数学原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理
1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有人.
2.在1~100的自然数中,是5的倍数或是7的倍数的数有个.
3.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为人.
4.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有
人.
5.在1至10000中不能被5或7整除的数共有个.
6.在1至10000之间既不是完全平方数,也不是完全立方数的整数有个.
7.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有人.
8.分母是1001的最简真分数有个.
乘法原理
1、某小姐有三件裙子,四件上衣,两双鞋子,问总共有几种不同的搭配方法?
2、设一室有五个门,甲分由不同之门进出此室各一次,但不得由同一门进出,则其方法有几种?
3、图书馆中有五本不同的三民主义书和八本不同的数学书,一学生欲选一本书的方法有几种若三民主义和数学各选一本,共有多少种选法?
4、某篮球校队是由二位高一学生,四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会,问总共有多少种选法?
5、甲班有40位同学,乙班有45位同学, 丙班有50位同学,若各班推选一人筹办文艺展览会,共有几种选派法?
6、用0,1,2,3,4,5,6组成四位数的密码共有几种?
7、用0,1,2,3,4五个数字排成的三位数有几个其中数字相异的三位数有几个?
加法原理
1、两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?
2、用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个?
3、在左下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?
4、下图是某街区的道路图。从A点沿最短路线到B点,其中经过C点和D点的不同路线共有多少条?
5、沿左下图中箭头所指的方向从A到B共有多少种不同的走法?
抽屉原理
1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.
2.在明年(即1999年)出生的1000个孩子中,请你预测:
(1)同在某月某日生的孩子至少有个.
(2)至少有个孩子将来不单独过生日.
3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.
4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.
如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.
5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.
6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有
人的头发根数一样多.
7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.
8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.
9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.
10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.
11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.
12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/ 50.
13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).