辛普森式商务车自动变速器结构设计【行星齿轮变速箱】

合集下载

辛普森式自动变速器

辛普森式自动变速器

辛普森式自动变速器辛普森自动变速器,也就是辛普森式行星齿轮机构由2个内啮合式单排行星齿轮机构组合而成,其结构特点是:前后2个行星排的太阳轮连接为一体,称为前后太阳轮组件;前一个行星排的行星架和后一个行星排的齿圈连接为一体,称为前行星架和后齿圈组件;输出轴通常与前行星架和后齿圈组连接。

经过上述的组合后,该机构成为一种具有4个独立元件的行星齿轮机构。

这4个独立是:前齿圈,前后太阳轮组件,后行星架,前行星架和后齿圈组件。

辛普森式变速器主要运用在丰田汽车比较多其A131L早起丰田花冠应用,A340EA350E皇冠3.0应用,A650E凌志LS400、SC400、GS300/400应用。

辛普森式自动变速器行星齿轮机构单向离合器图解图解单向离合器是由外座圈,内座圈、保持架、楔块等组成。

当内座圈固定时,外座圈顺时针方向转动楔块不锁止,外座圈可自由转动;当外座圈逆时针转动时,楔块锁止,外座圈不能转动。

保持架的作用是使楔块总是朝着锁止外座圈的方向略微倾斜,以加强楔块的锁止功能。

四档辛普森式变速器部分档位传递路线结构图一档传递路线(工作元件C0,F0,C1,F2):动力由液力变矩器传到输入轴,输入轴和行星架相连,因为C0,F0工作所以太阳轮和行星架可以看作是一个整体,所以动力由齿圈输出到中间轴正时针旋转,因为C1工作,所以动力传给前排齿圈正时针旋转,因为前排行星架连接输出轴阻力比较大,所以小行星轮正时针旋转行星架不动太阳轮逆时针旋转,动力传给后排行星架,后排行星架有逆时针旋转趋势,F2工作行星架不动,小行星轮正时针旋转,带动后排齿圈正时针旋转,动力由后排齿圈传到输出轴。

结束二档传递路线(工作元件C0、 C1、B2、FO、F1):动力由液力变矩器传到输入轴,输入轴和行星架相连,因为C0,F0工作所以太阳轮和行星架可以看作是一个整体,所以动力由齿圈输出到中间轴正时针旋转,因为C1工作,所以动力传给前排齿圈正时针旋转,因为前排行星架连接输出轴阻力比较大,所以小行星轮正时针旋转,太阳轮有逆时针旋转趋势,因为B2,F1(单向离合器,可以正时针旋转,逆时针锁死)工作所以太阳轮不动,动力由前排行星架输出到输出轴。

辛普森式

辛普森式
超速挡行星架前行星架后行星架中间轴输入轴输出轴超速挡太阳轮超速挡齿圈前行星齿圈太阳轮后行星齿圈超速挡行星架前行星架后行星架中间轴输入轴输出轴超速挡太阳轮超速挡齿圈前行星齿圈太阳轮后行星齿圈5换挡手柄位于n或p位时都不工作变速器处于空挡或驻车挡
四、组合式行星齿轮系统
由于单排行星齿轮机构不能满足汽车行 驶中变速变矩的需要。为了增加传动比的 数目, 可以通过增加行星齿轮机构来实 现。在自动变速器中,两排或多排行星齿
1.辛普森行星齿轮系统
• 辛普森式行星齿轮机构由4个独立的元件组 成:前齿圈、前后太阳轮组件、后行星架、 前行星架和后齿圈组件
• 辛普森式行星齿轮机构是双排行星齿轮机构, 它由两个内啮合式单排行星齿轮机构组合而 成,能提供三个前进挡和一个倒挡。
• 前面可以加一排超速行星齿轮机构
辛普森式行星齿轮机构结构形式
• (4)R位 大太阳轮、长行星齿轮、齿圈。
3.带有超速挡的行星齿轮系统
五、液压控制系统 自动变速器的自动控制是由液压控制系统控 制完成。液压控制系统由三部分组成:
动力源—液压泵;
执行机构—离合器、制动器、单向离合器; 控制机构—调压阀、手动阀、换档法、锁止
离合器控制阀;
(一)液压泵 功用:使ATF产生一定的压力和流量 ,供给 液力变矩器和液压控制系统所需的液压油,并保 证行星齿轮机构各磨擦副的润滑需要。
• 由于C1 或 C2没有接合 变速器处于空档状态, 动力无法传递。 • 机械式锁止机构:当变 速杆处于P档位置时,停 车联锁凸轮使停车爪上 的凸起与联锁结构结合, 以防止车辆移动。
2.辛普森式3挡行星齿轮变速器换档执行元件 (1)结构特点
超速挡行星架 中间轴
前行星架
后行星架
输入轴 超速挡太阳轮 超速挡齿圈

6. 行星齿轮变速装置传动结构实物剖析

6. 行星齿轮变速装置传动结构实物剖析
输入轴→C2毂→C2鼓B2毂→传动套→前大太阳轮壳→太阳轮。
27
单元三
(3)离合器C1
行星齿轮变速装置
离合器C1毂与输入轴一体,C1鼓内有活塞、回位弹簧、弹簧 座、卡环。传动套与空心轴一体,两端分别与C1鼓和后小太 阳轮花键连接。 C1工作转矩传递路线:
输入轴→C1毂→C1鼓→传动套→后小太阳轮。
B2毂为F1外环,F1内环与公共太阳轮轴颈过度配合。
B2工作使太阳轮单向制动。
17
单元三行星齿轮变速装置 Nhomakorabea丰田A43D自动变速器变矩器与齿轮变速装置仿真剖视图
18
单元三
行星齿轮变速装置
(6)制动器B3与单向离合器F2
后壳体为B3鼓,鼓內有活塞、回位弹簧、弹簧座、卡环和传
动套。
活塞通过传动套压在B3的钢片和摩擦片上。 B3毂为单向离合器F2外环,B3毂与前行星架一体。 F2内环为与后外壳相连的B3磨片档盘一体的轴颈。 B3工作通过单向离合器F2可将前行星架单向制动。
2
单元三
行星齿轮变速装置
图3-80丰田A43D行星齿轮变速装置传动结构简图
3
单元三
行星齿轮变速装置
2、丰田A43D自动变速器前壳体总成
(1)丰田A43D自动变速器前壳体总成分解 丰田A43D自动变速器前壳体总成从前至后分别由变矩器、 油泵、超速档箱和前壳体四部分组成。
4
单元三
(2)超速档箱
行星齿轮变速装置
太阳轮与行星架上的行星轮外啮合。
9
单元三
行星齿轮变速装置
丰田A43D自动变速器变矩器与齿轮变速装置仿真剖视图
10
单元三
行星齿轮变速装置
3、丰田A43D自动变速器后壳体总成 (1)后壳体总成分解

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线不同车型自动变速器在结构上往往有很大差异,主要表现在:前进挡的挡数不同,离合器,制动器及单向超越离合器的数目和布置方式不同,所采用的行星齿轮机构的类型不同.前进挡的数目越多,行星齿轮变速系统中的离合器,制动器及单向超越离合器的数目就越多.离合器,制动器,单向超越离合器的布置方式主要取决于行星齿轮变速系统前进挡的挡数及所采用的行星齿轮机构的类型.轿车自动变速器所采用的行星齿轮机构的类型主要有2类,即辛普森式和拉维萘赫式行星齿轮机构. 辛普森式行星齿轮机构由2个内啮合式单排行星齿轮机构组合而成, 庞成立其结构特点是:前后2个行星排的太阳轮连接为一体,称为前后太阳轮组件;前一个行星排的行星架和后一个行星排的齿圈连接为一体,称为前行星架和后齿圈组件;输出轴通常与前行星架和后齿圈组件连接.经过上述的组合后,该机构成为一种具有4个独立元件的行星齿轮机构.这4个独立元件是:前齿圈,前后太阳轮组件,后行星架,前行星架和后齿圈组件.根据前进挡的挡数不同,可将行星齿变速系统分为3挡行星齿轮变速系统和4挡行星齿轮变速系统2种.1.辛普森式3挡行星齿轮变速系统的结构和工作原理.(1)行星齿轮变速系统的结构:a)结构b)换挡执行元件的布置l一输入轴2一倒挡及高挡离合器毂3一前进离合器毂和倒挡及高档离合器毂4一前进离合器毂和前齿圈5一前行星架6一前后太阳轮组件7一后行星架和低挡及倒挡制动器毂8一输出轴C1一倒挡及高挡离合器c2一前进离合器B1—2挡制动器B2一低挡及倒挡制动器Fl一低挡单向超越离合器图1行星齿轮变速系统结构及元件布置图如图1(a图为结构图,b图为元件布置图)所示,行星齿轮机构中设置了5个换挡执行元件(2个离合器,2个制动器和1个单向超越离合器),使该系统成为一个具有3个前进挡和1个倒挡的行星齿轮变速系统.离合器C1用于连接输入轴和前后太阳轮组件, 离合器C2用于连接输入轴和前齿圈,制动器B1用于固定前后太阳轮组件, 制动器B2和单向超越离合器F1都是用于固定后行星架.5个换挡执行元件在各挡位的工作情况如表1所示.由表1中可知,当行星齿轮变速系统处于停车挡和空挡之外的任何一个挡位时,5个换挡执行元件中都有2个处于表1辛普森3挡行星齿轮变速系统换挡执行元件工作情况操纵手挡位换执仃兀件柄位置ClC2BlB2F1 1挡0 D2挡0O3挡OOR倒挡0OS.L或1档OO2,12挡0O注:0一接合,制动或锁止. 工作状态(接合,制动或锁止),其余 3个不工作(分离,释放或自由状态).处于工作状态的2个换挡执行元件中至少有一个是离合器Cl或 C2,以便使输入轴与行星排连接.当变速器处于任一前进挡时,离合器 C2都处于接合状态,此时输入轴与行星齿轮机构的前齿圈接合,使前齿圈成为主动件,因此离合器C2也称为前进离合器.倒挡时,离合器C1接合,C2分离,此时输入轴与行星齿轮机构的前后太阳轮组件接合,使前后太阳轮组件成为主动件;另外,离合器C1在3挡(直接挡)时也接合,因此,离合器C1也称为倒挡及高挡离合器.制动器B1仅在2挡才工作,称为2挡制动器.制动器B2在1挡和倒挡时都工作,因此称为低挡及倒挡制动器.由此可知,换挡执行元件的不同工作组合决定了行星齿轮变速系统的传动方向和传动比,从而决定了行星齿轮变速系统所处的挡位. (2)行星齿轮变速系统各挡的传动路线: ?1挡:如图2所示,此时前进离合器C2接合,使输入轴和前齿圈连接:同时单向超越离合器F1处于自锁状态,后行星架被固定.来自液力变矩器的发动机动力经输入轴,前汽车维修2011.6???1一输入轴2一前进离合器c23一倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈 6,前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架ll一后行星轮 l2一低挡及倒挡制动器B213一低挡单向超越离合器F1l4一后齿圈图21挡路线-倒挡及 1一输入轴2一前进离合器C23高挡离合器C14—2档制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件lO一后行星架 ll一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图43挡路线???a)前行星排b)后行星排l一输入轴2一前进离合器C23-倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件1O一后行星架11一后行星轮 12一低挡及倒挡制动器B2l3一低挡单向超越离合器F114一后齿圈图32挡路线进离合器C2传给前齿圈,使前齿圈朝顺时针方向旋转.在前行星排中,前行星齿轮在前齿圈的驱动下一方面朝顺时针方向公转,带动前行星架朝顺时针方向转动,另一方面作顺时针方向的自转,并带动前后太阳轮组件朝逆时针方向转动;在后行星排中,后行星轮在后太阳轮的驱动下朝顺时针方向作自转时,对后行星架产生一个逆时针方向的力矩,而低挡单向超越离合器FI对后行星架在逆时针方向具 46汽车维修2011.6a)前行星排b)后行星排1一输入轴2一前进离合器C23-倒挡及高挡离合器C14—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架11一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图5倒挡路线有锁止作用,因此后行星架固定不动, 使后齿圈在后行星轮的驱动下朝顺时针方向转动.因此,在前进1挡时,由输入轴传给行星齿轮机构的动力是经过前后行星排同时传给前行星架和后齿圈组件,再传给与之相连接的输出轴,从而完成动力输出的.?2挡:如图3所示,前进离合器C2和2挡制动器B1同时工作. 此时输入轴仍经前进离合器C2和前齿圈连接,同时前后太阳轮组件被2 挡制动器B1固定.发动机动力经液力变矩器和行星齿轮变速系统的输入轴传给前齿圈,使其朝顺时针方向转动.由于前太阳轮转速为0,因此前行星轮在前齿圈的驱动下一方面朝顺时针方向作自转,另,方面朝顺时针方向作公转,同时带动前行星架及输出轴朝顺时针方向转动.此时后行星排处于自由状态,后行星轮在后齿圈的驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.由此可知,2挡时发动机的动力全部经前行星排传到输出轴. ?3挡:如图4所示,前进离合器C2和倒挡及高挡离合器C1同时接合,把输入轴与前齿圈及前后太阳轮组件连接成一体.由于这时前行星排中有2个基本元件互相连接,从而使前行星排连成一体旋转,输入轴的动力通过前行星排直传给输出轴,即直接挡.此时后行星排处于自由状态,后行星轮在后齿圈驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.?倒挡:如图5所示,倒挡及直接挡离合器C1接合,使输入轴与前后太阳轮组件连接,同时低挡及倒挡制动器B2产生制动,将后行星架固定. 此时发动机动力经输入轴传给前后太阳轮组件,使前后太阳轮朝顺时针方向转动.由于后行星架固定不动,后行星轮在后太阳轮的驱动下朝逆时针方向转动,并带动后齿圈朝逆时针方向转动,与前行星架和后齿圈组件连接的输出轴也随之朝逆时针方向转动, 从而改变了传动方向.此时,前行星排中由于前齿圈可以自由转动,前行星排处于自由状态,前齿圈在前行星轮的带动下朝逆时针方向自由转动.有些车型自动变速器的行星齿轮机构的前后行星排的排列顺序相反,即输入轴通过前进离合器C2和后齿圈连接,输出轴与前齿圈和后行星架组件连接,但工作原理都一样.2.3行星排4挡行星齿轮变速系统的结构与工作原理超越膏台嚣图64挡行星齿轮变速器元件位置图丰田CROWN(皇冠)3.0轿车所器B1之间串联了一个单向超越离合用的A340E电子控制自动变速器就器F2,称为2挡单向超越离合器.单采用了这种行星齿轮变速系统.向超越离合器的内环和前后太阳轮组 ?结构:这种4挡行星齿轮变速件连接,外环和2挡制动器B1连接, 器是在不改变原辛普森式3挡行星齿在逆时针方向对前后太阳轮组件具有轮变速系统的主要结构和大部分零部锁止作用.当行星齿轮变速系统处于件的情况下,另外再增加一个单排行2挡时,前进离合器C1和2挡制动器星齿轮机构和相应的换挡执行元件来Bl仍同时工作.汽车加速时,前后太产生超速挡而实现的.这个单排行星阳轮组件的受力方向为逆时针方向, 齿轮机构称为超速行星排,他安装在由于2挡单向超越离合器F2的外环行星齿轮变速系统的前端,其行星架被2挡制动器B1固定,因此前后太是主动件,与变速器输入轴连接;齿圈阳轮朝~_B,-j-针方向的旋转趋势被2挡为被动件,与后面的双排行星齿轮机制动器Bl及2挡单向超越离合器锁构连接.超速行星排的工作由直接离止,使2挡得以实现.当行星齿轮变速,直器由2挡换至3挡时,即使倒挡及直合器CO和超速制动器BO来控制接离合器CO用于将超速行星排的太接挡离合器C1在2挡制动器B1释阳轮和行星架连接,超速制动器BO放之前就已接合,但由于倒挡及直接用于固定超速行星排的太阳轮.如图挡离合C1接合之后,前后太阳轮组 6所示.件的受力方向改变为顺时针方向,而为了改善2,3挡的换挡平顺性在顺时针方向上2挡单向超越离合器和使变速器在前进低挡位置发动机有F2对前后太阳轮组件没有锁止作用, 制动作用,在原3挡行星齿轮变速系前后太阳轮组件仍可以朝顺时针方向统的基础上进行了改进.旋转,使换挡能顺利进行.a)在前后太阳轮组件和2挡制动b)在前后太阳轮组件和变速器壳表23行星排辛普森式4挡行星齿轮变速系统换挡执行元件的工作情况操纵手柄换挡执行元件位置挡位ClC2BlB2B3F1F2COB0F0 1挡oooo2挡ooOooD3挡00?oo超速挡0o?00R倒挡o0oo1挡0oooS,L或2,12挡o?oo3挡oOoo注:0一接合,制动或锁止;?一作用但不影响该挡位体之间另外设置了一个制动器B3,即2挡强带带动器.带0动器B3是否工作是由操纵手柄的位置决定的,当操纵手柄位于前进挡位置(D)时,制动器B3不工作:当操纵手柄位于前进挡位置(2,1或S,L)而行星齿轮变速器处于2挡时,制动器B3 工作.这样不论汽车加速或减速,前后太阳轮组件都被该制动器固定,此时的2挡在汽车放松加速踏板减速时能产生发动机制动作用.目前大多数轿车自动变速器都采用这种结构. ?工作原理:根据行星齿轮变速系统的变速原理,当超速制动器BO 放松,直接离合器CO接合时,超速行星排处于直接传动状态,其传动比为 1:当超速制动器BO制动,直接离合器CO放松时,超速行星排处于增速传动状态,传动IrL/J~于1.当行星齿轮变速系统处于1挡,2 挡,3挡或倒挡时,超速行星排中的超速制动器B0放松,直接离合器CO结合,使超速行星排处于传动比为1的直接传动状态,而后半部分的双排行星齿轮机构各换挡执行元件的工作和原辛普森式3挡行星齿轮变速器在1 挡,2挡,3挡及倒挡时的工作完全相同,如表2所示.来自变矩器的发动机动力经超速行星排直接传给后半部分的双排行星齿轮机构,此时行星齿轮变速系统的传动比完全由后半部分的双排行星齿轮机构及相应的换挡执行元件来控制.当行星齿轮变速系统处于超速挡时,后半部分的双排行星齿轮机构保持在3挡位置,而在超速行星排中,由于超速制动器BO,产生制动,直接离合器CO放松,使超速行星排处于增速传动状态,其传动比小于l. 直接离合器CO在自动变速器处于超速挡以外的任何一个挡位时都处于接合状态,因此当发动机刚刚起动而油泵尚未建立正常的油压时,直接离合器CO已处于半结合状态,这样易使其摩擦片因打滑而加剧磨损.为防止出现这种情况,在直接离合器CO 处并列布置了一个直接单向超越离合器FO,使超速行星排在逆时针对太阳轮产生锁止作用,防止直接离合器CO 的摩擦片在半接合状态下打滑. (作者单位:大连职业技术学院) 汽车维修2011.67。

汽车自动变速器原理与维修--辛普森式行星齿轮变速机构

汽车自动变速器原理与维修--辛普森式行星齿轮变速机构
“D”位移至“2”位。自动变速器在手动2位的2档时处 于能产生发动机制动作用的状态(如图)。
2位2档的传动原理
辛普森式三档行星齿轮变速机构
发动机的制动作用是由2档强制制动器B2来实现的。 当操纵手柄位于“2”位,而行星齿轮变速器处于2档时 ,前进离合器C1和制动器B2同时工作。动力从发动机传 往驱动轮时,行星齿轮机构各元件的工作状态及传动比 与前进1档时相同。而当节气门松开,发动机处于怠速 而汽车进行滑行时,汽车驱动轮通过变速器输出轴驱动 行星齿轮机构,因前后太阳轮组件始终被B2固定,行星 齿轮变速器输入轴被反向驱动,以原来的转速旋转,变 矩器涡轮转速高于泵轮的转速,成为汽车驱动轮通过变 矩器逆向驱动发动机曲轴的工况,因此可利用发动机制 动。
辛普森式三档行星齿轮变速器档位与操纵元件关系表
(1)三档辛普森式行星齿轮变速器各档的传动路线 ①前进1档(D位1档)
前进离合器C1结合,输入轴与前齿圈连接;单向离合 器F2处于自锁状态,后行星架被固定(如图)。来自发动 机的动力通过液力变矩器后,传至输入轴、前进离合器 C1 和前齿圈使前齿圈向顺时针方向转动。此时,由于汽 车载荷的作用,与输出轴相连的前排行星架在汽车起步 前转速为0。因此,前排行星齿轮在齿圈的驱动下按顺时 针方向作公转,并力图带动行星架以同样的方向旋转。
辛普森式三档行星齿轮变速机构
⑤前进3档(D位3档)
前进档离合器C1和倒档及高档离合器C2同时结合,前
排齿圈与太阳轮组件转速相同,前行星排被连接成一个整
体同速旋转,从行星架输出动力至输出轴。后行星架虽然 与输出轴同速,但只是作空转。此时,行星齿轮变速器的 传动比i=1,即为直接档(如图)。
D位3档的传动原理
辛普森式三档行星齿轮变速机构

5-辛普森3挡和四档齿轮机构309

5-辛普森3挡和四档齿轮机构309
23
F0:行星架 顺锁太阳轮
F0两种状态: 内圈转速慢于外圈,自由/超越状态,如B0工作时;(
太阳轮不转,自由) 内圈转速快于外圈,锁止状态,如B0不工作时。(太阳
轮顺转,被锁)
辛普森式四档行星齿轮变速机构
3、超越离合器F0的作用?
思考: ➢CO已释放,BO尚未 完全接合时 如何防止打滑? ➢BO接合后(自由/ 超越) 太阳轮与行星架如何 迅速脱开啮合?
到壳体上。 接C太0 超阳速轮离和合行器星:架联接C输1入前轴进和离前合齿器圈:轮联
F0 超速单向离合 器:行星架顺锁 太阳轮
C2 高倒档离合器(直接 档离合器):联接输入轴 和太阳轮
F1 单向离合器:逆 锁太阳轮
B1 2档滑行制动器: 直接制动太阳轮
29
1、A341E结构
辛普森行星齿轮机构换档执行元件工作表
欢迎
文末有福利
齿轮系统
一、辛普森式变自速动机变构速器
辛普森式三档行星齿轮变速机构 辛普森式四档行星齿轮变速机构 运用实例—丰田A341E
二、串联式变速机构--辛普森2型齿系 三、拉维娜式行星齿轮机构 四、定轴常啮合式齿轮机构
(一)辛普森三档行星齿轮机构的结构
1-齿轮机构
3
(一前行)星辛排行普星森架 三档行星齿轮机构的结构
二、串联式变速机构--辛普森2型齿系 三、拉维娜式行星齿轮机构 四、定轴常啮合式齿轮机构
运用实例—丰田A341E
A1、34结1构E结构
视频:各组件的分解、检查与装合
28
B0 超速排制动器:超
B3 低倒档制动B器2 :2F档2 单制向动离器合:器通:
速排制动器,制动太阳轮
制动后行星架过F逆1间锁接行制星动架太阳

丰田辛普森式自动变速器动力传递路线分析

丰田辛普森式自动变速器动力传递路线分析

安 排在 复合行 星齿 轮机构 前 的超 速挡 单排 行星 齿轮机 构, 由图 2 可见, 超 速输 入轴 1 与 超速 行星架 2 连, 2 相 超速 离 台器 C连接 的则 是超速 中心轮 1 和 l
超 速行 星架 2 超速 制动器 B 也 是多 片式结 构, 于变速 器壳 体 1 , 位 与超速 中心
科 学论 坛
I ■
Cajedc ̄ i h hoR iSnarngew nCcneoyv e e
丰 田辛普森式 自动 变速器动 力传递 路线分析
田 甜
广东 广 州 50 0) 18 0 ( 南理 工大学 广州汽 车学 院 华 [ 摘 要] 绍 了丰 田辛普森 式 自动变速 器 的结构 组 成 以丰 田 A 4 E为例 具体分 析 了各个 档位 动力 传递 路线 。 介 30 [ 关键 词] 辛普 森 动力 传递 A 4 E 丰 田 30 电图分 类号 :43 22 U6 . 1 文 献标 识码 : A 文章 编号 : 0 9 9 4 (0 0 1 — 0 2 0 10 — 1 X 2 1 ) 5 0 7 — 2
辛普森 (ip o) Sm sn 式行星齿轮 变速器是 由辛普森行 星齿轮机 构和相应 的换 挡执行元件 组成, 排行星 齿轮结构 由两个 内啮合式 单排行星 齿轮机构 组合 而 双 成的, 结构特 点是 : 后两个行 星排 的太 阳轮连 接称为前 后太 阳轮 组件 : 其 前 前一 个行星排 的行 星架和 后一个 行星 排 的齿圈连 接, 为前行 星架和 后齿 圈组件 : 称
则将输入轴和共用中心轮连接在一起在各制动器中二挡滑行制动器为一带式制动器位干变速器壳体与共用中心轮之间用于夹持同定共用中心轮图辛普森式双排行星齿轮结构卜前齿圈一前行星轮一前后太阳轮组件一后行星轮一后行星架一前行星架与后齿圈组件一输出轴图型自动变速器行星齿轮变速器传动原理卜变速器壳体超速行星架前行星架后行星架输出轴后齿罔共用中心轮一前齿圈输入轴一超速齿圈卜超速中心轮一超速输入轴拜冀博置图工况倒档传动

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线不同车型自动变速器在结构上往往有很大差异,主要表现在:前进挡的挡数不同,离合器,制动器及单向超越离合器的数目和布置方式不同,所采用的行星齿轮机构的类型不同.前进挡的数目越多,行星齿轮变速系统中的离合器,制动器及单向超越离合器的数目就越多.离合器,制动器,单向超越离合器的布置方式主要取决于行星齿轮变速系统前进挡的挡数及所采用的行星齿轮机构的类型.轿车自动变速器所采用的行星齿轮机构的类型主要有2类,即辛普森式和拉维萘赫式行星齿轮机构. 辛普森式行星齿轮机构由2个内啮合式单排行星齿轮机构组合而成, 庞成立其结构特点是:前后2个行星排的太阳轮连接为一体,称为前后太阳轮组件;前一个行星排的行星架和后一个行星排的齿圈连接为一体,称为前行星架和后齿圈组件;输出轴通常与前行星架和后齿圈组件连接.经过上述的组合后,该机构成为一种具有4个独立元件的行星齿轮机构.这4个独立元件是:前齿圈,前后太阳轮组件,后行星架,前行星架和后齿圈组件.根据前进挡的挡数不同,可将行星齿变速系统分为3挡行星齿轮变速系统和4挡行星齿轮变速系统2种.1.辛普森式3挡行星齿轮变速系统的结构和工作原理.(1)行星齿轮变速系统的结构:a)结构b)换挡执行元件的布置l一输入轴2一倒挡及高挡离合器毂3一前进离合器毂和倒挡及高档离合器毂4一前进离合器毂和前齿圈5一前行星架6一前后太阳轮组件7一后行星架和低挡及倒挡制动器毂8一输出轴C1一倒挡及高挡离合器c2一前进离合器B1—2挡制动器B2一低挡及倒挡制动器Fl一低挡单向超越离合器图1行星齿轮变速系统结构及元件布置图如图1(a图为结构图,b图为元件布置图)所示,行星齿轮机构中设置了5个换挡执行元件(2个离合器,2个制动器和1个单向超越离合器),使该系统成为一个具有3个前进挡和1个倒挡的行星齿轮变速系统.离合器C1用于连接输入轴和前后太阳轮组件, 离合器C2用于连接输入轴和前齿圈,制动器B1用于固定前后太阳轮组件, 制动器B2和单向超越离合器F1都是用于固定后行星架.5个换挡执行元件在各挡位的工作情况如表1所示.由表1中可知,当行星齿轮变速系统处于停车挡和空挡之外的任何一个挡位时,5个换挡执行元件中都有2个处于表1辛普森3挡行星齿轮变速系统换挡执行元件工作情况操纵手挡位换执仃兀件柄位置ClC2BlB2F1 1挡0 D2挡0O3挡OOR倒挡0OS.L或1档OO2,12挡0O注:0一接合,制动或锁止. 工作状态(接合,制动或锁止),其余 3个不工作(分离,释放或自由状态).处于工作状态的2个换挡执行元件中至少有一个是离合器Cl或 C2,以便使输入轴与行星排连接.当变速器处于任一前进挡时,离合器 C2都处于接合状态,此时输入轴与行星齿轮机构的前齿圈接合,使前齿圈成为主动件,因此离合器C2也称为前进离合器.倒挡时,离合器C1接合,C2分离,此时输入轴与行星齿轮机构的前后太阳轮组件接合,使前后太阳轮组件成为主动件;另外,离合器C1在3挡(直接挡)时也接合,因此,离合器C1也称为倒挡及高挡离合器.制动器B1仅在2挡才工作,称为2挡制动器.制动器B2在1挡和倒挡时都工作,因此称为低挡及倒挡制动器.由此可知,换挡执行元件的不同工作组合决定了行星齿轮变速系统的传动方向和传动比,从而决定了行星齿轮变速系统所处的挡位. (2)行星齿轮变速系统各挡的传动路线: ?1挡:如图2所示,此时前进离合器C2接合,使输入轴和前齿圈连接:同时单向超越离合器F1处于自锁状态,后行星架被固定.来自液力变矩器的发动机动力经输入轴,前汽车维修2011.6???1一输入轴2一前进离合器c23一倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈 6,前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架ll一后行星轮 l2一低挡及倒挡制动器B213一低挡单向超越离合器F1l4一后齿圈图21挡路线-倒挡及 1一输入轴2一前进离合器C23高挡离合器C14—2档制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件lO一后行星架 ll一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图43挡路线???a)前行星排b)后行星排l一输入轴2一前进离合器C23-倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件1O一后行星架11一后行星轮 12一低挡及倒挡制动器B2l3一低挡单向超越离合器F114一后齿圈图32挡路线进离合器C2传给前齿圈,使前齿圈朝顺时针方向旋转.在前行星排中,前行星齿轮在前齿圈的驱动下一方面朝顺时针方向公转,带动前行星架朝顺时针方向转动,另一方面作顺时针方向的自转,并带动前后太阳轮组件朝逆时针方向转动;在后行星排中,后行星轮在后太阳轮的驱动下朝顺时针方向作自转时,对后行星架产生一个逆时针方向的力矩,而低挡单向超越离合器FI对后行星架在逆时针方向具 46汽车维修2011.6a)前行星排b)后行星排1一输入轴2一前进离合器C23-倒挡及高挡离合器C14—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架11一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图5倒挡路线有锁止作用,因此后行星架固定不动, 使后齿圈在后行星轮的驱动下朝顺时针方向转动.因此,在前进1挡时,由输入轴传给行星齿轮机构的动力是经过前后行星排同时传给前行星架和后齿圈组件,再传给与之相连接的输出轴,从而完成动力输出的.?2挡:如图3所示,前进离合器C2和2挡制动器B1同时工作. 此时输入轴仍经前进离合器C2和前齿圈连接,同时前后太阳轮组件被2 挡制动器B1固定.发动机动力经液力变矩器和行星齿轮变速系统的输入轴传给前齿圈,使其朝顺时针方向转动.由于前太阳轮转速为0,因此前行星轮在前齿圈的驱动下一方面朝顺时针方向作自转,另,方面朝顺时针方向作公转,同时带动前行星架及输出轴朝顺时针方向转动.此时后行星排处于自由状态,后行星轮在后齿圈的驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.由此可知,2挡时发动机的动力全部经前行星排传到输出轴. ?3挡:如图4所示,前进离合器C2和倒挡及高挡离合器C1同时接合,把输入轴与前齿圈及前后太阳轮组件连接成一体.由于这时前行星排中有2个基本元件互相连接,从而使前行星排连成一体旋转,输入轴的动力通过前行星排直传给输出轴,即直接挡.此时后行星排处于自由状态,后行星轮在后齿圈驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.?倒挡:如图5所示,倒挡及直接挡离合器C1接合,使输入轴与前后太阳轮组件连接,同时低挡及倒挡制动器B2产生制动,将后行星架固定. 此时发动机动力经输入轴传给前后太阳轮组件,使前后太阳轮朝顺时针方向转动.由于后行星架固定不动,后行星轮在后太阳轮的驱动下朝逆时针方向转动,并带动后齿圈朝逆时针方向转动,与前行星架和后齿圈组件连接的输出轴也随之朝逆时针方向转动, 从而改变了传动方向.此时,前行星排中由于前齿圈可以自由转动,前行星排处于自由状态,前齿圈在前行星轮的带动下朝逆时针方向自由转动.有些车型自动变速器的行星齿轮机构的前后行星排的排列顺序相反,即输入轴通过前进离合器C2和后齿圈连接,输出轴与前齿圈和后行星架组件连接,但工作原理都一样.2.3行星排4挡行星齿轮变速系统的结构与工作原理超越膏台嚣图64挡行星齿轮变速器元件位置图丰田CROWN(皇冠)3.0轿车所器B1之间串联了一个单向超越离合用的A340E电子控制自动变速器就器F2,称为2挡单向超越离合器.单采用了这种行星齿轮变速系统.向超越离合器的内环和前后太阳轮组 ?结构:这种4挡行星齿轮变速件连接,外环和2挡制动器B1连接, 器是在不改变原辛普森式3挡行星齿在逆时针方向对前后太阳轮组件具有轮变速系统的主要结构和大部分零部锁止作用.当行星齿轮变速系统处于件的情况下,另外再增加一个单排行2挡时,前进离合器C1和2挡制动器星齿轮机构和相应的换挡执行元件来Bl仍同时工作.汽车加速时,前后太产生超速挡而实现的.这个单排行星阳轮组件的受力方向为逆时针方向, 齿轮机构称为超速行星排,他安装在由于2挡单向超越离合器F2的外环行星齿轮变速系统的前端,其行星架被2挡制动器B1固定,因此前后太是主动件,与变速器输入轴连接;齿圈阳轮朝~_B,-j-针方向的旋转趋势被2挡为被动件,与后面的双排行星齿轮机制动器Bl及2挡单向超越离合器锁构连接.超速行星排的工作由直接离止,使2挡得以实现.当行星齿轮变速,直器由2挡换至3挡时,即使倒挡及直合器CO和超速制动器BO来控制接离合器CO用于将超速行星排的太接挡离合器C1在2挡制动器B1释阳轮和行星架连接,超速制动器BO放之前就已接合,但由于倒挡及直接用于固定超速行星排的太阳轮.如图挡离合C1接合之后,前后太阳轮组 6所示.件的受力方向改变为顺时针方向,而为了改善2,3挡的换挡平顺性在顺时针方向上2挡单向超越离合器和使变速器在前进低挡位置发动机有F2对前后太阳轮组件没有锁止作用, 制动作用,在原3挡行星齿轮变速系前后太阳轮组件仍可以朝顺时针方向统的基础上进行了改进.旋转,使换挡能顺利进行.a)在前后太阳轮组件和2挡制动b)在前后太阳轮组件和变速器壳表23行星排辛普森式4挡行星齿轮变速系统换挡执行元件的工作情况操纵手柄换挡执行元件位置挡位ClC2BlB2B3F1F2COB0F0 1挡oooo2挡ooOooD3挡00?oo超速挡0o?00R倒挡o0oo1挡0oooS,L或2,12挡o?oo3挡oOoo注:0一接合,制动或锁止;?一作用但不影响该挡位体之间另外设置了一个制动器B3,即2挡强带带动器.带0动器B3是否工作是由操纵手柄的位置决定的,当操纵手柄位于前进挡位置(D)时,制动器B3不工作:当操纵手柄位于前进挡位置(2,1或S,L)而行星齿轮变速器处于2挡时,制动器B3 工作.这样不论汽车加速或减速,前后太阳轮组件都被该制动器固定,此时的2挡在汽车放松加速踏板减速时能产生发动机制动作用.目前大多数轿车自动变速器都采用这种结构. ?工作原理:根据行星齿轮变速系统的变速原理,当超速制动器BO 放松,直接离合器CO接合时,超速行星排处于直接传动状态,其传动比为 1:当超速制动器BO制动,直接离合器CO放松时,超速行星排处于增速传动状态,传动IrL/J~于1.当行星齿轮变速系统处于1挡,2 挡,3挡或倒挡时,超速行星排中的超速制动器B0放松,直接离合器CO结合,使超速行星排处于传动比为1的直接传动状态,而后半部分的双排行星齿轮机构各换挡执行元件的工作和原辛普森式3挡行星齿轮变速器在1 挡,2挡,3挡及倒挡时的工作完全相同,如表2所示.来自变矩器的发动机动力经超速行星排直接传给后半部分的双排行星齿轮机构,此时行星齿轮变速系统的传动比完全由后半部分的双排行星齿轮机构及相应的换挡执行元件来控制.当行星齿轮变速系统处于超速挡时,后半部分的双排行星齿轮机构保持在3挡位置,而在超速行星排中,由于超速制动器BO,产生制动,直接离合器CO放松,使超速行星排处于增速传动状态,其传动比小于l. 直接离合器CO在自动变速器处于超速挡以外的任何一个挡位时都处于接合状态,因此当发动机刚刚起动而油泵尚未建立正常的油压时,直接离合器CO已处于半结合状态,这样易使其摩擦片因打滑而加剧磨损.为防止出现这种情况,在直接离合器CO 处并列布置了一个直接单向超越离合器FO,使超速行星排在逆时针对太阳轮产生锁止作用,防止直接离合器CO 的摩擦片在半接合状态下打滑. (作者单位:大连职业技术学院) 汽车维修2011.67。

辛普森行星齿轮变速装置结构与工作原理

辛普森行星齿轮变速装置结构与工作原理
环保与节能要求
随着环保意识的提高和节能需求的增加,辛普森行星齿轮 变速装置在电动汽车和混合动力汽车等领域的应用前景将 更加广阔。
THANKS FOR WATCHING
感谢您的观看
架体通常由高强度材料制成,以确保足够的刚性和耐久性 。
03 行星齿轮变速装置的工作 原理
动力传递路径
太阳轮
发动机动力输入太阳轮,通过行星轮架输出至差 速器。
行星轮
行星轮将动力传递给齿圈,同时通过行星轮架将 部分动力传递给另一个齿圈。
齿圈
动力通过行星轮传递给齿圈,再通过固定轴传递 给车轮。
变速原理
变速过程
通过控制行星齿轮的转动半径,实现动力的 变速。行星齿轮的转动半径越大,输出速度 越快;反之,转动半径越小,输出速度越慢 。
结构组成
行星齿轮组
由多个行星齿轮组成, 用于传递动力。
太阳轮
固定转速的输入轴,与 行星齿轮组配合传递动
力。
内齿圈
固定转速的输出轴,与 行星齿轮组配合传递动
力。
控制机构
用于控制行星齿轮组的 转动半径和方向,实现
太阳轮通常与输入轴连接,将动力传 递给行星齿轮变速装置。
齿圈
齿圈是行星齿轮变速装置中的固定元件之一,通常与输出轴 连接,通过行星轮和太阳轮的旋转实现动力的传递。
齿圈通常由一组固定的行星轮支撑,行星轮可以在其中旋转 。
架体
架体是行星齿轮变速装置中的固定元件之一,用于支撑行 星轮和齿圈,同时承受和传递所有的力和力矩。
动效率和寿命。
智能化控制
03
引入传感器和智能算法,实现变速装置的实时监测和自动调整,
提高其适应性和可靠性。
应用领域拓展
电动汽车

辛普森式自动变速箱

辛普森式自动变速箱

×

N
○××○××××××× × ×

1st ○ × × ○ ○ × × × × × ○ × ○× 2.804
D 2nd ○ ○ × ○ ○ × × × ○ × ○ ○× ×
1.531
3rd × ○ ○ ○ ○ ○ × × ○ × ○ ×
×
1.000
4th × × ○ × ○ ○ ○ × ○ × × ×
·禁止挂4挡 ·禁止控制锁止离合器 ·禁止控制系统压力 ·用输入轴速度传感器代替
5.9 主要零部件的工作原理
28
■ SCSV A,B(Shift control solenoid valve)
- 决定变速挡位 - 控制阀体油压 - 规定电阻 : 13± 2Ω(20℃) - 故障时(故障灯不亮)
· D→4挡固定 · 2 →3挡固定 · L →1挡固定
出OU力T
OD输入轴
输入轴
输出轴
POSITION SOLENOID
CLUTCH
BRAKE
O.W .C.
GEAR
S1 S2 SL C0 C1 C2 B0 B1 B2 B3 F0 F1 F2 RATIO
P
○××○××××××× × ×

R(V<7)
○××○×○×××○○ × ×
2.393
R(V>=7)
○○×○××××××○ ×
停住FRT,RR中心轮 顺时针,逆时针旋转 停住FRT,RR中心轮逆时针旋转
停住FRT行星齿轮顺时针,逆时针旋转
限制O/D中心轮或行星架的旋转方向 限制FRT,RR中心轮的逆时针旋转 限制FRT行星架的逆时针旋转
3.3 各挡位工作要素
11
C0 B0 F0 C1 B1 C2 B2 F1 B3 F2

辛普森式四档行星齿轮机构的传动路线分析

辛普森式四档行星齿轮机构的传动路线分析

这种四档变速器是在不改变原辛普森式三档行星齿轮变速器的主要结构和大部分零部件的情况下,另外再增加一个单排行星齿轮机构和相应的换档执行元件来产生超速档。

这个单排行星齿轮机构称为超速行星排,它装在行星齿轮变速器的前端,如图9.16所示。

其行星架是主动件,与变速器输入轴连接;齿圈则作为被动件,与后面的双排辛普森行星齿轮机构连接。

超速行星排的工作由直接多片离合器CO和超速制动器BO来控制,直接多片离合器CO用于将超速行星排的太阳轮和行星架连接,超速排的制动器BO用于固定超速行星排的太阳轮。

根据行星齿轮变速器的变速原理,当制动器BO放松、直接多片离合器CO接合时,超速行星排处于直接传动状态,其传动比为1。

当超速制动器BO制动、直接离合器CO放松时,超速行星排处于增速传动状态,其传动比小于1。

l)l档把预选杆置于D位置,C2后多片离合器作用把输入动力传给前齿圈,F1单向离合器作用,使后行星架固定不动。

辛普森1档的动力流分析比较困难,因为在该档位前后行星排可通过两个构件相互间连接。

其输入动力经C2后多片离合器传给前齿圈,使其顺时针旋转。

前齿圈又带动前行星轮顺时针转动,由于前行星轮既可带动前行星架顺时针转动(输出轴的转动),又可带动太阳轮边时针转动,因此前齿圈的转速通过前行星轮被分解成两条传动路线,其中前星行架和太阳轮的转动方向比较明确,但前行星架和太阳轮转速如何分配呢?由于后排行星架被FI单向离合器固定,因此后排行星齿轮机构具有确定传动比,且是减速机构,另外后排行星齿轮机构通过后齿圈输出,它的输出转速和转动方向应该和前行星架保持一致,因为前行星架和后齿圈为同一构件。

根据这两个条件,就可以确定前行星架和太阳轮之间的转速分配,显然太阳轮的转速比前行星架快得多。

太阳轮逆时针的旋转带动后行星轮顺时针转动,行星轮再带动后齿圈顺时针转动,由于后齿圈顺时针转动时,会给后行星架施加一个逆时针的力矩,通过F1单向离合器将后行星架固定。

辛普森行星齿轮变速装置结构与工作原理

辛普森行星齿轮变速装置结构与工作原理

n2 1
第1排矢量图
第2排矢量图
第3排矢量图
图3—43 倒档时行星齿轮机构运动矢量图
R3
n3 2
R n2 2 2
R1
n1 2
R3
2)用矢量图法计算R档传动比和传动方向
①R档时第一行星排运动矢量图如图3-43中第1排矢量图所示。1n3=1n2=1n1 ②R档时第二行星排运动矢量图如图3-43中第2排矢量图所示。因离合器C2工作,把共用太阳轮与第一行星排
1 图3-44b D1档行星齿轮变速装置转矩传动结构简图
图3-44c D1档行星齿轮变速装置转矩传动仿真图
1)D1档转矩传动分析
从表3-3可知,D1档时C0、C1、F0、F2工作。其具体传动情况如图3-44所示。当C0 与F0工作后,可把超速行星排内的行星架与太阳轮连成一体,整个行星排成一刚体 (原理如前所述),D1档时,使超速行星排内的齿圈以1∶1的传动比把涡轮的转矩传 递给离合器C1的鼓与毂。
3)R档传动比计算 ①用运动方程计算R档传动比
从图3-43的传动过程可知,在R档时动力是直接由第二排传出,用第二行星排运动方程计算传动比即可。 第二行星排运动方程为 n1+a.n2-(1+a)n3=0 上式中,n1、n2、n3分别为第二排太阳轮、齿圈和行星架转速。
a= Z2齿圈齿数/Z1太阳轮齿数>1。 将n3=0代入上式中,得: n1+a.n2 =0 n1=-a·n2 n1/n2=-a>1 即主动轴转数大于输出轴转速,是减速传动,式中的“-”号表示主被动旋转方向相反。
档位 档位
离合器
制动器
单向离合器
C0
C1
C2
B0
B1
B2
B3
F0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开题报告摘要目前,自动变速器在汽车领域的应用越来越广泛。

其中主要原因是自动变速器能够根据路面状况自动改变车速,这极大地方便了驾驶者。

不仅能够缓解驾驶者驾驶疲劳减少路面交通事故,而且还能够提高汽车的燃油经济性。

同时,还能提高汽车的动力性。

行星齿轮变速箱主要结构为行星齿轮机构,行星齿轮机构主要由太阳轮、外齿圈、行星轮、行星架组成。

由于行星齿轮机构具有两个自由度,因此行星齿轮机构没有固定的的传动比,不能直接应用于变速器。

为了能够将行星齿轮变速器应用于自动变速器,必须将齿轮机构中的元件固定使其具有一个自由度。

只有一个自由度的行星齿轮机构具有固定的传动比,因此可以应用于自动变速器中。

我设计的为商务车行星齿轮变速箱,行星齿轮机构具有结构紧凑、刚度大、传动平稳等优点。

行星齿轮变速箱动力改变由液力变矩器进行控制,其操纵机构为离合器和制动器,并通过液压油进行控制,从而实现自动换挡。

但是,自动变速器结构比较复杂。

通过这次毕业设计我对自动变速器原理做了大量的工作并参考商务车车型最终确定了其传动方案,并对各档传动比做了详细的说明。

关键词:自动变速器行星齿轮变速箱液力变矩器AbstractAt present, more and more widely applied in the field of automatic transmission in car.The main reason is that automatic transmission can change the speed automatically according to the road conditions, it has made great drivers.Not only can alleviate drivers driving fatigue reduce road traffic accidents, but also can improve the fuel economy of the car.At the same time, it can improve power performance of car.Planetary gear transmission main structure for a planet gear mechanism, the planetary gear mechanism is mainly composed of the sun wheel, outer ring gear, planetary wheel, planet carrier.Because the planet gear mechanism has two degrees of freedom, so the planet gear mechanism has no fixed transmission ratio, cannot be directly applied to the transmission.In order to be able to will be applied in the automatic transmission planetary gear transmission, the gear mechanism of components must be fixed exhibit a degree of freedom.There is only one degree of freedom of planet gear mechanism has a fixed ratio, thus can be used in the automatic transmission.I design for commercial vehicles planetary gear transmission, the planet gear mechanism has the advantages of compact structure, large rigidity, smooth transmission.Planetary gear transmission power changes controlled by hydraulic torque converter, its operating mechanism for the clutch and brake, and the control with the hydraulic oil, so as to realize automatic shift.However, the automatic transmission structure is more complex.Through this graduation design I made a lot of work on automatic transmission principle and refer to commercial vehicles models ultimately determine the transmission scheme, and has made the detailed instructions for each transmission ratio.KEYWORDS:automatic transmisson lanetary gearbox torque converter目录摘要 (Ⅰ)Abstract (Ⅱ)第1章自动变速器的基本组成 (1)第2章行星齿轮和液力变矩器的工作原理 (4)2.1行星齿轮的结构及工作原理 (4)2.2液力变矩器的工作原理 (5)第3章自动变速器传动方案及传动原理 (6)3.1自动变速器的传动方案 (6)3.2自动变速器的传动原理 (6)3.2.1空挡或驻车挡的传动原理 (6)3.2.2D位D1挡汽车加速与滑行时传动原理 (7)3.2.3汽车在L位一挡时前后行星排的传动原理 (10)3.2.4D位D2挡传动原理图 (13)3.2.5二挡时自动变速器的传动原理图 (16)3.2.6D位D3挡时,自动变速器的传动原理 (18)3.2.7超速挡传动原理 (19)3.2.8自动变速器的倒档传动原理 (21)第4章行星齿轮机构设计及计算 (23)4.1变速器齿轮传动的设计及计算 (23)4.1.1各挡位传动比分析 (23)4.1.2齿轮参数设计及计算 (23)4.1.3实际传动比 (25)4.1.4齿轮强度校核 (25)4.2换挡执行机构 (26)4.2.1多片离合器 (27)4.2.2制动器 (27)4.2.3单向超越离合器 (28)第五章结论 (29)致谢 (30)参考文献 (31)第1章自动变速器的基本组成自动变速器的种类和型号有很多,它们的形状和结构也很复杂并且不相同。

与此同时,大部分自动变速器组成大致相同。

液力变矩器齿轮机构是自动变速器的重要组成部件。

自动变速器在现代汽车中是迄今为止比较复杂的汽车部件之一,根据成份元件的工作原理,大致可以将这些成份元件分为五大主要部分。

自动变速器结构图如图1-1所示。

图1-1 自动变速器结构图(1)液力变矩器液力变矩器是在汽车中比较关键的部件,其主要的功能是改变发动机输入的转矩从而可以改变汽车的行驶车速。

发动机与汽车变矩器相连接,功能主要是改变汽车发动机转矩相连接。

油液流动过程中,工作液体能量的变化,从而可以使发动机的动力能够传递到其输入轴,同时它能根据汽车在行驶过程中路面状况来判断汽车应具有的车速。

液力变矩器如图1-2所示。

图1-2液力变矩器(2)行星齿轮机构自动变速箱的行星齿轮在自动变速器中是比较关键的部件,自动变速器的变速机构有普通齿轮和行星齿轮变速机构式两种。

由于普通齿轮式变速器的缺点较多,因此在自动变速器方面应用较少。

普通齿轮变速器主要缺点为尺寸比较大,同时所能提供的传动比小。

因此,普通齿轮式变速器只在少数车型采用(本田车型上大都采用此类变速器)。

相对目前汽车市场而言,行星齿轮变速箱在自动变速器中的应用较为广泛。

自动变速器内部结构如图1-3所示。

图1-3自动变速器内部结构自动变速器是迄今为止汽车中比较复杂的组成汽车部件。

同时,自动变速器也在汽车变速器中发挥重要。

自动变速器可以极大地缓解驾驶者驾驶偏劳,从而减少汽车交通事故的发生。

与此,自动变速器的燃油经济性以及汽车动力性相比普通变速器的要好。

自动变速器供油系统结构复杂,主要通过油泵进行齿轮变速箱内部油路的供给。

目前,电控系统越来越多地应用于自动变速器,这也极大地改善了汽车的控制系统和操纵机构。

自动变速器具有很多优越性,其主要特点有:1、自动变速器车容易驾驶。

2、自动变速器车换挡平顺,提高乘坐舒适性。

3、自动变速器传动平稳,降低了轮胎的磨损,提高了轮胎的使用寿命,使发动机、传动系的寿命都有所提高。

4、自动变速器能够根据相应状况,自动改变车速,及大地改善了汽车的燃油经济性,节省了汽车行驶油耗量,降低了汽车尾气对环境的污染。

5、自动变速具有良好的通过性。

汽车在陡坡上行驶时,不存在手动车下滑问题。

第2章行星齿轮和液力变矩器的工作原理2.1行星齿轮的结构及工作原理行星齿轮变速器被广泛地用于现代汽车变速器中,而我们知道的齿轮大部分都是轴线固定。

转动轴都是通过轴承固定在机器的机体上。

所以,它们的转动中心对机器的机体是相对固定的。

有定轴齿轮与此同时那么就有动轴齿轮,然后我们所不太熟悉的一类齿轮被称为行星齿轮。

我们知道这类齿轮的转动轴线是不固定的,这类齿轮的转动轴线安装在一个支架上,这个支架是可以转动的。

行星齿轮不仅可以像定轴齿轮一样,按着转动轴转动中心进行转动之外,同时,它们的转动轴中心不断地进行转动,还跟着支架随着其他支架而运动。

跟随自己轴线转动中心进行的转动被称为自转。

反而言之,随其它轴线的中心进行运动而被称为公转。

与行星的运转非常类似,由此,其被称为行星齿轮,结构如图2-1所示。

图2-1行星齿轮结构图轴线被固定在机器机体上的的齿轮,其传动原理我们都很熟悉。

一对齿轮进行相互啮合的过程中,一个称为主动轮,从它那里不断输入动力,另外一个齿轮被称为从动轮,从它那里通过轴传出动力。

同时,也有的齿轮仅仅作为传递动力而不参与传动比改变,因此被我们称为惰轮。

惰轮对动力的传动有很大作用,它不改变齿轮传动的速比,而只改变动力传动的方向。

因而,从它那里通过,而不改变传动速比,只改变传动方向。

我们所了解的行星齿轮的齿轮系统与定轴齿轮,它们的分析办法就有所不同。

与此同时可以用离合器或制动器作为操纵机构,根据条件限制其中一条轴的转动,剩下两条轴就可以进行动力传动进行动力输出。

相关文档
最新文档