电子产品的进价为500元,售价为800元。
如果该产品卖出了20件,计算总利润。
5. 一家书店购进一批图书,每本书的进价为15元,售价为25元。
如果书店卖出了200本书,求书店的利润总额。
6. 某玩具厂生产一批玩具,每件玩具的生产成本为30元,销售价格为50元。
如果该厂卖出了150件玩具,计算该厂的总利润。
7. 一家超市购进一批水果,每箱水果的进价为40元,售价为60元。
如果该超市卖出了80箱水果,求该超市的利润总额。
8. 某公司生产一批零件,每件零件的生产成本为10元,销售价格为20元。
如果该公司卖出了500件零件,计算该公司的总利润。
9. 一家文具店购进一批文具,每件文具的进价为5元,售价为8元。
如果该店卖出了300件文具,求该店的总利润。
10. 某手机店购进一批手机,每部手机的进价为2000元,售价为3000元。
如果该店卖出了50部手机,计算该店的总利润。
初三数学利润问题
专题一利润问题1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55,x=75时,y=45,(1)求一次函数y=kx+b的表达式2)若改商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3)若该商场获得利润不低于500元,试确定销售单价x的范围2. 某商店将进价为8元的商品按每件10元售出,每天可销售200件,现在采取提高商品售价减少售价量的方法增加利润这种商品每件的销售价每提高一元其销售量就减少20件,设售价提高x元(1)用含x的代数式表示提价后的销售量(2)提价后的利润设为w 试用含x的代数式表示w=?(3)若物价部门规定此种商品的销售价不能超过进价的百分之七十五,那么应将每天的售价定为多少元时,才能使每天利润为640元?3.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,没每件盈利40元,为了迎接六一,商场决定采取适当降价,扩大销售量,增加盈利,尽尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天可多售出8件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?4. 某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?。
初三利润计算练习题
初三利润计算练习题一、选择题1. 小明购买了一批商品,进价为2000元,他以售价3000元的价格卖出了全部商品,他的利润是多少?A. 1000元B. 1500元C. 2000元D. 3000元2. 小红在农贸市场上买来了100斤番茄,进价为每斤5元,她以每斤10元的价格卖了出去,她的利润是多少?A. 500元B. 1000元C. 1500元D. 2000元3. 小明买了一辆自行车,进价为800元,他以900元的价格卖给了小刚,小明的利润率是多少?A. 11.1%B. 12.5%C. 20%D. 25%4. 某公司购买了100件服装,总进价为3000元,以每件40元的价格卖出,公司的利润率是多少?A. 10%B. 12%C. 14%D. 16%5. 一家餐馆购买了1000斤大米,进价共计2000元,餐馆以每斤3元的价格卖出,餐馆的利润率是多少?A. 10%B. 20%C. 30%D. 40%二、计算题1. 小华购买了一批商品,进价为3500元,他以售价5000元的价格卖出了全部商品,他的利润是多少?2. 小明在市场上买了10只苹果,进价为每只2元,他以每只4元的价格卖了出去,他的利润是多少?3. 小红购买了一盒巧克力,进价为15元,她以每盒25元的价格卖出了,她的利润是多少?4. 某公司购买了500件商品,总进价为15000元,以每件30元的价格卖出,公司的利润是多少?5. 一家超市购买了1000斤西瓜,进价共计5000元,超市以每斤8元的价格卖出,超市的利润是多少?三、应用题1. 爸爸在农贸市场上购买了80斤土豆,进价为每斤4元,他以每斤6元的价格卖给了邻居,问爸爸的利润是多少?2. 小明的妈妈开了一家餐馆,小明帮妈妈算一下,如果他们购买1000斤鸡肉,总进价为6000元,以每斤12元的价格出售,他们的利润是多少?3. 某公司购买了100件电视,总进价为20000元,以每件250元的价格卖出,公司的利润率是多少?4. 一家商场购买了1000条裤子,进价共计90000元,商场以每条120元的价格卖出,商场的利润率是多少?5. 一位商人购买了一批商品,总进价为150000元,他以总售价180000元的价格卖出了全部商品,他的利润率是多少?四、综合题某公司购买了200只电子产品,总进价为30000元,以每只200元的价格卖出,公司的利润率为50%。
2024 河北数学中考备考重难专题:函数的实际应用题利润问题(课后练)
2024河北数学中考备考重难专题:函数的实际应用题利润问题考情分析年份题号题型分值函数类型实际背景解题关键点设问形式202226解答题12二次函数按月需求量生产(1)根据数量关系及表格求关系式;根据关系式判断函数值是否成立;(2)无盈利不亏损,说明与x无交点,转化为一元二次方程无实根(3)月份与利润的关系式转化为比较第m月和第(m+1)月利润差问题(1)求y与x的关系式,说明利润能否是12(2)求常数值k,判断是否存在月份无盈利不亏损(3)求利润相差最大的连续两个月20232410一次函数玩具降价促销(1)根据表格求关系式;(2)一次函数根据自变量求出因变量,作差(3)理解平均单价y=nn个单价(1)求y与x的关系式,确定自变量取值范围(2)降价后购买所省费用(3)猜想推导价格调整前后平均单价关系式例(2022河北黑白卷)某商场计划购进A,B两种型号商品共50件,其进价和售价如下表.已知用800元采购A型商品件数与用1000元采购B型商品件数相等.型号进价(元)售价(元)A型a-1060B型a75(1)求A型、B型商品每件的进价分别为多少元?(2)若A型商品的件数不少于B型商品的件数,且不多于30件.设购进A型商品x件,售完所有商品商场可获得的最大利润为w元.①按计划售完这些商品,商场可获得的最大利润是多少元?②实际进货时,生产厂家对A型商品的出厂价每件下调m元(3<m<8)出售,若商场保持同种商品的售价不变,求该商场获得最大利润的进货方案.练习(2022河北预测卷)现有一个小果园种植甲、乙两种果树,种植x棵甲果树,每年所获得的利润W1(元)与x之间的函数关系式为W1=-8x2+mx-60,且当x=20时,W1=6340.已知乙果树每年成本由人工成本、物资成本和其他成本三部分组成,种植z棵乙果树,人工成本与z的平方成正比,物资成本与z成正比,其他成本不变为80元,若乙果树每棵每年可收入800元,种植乙果树每年所获得的利润为W2(元),经过统计获得如下数据:z(棵)1040W2(元)49207920(1)求W1与x之间的函数关系式,并求W1的最大值;(2)求W2与z之间的函数关系式;(3)若这个小果园计划种植甲果树的数量是乙果树数量的一半,求当种植多少棵甲果树时,两种果树所获得的年总利润最大?最大是多少?练习1某商场销售甲、乙两款毛绒玩具,已知甲款毛绒玩具的售价为80元,乙款玩具新品上市,正在进行促销活动,其销售量x(x≥1)(个)与销售额y(元)之间满足一次函数关系,关于销售量,销售额的几组对应值如下表:销售量/个357销售额/元312504696(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)若商场计划下一周售出两种玩具的销售额不低于3000元,且清空30个甲玩具的库存,则下周乙玩具的销售量最少为多少个?练习2《感动中国2021年度人物》中国航天追梦人:赤心贯苍穹,感动人心,激发了更多人对航天事业的热爱和向往,为满足航天爱好者的需求,某电商平台销售神舟十三号飞船模型,进价为每个80元,物价部门规定其销售利润不高于进价的60%.经试销发现,当这款飞船模型销售单价为100元时,每天卖出150个,如果调整销售单价,每涨价2元,每天少卖5个,现该电商平台决定提价销售,设销售单价为x元,每天的销售量为y个.(1)请直接写出每天的销售量y(个)与销售单价x(元)之间的函数关系式;(2)当销售单价是多少元时,该电商平台每天销售飞船模型的利润是3750元?(3)当销售单价是多少元时,该电商平台每天销售飞船模型的利润最大,最大利润是多少元?答案典例精讲例解:(1)1000=800-10,解得a=50,经检验,a=50为原分式方程的解,且符合实际,∴a-10=40,答:A型、B型商品的每件进价分别为40元,50元;(2)①根据题意得≥50-≤30,∴x的取值范围为25≤x≤30,且x为整数,∴w=(60-40)x+(75-50)(50-x)=-5x+1250(25≤x≤30),∵-5<0,∴w随x的增大而减小,∴当x=25时,w的值最大,最大值为-5×25+1250=1125元;②根据题意可得:w=(60-40+m)x+(75-50)(50-x)=(m-5)x+1250,由于3<m<8,故可分以下情况讨论:Ⅰ.当3<m<5时,m-5<0,w随x的增大而减小,此时进货方案为A型25件、B型25件时利润最大;Ⅱ.当m=5时,w=1250,此时A,B型的进货数量只要是满足条件的整数即可;Ⅲ.当5<m<8时,m-5>0,w随x的增大而增大,此时进货方案为A型30件,B型20件时利润最大.课堂练兵练习解:(1)∵当x=20时,W1=6340,W1=-8x2+mx-60,∴6340=-8×202+m×20-60,∴m=480,∴W1=-8x2+480x-60=-8(x-30)2+7140,∵-8<0,∴当x=30时,W1有最大值,最大值为7140元;(2)由题意可得,W2=800z-(az2+bz+80)(a≠0,b≠0),∵当z=10时,W2=4920;当z=40时,W2=7920,∴4920=800×10-(×102+×10+80)7920=800×40-(×402+×40+80),解得=10=200,∴W2=800z-(10z2+200z+80)=-10z2+600z-80;(3)设年总利润为W元,由题意得W=W1+W2=-8x2+480x-60-10z2+600z-80,当z=2x时,W=-8x2+480x-60-40x2+1200x-80=-48x2+1680x-140=-48(x-352)2+14560∵-48<0,x为整数,且抛物线的对称轴为直线x=352=17.5,∴当x=17或18时,W有最大值,最大值为14548,∴当种植17或18棵甲果树时,两种果树所获得的年总利润最大,最大是14548元.课后小练练习1解:(1)设乙款毛绒玩具的销售量x(个)与销售额y(元)之间的函数关系式为y=kx+b(k≠0),将点(3,312),(5,504)代入关系式得312=3+,504=5+,解得=96,=24,∴乙款毛绒玩具的销售量与销售额之间的函数关系式为y=96x+24;(2)设下一周销售这两款玩具的销售额为w元,下周售出乙款玩具a个,由题意知w=96a+24+80×30=96a+2424,由题意得96a+2424≥3000,解得a≥6,∵a为整数,∴a最小为6.答:下周乙款玩具的销售量最少为6个.练习2解:(1)根据题意,得y =150-x -1002×5=-52x +400(x ≤128).∴y =-52x +400(x ≤128)(2)根据题意,得(x -80)(-52x +400)=3750,整理,得x 2-240x +14300=0,解得x 1=110,x 2=130,∵销售利润不高于进价的60%,∴x ≤128,∴x =110.答:当销售单价是110元时,该电商平台每天销售飞船模型的利润是3750元;(3)设每天销售飞船模型的利润为w 元,根据题意,得w =(x -80)(-52x +400)=-52x 2+600x -32000=-52(x -120)2+4000.∵-52<0,∴抛物线开口向下.又∵x ≤128,∴当x =120时,w 有最大值,w 最大=4000.答:当销售单价是120元时,该电商平台每天销售飞船模型的利润最大,最大利润是4000元.。
2023年中考数学专题复习:二次函数应用之利润问题(提优篇)
2023中考数学专题复习:二次函数应用之利润问题(提优篇)1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是( )A.销售单价降低15元时,每天获得的利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天获得的利润为1200元D.若每天获得的利润为1050元,则销售单价一定降低了5元2.一塑料玩具生产公司将每件成本为70元的某种玩具按每件100元批发出售,平均一天可售出100件.后来经过市场调查,发现这种玩具单价每降低1元,其日销量可平均增加10件.为了减少空气污染,国家要求限制塑料玩具生产,规定该公司的最大生产限额为每天180件.若想获得最大利润,则批发价应降低( )A.15元B.10元C.8元D.5元3.某旅行社有100张床位,每床每晚收费100元时,可全部租出,每床每晚收费提高20元,则有10张床位未租出;若每床每晚收费再提高20元,则再减少10张床位未租出;以每次提高20元的这种方法变化下去,为了获利最大,每床每晚收费应提高( )A.40元或60元B.40元C.60元D.80元4.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.则y与x之间的函数关系式为( ),若设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为( )元时,超市销售该品牌洗手液每天销售利润最大,最大利润是( )元.A.y=−5x+150,15,375B.y=5x+150,15,625C.y=−5x+150,20,500D.y=5x−150,20,5005.某商品的进货单价为90元,按100元一个出售,能售出500个,如果这种商品每涨价1元,其销售量就减少10个.为了获得最大利润,其单价应定为( )A.130元 B.120元C.110元D.100元6.某快餐店销售A,B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份,该店为了增加利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.7.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,当售价超过10元时,每瓶售价每增加0.5元,日均销售量减少40瓶.当每瓶售价为11元时,日均销售量为瓶.8.某旅社有客房144间,每间房的日租金为200元时,每天都客满,经市场调查发现,如果每间房的日租金每增加10元时,则每天客房出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到元时,客房的日租金总收入最高.9.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30−x)件,若使利润最大,则每件商品的售价应为元.10.某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有1个房间空闲.如果游客居住房间,宾馆需要对每个房间每天支出40元的各种费用.当每个房间每天的定价为元时,宾馆利润最大,最大利润是元.11.小米利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小米所有玩具的进价均为2元/件,在销售过程中发现:每天玩具销售量y(件)与销售价格x (元/件)的关系如图所示,其中AB段为反比例函数图象的一部分,BC段为一次函数图象的一部分,设小米销售这种玩具的日利润为w元.(1) 根据图象,求出y与x之间的函数解析式;(2) 求出每天销售这种玩具的利润w(元)与x(元/件)之间的函数解析式,并求每天利润的最大值;(3) 若小米某天将价格定为超过4元(x>4),那么要使得小米在该天的销售利润不低于54元,求该天玩具销售价格的取值范围.12.受新冠疫情影响,3月1日起,“君乐买菜”网络公司某种蔬菜的销售价格开始上涨.如图1,前四周该蔬菜每周的平均销售价格y(元/kg)与周次x(x是正整数,1≤x<5)的关系x+a刻画;进入第5周后,由于外地蔬菜的上市,该蔬菜每周的平均销可近似用函数y=25售价格y(元/kg)从第5周的6元/kg下降至第6周的5.6元/kg,y与周次x(5≤x≤7)的x2+bx+5刻画.关系可近似用函数y=−110(1) 求a,b的值.(2) 若前五周该蔬菜的销售量m(kg)与每周的平均销售价格y(元/kg)之间的关系可近似地用如图2所示的函数图象刻画,第6周的销售量与第5周相同:①求m与y的函数表达式;②在前六周中,哪一周的销售额w(元)最大?最大销售额是多少?(3) 若该蔬菜第7周的销售量是100kg,由于受降雨的影响,此种蔬菜第8周的可销售量将比第7周减少a%(a>0).为此,公司又紧急从外地调运了5吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜第8周的销售价格比第7周仅上涨0.8a%.若在这一举措下,此种蔬菜在第8周的总销售额与第7周刚好持平,请通过计算估算出a的整数值.13.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1) 当10≤x<60时,求y关于x的函数表达式;(2) 九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?14.某商品的进价是每件40元,原售价每件60元.进行不同程度的涨价后,统计了商品调价当天的售价和利润情况,以下是部分数据:售价(元/件)60616263⋯利润(元)6000609061606210⋯(1) 当售价为每件60元时,当天售出件.(2) 若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不低于6200元?15.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1) 求日销售量y(件)与销售价x(元/件)之间的函数关系式.(2) 当销售价为多少元时,该店的日销售利润最大.(3) 该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.16.某农作物的生长率p与温度t(∘C)有如下关系:如图(1),当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1) 求ℎ的值.(2) 按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m/天051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3) 天气寒冷,大棚加温可改变农作物生长速度在(2)的条件下,原计划大棚恒温20∘C时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(∘C)之间的关系如图(2).问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).17.国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1) 请直接写出y关于x之间的关系式;(2) 设该商铺销售这批商品获得的总利润(总利润=总销售额−总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?(3) 若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是.(可借助二次函数的图象直接写出答案)18.知识背景:当a>0且x>0时,因为(√x−√a√x )2≥0,所以x−2√a+ax≥0,从而x+ax≥2√a(当x=√a时取等号).设函数y=x+ax(a>0,x>0),由上述结论可知,当x=√a时,该函数有最小值为2√a.应用举例:已知函数y1=x(x>0)与函数y2=4x(x>0),则当x=√4=2时,y1+y2=x+ 4x有最小值为2√4=4.解决问题:(1) 已知函数y1=x+3(x>−3)与函数y2=(x+3)2+9(x>−3),当x取何值时,y2y1有最小值?最小值是多少?(2) 已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?19.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1) 直接写出:购买这种产品件时,销售单价恰好为2600元;(2) 设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3) 该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)20.2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=−2x2+80x−200(6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.(1) 直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;(2) 求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;(3) 物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为.21.某商场要经营一种文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1) 当每天的利润为1440元时,为了让利给顾客,每件文具的销售价格应定为多少元?(2) 设每天的销售利润为W元,每件文具的销售价格为x元,如果要求每天的销售量不少于10件,且每件文具的利润至少为25元.①求W与x的函数关系式,并写出自变量的取值范围.②问当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1) 求商场经营该商品原来一天可获利润元.(2) 设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?23.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.设每天的总利润为w元.(1) 根据图象求出y与x之间函数关系式.(2) 请写出w与x之间的函数关系式,并写出自变量x的取值范围.(3) 当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?24.湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A,B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1) 求该店平均每天销售这两种湘莲礼盒各多少盒.(2) 小亮调查发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大?最大是多少元?。
初三利润计算的练习题
初三利润计算的练习题一、题目描述:小明是一名初三学生,在学校的经济管理课上学习了利润计算的知识。
为了更好地巩固所学内容,他练习了以下几个利润计算的题目。
请你帮助小明解答这些问题。
二、题目内容:1. 小明的爸爸开了一家小型超市,他在生意上有些困惑。
小明知道成本、售价和利润之间的关系,请根据以下信息计算利润。
成本:800元售价:1200元2. 小红买了一条裙子,她想计算自己的利润率。
以下是有关这条裙子的信息,请帮助小红计算利润率。
成本:400元售价:600元3. 小强是一位小商贩,他从供应商那里购买了一批冰淇淋,然后以高出进货价格的利润售卖给顾客。
小强希望你能帮他计算以下问题。
成本:500元利润率:40%4. 小雨在某健身房工作,她计算顾客的利润率时遇到了问题。
以下是相关信息,请帮助小雨计算利润率。
成本:300元利润:75元5. 小明在学校组织了一次义卖活动,他想计算这次活动的利润率。
以下是相关信息,请帮助小明计算利润率。
成本:200元收入:500元三、解答:1. 利润计算公式为:利润 = 售价 - 成本。
根据给定的信息,可以计算出小明的利润:利润 = 1200 - 800 = 400元2. 利润率计算公式为:利润率 = (售价 - 成本) / 成本 * 100%。
根据给定的信息,可以计算出小红的利润率:利润率 = (600 - 400) / 400 * 100% = 50%3. 利润计算公式为:利润 = 成本 * 利润率。
根据给定的信息,可以计算出小强的利润:利润 = 500 * 40% = 200元4. 利润率计算公式为:利润率 = 利润 / 成本 * 100%。
根据给定的信息,可以计算出小雨的利润率:利润率 = 75 / 300 * 100% = 25%5. 利润率计算公式为:利润率 = (收入 - 成本) / 成本 * 100%。
根据给定的信息,可以计算出小明的利润率:利润率 = (500 - 200) / 200 * 100% = 150%四、总结:通过以上练习题,小明巩固了利润计算的知识。
中考二次函数利润问题
中考二次函数利润问题题型一、与一次函数结合1、某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量W(千克)与销售价X(元/千克)有如下关系:w=—2x+80.设这种产品每天的销售利润为y(元)•(1)求y与X之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大最大利润是多少(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润每月的最大利润是多少题型二、寻找件数之间的关系(一)售价为未知数1、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润最大利润是多少2、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。
在此基础上,这种面包的单价每提高1角时该零售店每天就会少卖出20个。
考虑了所有因素后该零售店每个面包的成本是5角。
设这种面包的单价为X(角),零售店每天销售这种面包所获得的利润为y(角)。
⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大最大利润为多少3、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元/天•间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大(二)涨价或降价为未知数1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
2025年中考数学二轮复习专题:利润问题应用题训练
2025年中考数学二轮复习专题:利润问题应用题训练例1.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?例2. 某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数关系式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【变式练习1】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(a ≥30),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.例3.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件),日销售利润为w (元). (1)求y 与x 的函数关系式.(2)求日销售利润w (元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.商品甲乙进价(元/件) 120 60 售价(元/件)200100【变式练习2】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【拓展提升】善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?(限时训练第4题(1)、(2),第(3)问课堂上做)销售利润问题限时训练班级:______ 学号:____ 姓名:__________1、某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?2、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数关系式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.3、小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.4、善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;【变式练习1】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(a ≥30),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.(限时训练第2题)【变式练习2】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?商品 甲 乙 进价(元/件) 120 60 售价(元/件)200100。
初三数学试卷利润问题
1. 一件商品的成本是200元,如果售价提高20%,则利润是()A. 40元B. 60元C. 80元D. 100元2. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的80%,则利润率是()A. 20%B. 25%C. 30%D. 40%3. 一件商品的成本是300元,售价为400元,如果售价降低10%,则利润率是()A. 10%B. 15%C. 20%D. 25%4. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的50%,则利润是()A. 25元B. 50元C. 75元D. 100元5. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的60%,则利润率是()A. 10%B. 15%C. 20%D. 25%二、填空题6. 一件商品的成本是120元,售价为180元,则利润是________元。
7. 某商品的成本是150元,售价提高10%,则利润是________元。
8. 某商品的成本是200元,售价降低20%,则利润率是________。
9. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的70%,则利润是________元。
10. 某商品的成本是300元,售价为400元,如果售价降低15%,则利润率是________。
三、解答题11. 一件商品的成本是200元,售价为300元,如果售出其中的80%,则利润是多少?12. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的60%,则利润率是多少?13. 一件商品的成本是250元,售价为400元,如果售价降低10%,则利润率是多少?14. 某商店销售一批商品,成本为每件100元,售价为每件150元,如果售出其中的70%,则利润是多少?15. 一件商品的成本是300元,售价为500元,如果售价提高20%,则利润是多少?四、应用题16. 某商店购进一批商品,进价为每件100元,售价为每件150元,如果售出其中的50%,则利润是多少?请计算并解释计算过程。
初三数学利润问题试卷
1. 某商品原价为100元,打八折后售价为多少元?A. 80元B. 85元C. 90元D. 95元2. 一件衣服的成本为50元,售价为80元,利润率是多少?A. 20%B. 30%C. 40%D. 50%3. 一家商店卖出100件商品,每件商品利润为10元,总利润是多少元?A. 1000元B. 2000元C. 3000元D. 4000元4. 某商品进价为100元,售价为150元,利润率是多少?A. 50%B. 40%C. 30%D. 20%5. 一家工厂生产一批产品,每件产品的成本为20元,售价为30元,如果生产1000件产品,总利润是多少元?A. 10000元B. 20000元C. 30000元D. 40000元二、填空题(每题5分,共25分)1. 利润率是指利润与成本的比值,通常用百分比表示,计算公式为:______。
2. 利润是指售价与成本的差额,计算公式为:______。
3. 在利润问题中,利润与销售量成正比,即销售量越大,利润越大。
4. 利润率与成本和售价的关系是:当成本不变时,售价越高,利润率越大;当售价不变时,成本越低,利润率越大。
5. 在实际生活中,为了提高利润,可以采取以下措施:提高售价、降低成本、增加销售量等。
三、解答题(每题20分,共60分)1. 某商店将一批商品打九折出售,若按原价出售,可获利1000元。
求原价和折扣率。
2. 一家工厂生产一批产品,每件产品的成本为50元,售价为80元。
如果生产1000件产品,总利润是多少元?3. 一件衣服的成本为100元,售价为150元。
为了提高利润率,该衣服售价应提高多少?四、应用题(每题20分,共40分)1. 某商店将一批商品打八折出售,若按原价出售,可获利2000元。
求原价和折扣率。
2. 一家工厂生产一批产品,每件产品的成本为30元,售价为50元。
如果生产2000件产品,总利润是多少元?答案:一、选择题1. A2. B3. A4. A5. A二、填空题1. 利润率=(利润/成本)×100%2. 利润=售价-成本3. 销售量4. 成本、售价5. 提高售价、降低成本、增加销售量等三、解答题1. 原价为200元,折扣率为20%。
中考数学利润问题
中考数学利润问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、服装店以120元的相同价格卖出两件不同的衣服,其中一件盈利20%,另一件亏损20%。
问结果是盈利、亏损、还是不盈不亏(如果是盈利或亏损,请算出具体数额。
)2、某鞋店以每双80元的价钱买进一批皮鞋,出售时加价40%。
当卖掉20双皮鞋时恰好收回本钱。
求这批皮鞋共可盈利多少元?3、体育用品商店以每个40元的价格购进一批小足球,以每个50元的价格卖出。
当卖掉这批足球的90%时,不仅收回了成本,还获利800元。
这批小足球一共多少个?4、新华书店购进一批图书,如果按定价出售,每本获利1.2元。
现在降价销售,结果销售量增加了一倍,利润增加50%,每本书的售价降低多少元?5、电讯商店销售某种手机,去年按定价的90%出售,可获得20%的利润,由于今年的买入价降低了,按同样定价的75%出售,却可获得25%的利润,请问今年的买入价是去年买入价的百分之几?6、百货商店运来一批玩具,按出厂价加上运费、营业费和利润出售,运费是出厂价的5%,营业费与利润之和是出厂价的20%,已知每个玩具售价是75元,求每个玩具的出厂价是多少?7、皮衣专卖店销售一种皮衣,因销售有一定的困难,店老板核算了一下:如果按销售价打九折出售,每件可盈利200元,如果打八折出售,每件就要亏损120元。
这种皮衣的进价是多少元?8、文具店购进一批钢笔,进价是每支11元,售价是每支14元。
现在商店还有50支笔,这时已经收回了全部成本,并且盈利140元。
求这批钢笔共有多少支?9、水果店运来500千克苹果,每千克进价2元,付出运费、税费等各项开支共150元。
要使出售后盈利20%,每千克苹果的售价应是多少元?10、健身中心入场券30元一张,若降价后人数增加一半,收入将增加25%,每张入场券降价多少元?11、电影票原价每张若干元,现在每张降价10元,观众增加了50%,收入只增加20%,一张电影票原价多少元?1、分析:其中一件盈利20%,也就是120元的售价相当于成本的1+20%;另一件亏损20%,也就是120元的售价相当于成本的1-20%。
初中数学利润问题练习题
初中数学利润问题练习题
1. 某商店购进一批商品,进价为每件100元,售价为每件150元。
如
果该商店共售出200件商品,请问该商店的总利润是多少?
2. 一家水果店购进一批苹果,每公斤进价为5元,售价为每公斤8元。
如果水果店共售出500公斤苹果,那么水果店的总利润是多少?
3. 某工厂生产一批玩具,每件玩具的成本为50元,售价为每件80元。
工厂共生产并售出1000件玩具,请问工厂的总利润是多少?
4. 一家服装店购进一批T恤,每件T恤的进价为30元,售价为每件
60元。
如果该服装店共售出300件T恤,那么服装店的总利润是多少?
5. 某书店购进一批图书,每本图书的进价为20元,售价为每本30元。
书店共售出400本图书,请问书店的总利润是多少?
6. 一家电子产品商店购进一批耳机,每副耳机的进价为80元,售价
为每副120元。
如果该商店共售出250副耳机,那么商店的总利润是
多少?
7. 某花店购进一批鲜花,每束鲜花的进价为40元,售价为每束60元。
花店共售出200束鲜花,请问花店的总利润是多少?
8. 一家文具店购进一批笔记本,每本笔记本的进价为10元,售价为
每本15元。
文具店共售出500本笔记本,那么文具店的总利润是多少?
9. 某玩具店购进一批积木,每盒积木的进价为25元,售价为每盒35元。
玩具店共售出300盒积木,请问玩具店的总利润是多少?
10. 一家眼镜店购进一批眼镜,每副眼镜的进价为150元,售价为每副200元。
眼镜店共售出100副眼镜,那么眼镜店的总利润是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考利润问题典型题目1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x。
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于=+,且x=65时,y=55;45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y kx bx=75时,y=45.=+的表达式;(1)求一次函数y kx b(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为y件,请写出y与x的函数关系式.(2)设平均每天获利为Q元,请写出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元. (1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支 出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价 超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元) 取整.数.,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
(1)求Y与X的函数关系式;(2)宾馆所订价为多少时,纯收入最多?(3)不使宾馆亏本的最高床价是多少元?9、我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x到后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?10.某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价X元与销售量Y 件之间有如下关系:X 3 5 9 11Y 18 14 6 2(1)在所给的直角坐标系中,根据表中提供的数据描出实数对(X,Y)对应点;猜测并确定日销售量Y(件)与日销售单价X元之间的函数关系式,并画出图象。
(2)设经营此商品的日销售利润(不考虑其它因素)为P元,根据日销售规律:①试求日销售利润P(元)与销售单价X(元)之间的数关系式,并求出日销售单价X为多少时,才能获得最大日销售利润.②试问日销售利润P是否存在最小值?若有,试求出,若无,说明理由;25 24 y 2(元)x (月)1 2 3 4 5 6 7 8 9 10 11 122218y x bx c =++O.11、某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图). (1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少12.某公司推出了一种高效环保洗涤用品,年初上市后,公司经历了从亏损到盈利的过程, 下面的二产供销函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系)。
根据图象提供的信息,解答下列问题:(1) 由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的关系式; (2) 求截止到几个月末公司累积利润可达到30万元; (3) 求第8个月公司所获利润是多少万元?13、为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.)图②15.为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a 万美元(a 为常数,且3<a <8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x 件乙产品...时需上交20.05x 万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润1y 、2y 与相应生产件数x (x 为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?16、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?1.【答案】分析:(1)由销售利润=(销售价-进价)×销售量可列出函数关系式;(2)应用二次函数的性质,求最大值.解答:解:(1)依题意,y=m(x-20),代入m=140-2x化简得y=-2x2+180x-2800.(2)y=-2x2+180x-2800=-2(x2-90x)-2800=-2(x-45)2+1250.当x=45时,y最大=1250.∴每件商品售价定为45元最合适,此销售利润最大为1250元.点评:本题考查的是二次函数的应用,难度一般,用配方法求出函数最大值即可.2.解:(1)根据题意得解得k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)W=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴当x=87时,W=﹣(87﹣90)2+900=891.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由W≥500,得500≤﹣x2+180x﹣7200,整理得,x2﹣180x+7700?0,而方程x2﹣180x+7700=0的解为x1=70,x2=110.即x1=70,x2=110时利润为500元,而函数y=﹣x2+180x﹣7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.3.(1)设每套降价x元,商场平均每天赢利y元,则y=(40-x)(20+2x)=-2x 2+60x+800,(2)y=-2x 2+60x+800,=-2(x-15)2+1250,当x=15时,y有最大值为1250元,当每件降价15元时,商场平均每天盈利最多;(3)当y=1200,1200=-2(x-15)2+1250,解得x1=10,x2=20,因为为了扩大销售,所以,应降价20元;若商场每天平均需盈利1200元,每件衬衫应降价20元.5.(1)根据题意得出:y=(2400-2000-x)(8+4×x5),即y=-225x2+24x+3200,(2)由题意得出:4800=-225x2+24x+3200,整理得出:x2-300x+20000=0,解得:x1=100,x2=200,为使百姓获得实惠取x=200,答:每台冰箱应降价200元.6.答案:解:(1)由题意y=(x-30)[60+2×(70-x)]-400=-2x2+260x-6400(30≤x≤70);(2)y=-2(x-65)2+2050.当单价定为65元时,日均获利最多,是2050元.(3)当日均获利最多时:单价为65元,日均销售为:60+2×(70-65)=70kg,那么获利为:2050×(7000÷70)=205000元.当销售单价最高时单价为70元,日均销售60kg,将这种化工原料全部售完需7000÷60≈117天,那么获利为(70-30)×7000-117×400=233200元.因为233200>205000,且233200-205000=28200元,所以,销售单价最高时获利更多,且多获利28200元.7.8. 9.10.11.12.。