石墨烯聚苯胺复合材料

合集下载

石墨烯复合材料

石墨烯复合材料

石墨烯复合材料石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。

但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。

因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。

石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。

一、石墨烯复合材料的分类和制备1、石墨烯-高分子复合材料石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。

制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。

因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。

例如,异氰酸苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。

2、石墨烯-无机纳米粒子复合材料无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。

石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。

无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。

目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。

3、其它石墨烯复合材料石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。

这类材料具有多功能性,用于超级电容器或者传感器等。

二、石墨烯复合材料在水治理的应用1、吸附作用碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。

石墨烯聚苯胺复合材料

石墨烯聚苯胺复合材料
4
石墨烯/聚苯胺材料的应用
石墨烯/聚苯胺复合材料在MFC应用
石墨烯是一种六角形呈蜂窝晶格的单层片状结构的二维 新材料,具有导电能力强、比表面积大、突出的电学、力 学、热力学性能等优点。这使其成为最具潜力的高科技应 用材料,但石墨烯易发生团聚,分散性差,会影响其导电 性能。
将 GR 填充到 PANI 上制成复合材料,PANI 以 π-π键形式均匀分散在 GR 上,这种协同作用可避免 两种材料各自的不足,可较大程度地提高复合材料 的电化学性能。
[5]汪建德、彭同江、鲜海洋等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及. 90-98
[6]何海波、王许云、白立俊等. 石墨烯/聚苯胺复合阳极的制备及在MFC中应 用[J]. 化工学报. 2014,65(6). 2186-2192
4
4
石墨烯/聚苯胺材料的应用
石墨烯/聚苯胺复合材料在MFC应用 MFC 阳极具有负载微生物、传递电子、底物氧
化等作用,是影响 MFC 产电性能的重要影响因素 之一。选择有潜力的阳极材料以及对其进行改性, 对 MFC 产电能力的提高具有重要的意义。
导电的聚苯胺是一种典型的π电子共轭结构的高 分子聚合物,但PANI 在化学氧化还原过程中体积变化 较大,导致其化学稳定性较差。
MFC
与金属相比,石墨烯/聚苯胺复 合材料作为电磁屏蔽材料具有 低密度、不易腐蚀、易加工等 优点
石墨烯/聚苯胺材料的应用
石墨烯/聚苯胺复合材料在超级电容器电极中的应用
聚苯胺(PANI)作为超级电容器的理想电极材料, 具有制备工艺简单、成本低廉、可逆性好、比容量 高、能进行快速的掺杂与去掺杂过程等一系列优点。 但由于在长时间的充放电循环过程中其结构易出现 溶胀和收缩行为, 导致其循环稳定性较差, 限制了它 的进一步应用, 与碳基材料复合是缓解此缺陷的最佳 途径之一。而作为新型碳材料的石墨烯有着良好的 结构稳定性、强导电性和大比表面积, 被认为是用来 克服PANI结构不稳定性的最佳碳材料之一。

复合材料种类

复合材料种类

1.2.2石墨烯/聚合物纳米复合材料种类最近几年,以聚丙烯、聚甲基丙烯酸甲酯、聚苯胺、环氧树脂、硅橡胶等为基体的石墨烯复合材料的研究都有所报道。

其中出现了较多,关于石墨烯在高分子基体中达到纳米水平分散的研究。

这里简要介绍一些主要的石墨烯/聚合物纳米复合材料。

(1)聚苯胺(PANI)/石墨烯纳米复合材料聚苯胺(PANI)/石墨烯纳米纤维复合材料是用原位聚合方法,在酸性条件下,氧化石墨烯与苯胺单体聚合得到的[1]。

然后,使用水合肼还原不同氧化石墨烯质量比的PANI/氧化石墨烯复合材料。

最后,对还原的PANI再氧化和质子化生成PANI/石墨烯纳米复合材料。

Bhadra等[2]也报道过纯PANI这种类型的热降解。

PANI和PANI/石墨烯复合材料样品在同一温度范围内质量损失分别是40%和25%。

结果表明,PANI/石墨烯纳米复合材料热稳定性较之纯的PANI提高了。

同时,复合材料的导电率也有很大的增加。

(2)聚氨酯/石墨烯纳米复合材料使用原位聚合的方法制备功能化的石墨烯(FGS)/水性聚氨酯(WPU)纳米复合材料[3]。

由于FGS粒子在WPU基体中的均匀分散使纳米复合材料电导率比初始WPU增加了105倍。

由于导电通道的形成,在高分子基体中引发了电导率的突变。

当填充FGS仅为2%(Wt)时,可得到渗滤阀值。

(3)环氧树脂/石墨烯纳米复合材料Kuilla等[4]用原位插层聚合制备了环氧树脂石墨烯纳米复合材料环氧树脂的热导率很小。

但是,加入石墨烯后其热导率得到了显著提高。

填充5%(Wt)GO 的环氧树脂基复合材料其热导率是1W/mK,这是纯环氧树脂热导率的4倍。

当填充20%(Wt)GO的环氧树脂基复合材料其热导率增加到6.44W/mK。

这些结果表明石墨烯复合材料用于散热是一种很有前途的热界面材料。

(4)聚碳酸酯/石墨烯纳米复合材料通过熔融复合法,制备石墨和功能化石墨烯(FGS)增强的聚碳酸酯(PC)复合材料[5]。

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能一、本文概述本文旨在探讨石墨烯聚苯胺复合材料的制备工艺及其电化学性能。

石墨烯,作为一种二维的碳纳米材料,因其出色的电导性、高比表面积和良好的化学稳定性,在电化学领域具有广泛的应用前景。

聚苯胺,作为一种导电聚合物,具有良好的电化学活性和环境稳定性。

将石墨烯与聚苯胺复合,可以充分发挥两者的优势,提高复合材料的电化学性能。

本文将首先介绍石墨烯和聚苯胺的基本性质,然后详细阐述石墨烯聚苯胺复合材料的制备方法,包括溶液混合法、原位聚合法等。

随后,通过对制备的复合材料进行结构表征和电化学性能测试,分析其电化学性能的影响因素及优化条件。

本文还将讨论石墨烯聚苯胺复合材料在超级电容器、锂离子电池等电化学器件中的应用潜力,并展望其未来的发展前景。

通过本文的研究,旨在为石墨烯聚苯胺复合材料的制备和应用提供理论支持和实践指导,推动其在电化学领域的广泛应用。

二、石墨烯聚苯胺复合材料的制备方法石墨烯聚苯胺复合材料的制备是一个融合了化学合成和纳米材料制备技术的复杂过程。

这种方法的关键步骤包括石墨烯的制备、聚苯胺的合成以及两者的复合。

我们需要制备高质量的石墨烯。

这通常通过化学气相沉积(CVD)法、氧化还原法或剥离法实现。

其中,氧化还原法是最常用的一种方法,它通过将天然石墨与强氧化剂反应,生成氧化石墨,再经过热还原或化学还原得到石墨烯。

接下来,我们合成聚苯胺。

聚苯胺的合成通常通过化学氧化聚合法进行,如使用过硫酸铵作为氧化剂,在酸性条件下将苯胺单体氧化聚合,生成聚苯胺。

制备石墨烯聚苯胺复合材料的核心步骤是将石墨烯和聚苯胺进行有效复合。

这可以通过溶液混合法、原位聚合法或熔融共混法实现。

其中,溶液混合法是最常用的一种方法。

将石墨烯分散在适当的溶剂中,然后加入聚苯胺溶液,通过搅拌或超声处理使两者充分混合。

随后,通过蒸发溶剂或热处理使复合材料固化。

为了进一步提高复合材料的性能,我们还可以在制备过程中引入其他添加剂或进行后处理。

石墨烯复合材料中的电磁波吸收性能研究

石墨烯复合材料中的电磁波吸收性能研究

石墨烯复合材料中的电磁波吸收性能研究近年来,石墨烯复合材料因其优异的性能引起了广泛的关注。

在复合材料的研究中,电磁波吸收性能是一项重要的指标,它直接影响到材料在电磁波应用中的实际效果。

本文将对石墨烯复合材料中的电磁波吸收性能研究进行探讨。

一、石墨烯复合材料的电磁波吸收机理石墨烯复合材料由石墨烯和其他材料复合而成,其中石墨烯作为复合材料中的一种纳米材料,具有出色的导电和导热性能。

当石墨烯复合材料受到电磁波的照射时,其表面电荷振荡会产生吸收能力。

此外,石墨烯复合材料中的磁散射和磁吸收也可以导致电磁波的吸收。

二、石墨烯复合材料的电磁波吸收性能研究现状在实际应用中,一般将石墨烯复合材料作为电磁波吸收材料来研究。

有研究表明,石墨烯复合材料具有较高的电磁波吸收性能。

例如,石墨烯/NiFe2O4复合材料的吸收峰值在3 GHz处达到-50 dB,这意味着这种复合材料可以有效地吸收电磁波。

另外,石墨烯/聚苯胺复合材料的吸收带宽也很宽,可以达到3 GHz到10 GHz。

这些研究表明,石墨烯复合材料具有较好的电磁波吸收性能。

三、石墨烯复合材料的改性方法为了使石墨烯复合材料具有更好的电磁波吸收性能,研究者们采用了各种方法来对石墨烯进行改性。

其中,掺杂和表面修饰是两种常见的改性方法。

1.掺杂改性掺杂是指在石墨烯中加入金属、非金属甚至有机物质。

这种掺杂可以改变石墨烯的导电性质,从而提高电磁波吸收性能。

例如,在石墨烯中掺杂碳纳米管可以引起由于磁吸收引起的迟滞效应,从而提高了石墨烯复合材料的吸收能力。

2.表面修饰改性表面修饰是指通过化学方法对石墨烯表面进行处理,增强石墨烯与复合材料之间的相互作用。

这种方法可以改善石墨烯在复合材料中的分散性和稳定性。

例如,将石墨烯表面修饰成氧化石墨烯或氢氟酸处理的石墨烯可以增强其与其他材料的相容性,提高复合材料的电磁波吸收性能。

四、石墨烯复合材料在电磁波应用中的展望石墨烯复合材料具有广阔的应用前景,特别是在电磁波领域中。

石墨烯/氧化锰/聚苯胺微纳米复合材料的制备及其超级电容器性质的研究

石墨烯/氧化锰/聚苯胺微纳米复合材料的制备及其超级电容器性质的研究

Re s e a r c h O n t he F a b r i c a io t n a n d S u p e r ap c a dt o r Cha r a c t e is r t i c s o f
Gr a p h e n e / Mn OJ Po l y a n i l i n e Mi c r o 。 _ _ - Na n o Co mp o s i t e s
A b s t r a c t :T h e g r a p h e n e / ma ng a n e s e o x i d e ・ / p o l y a n i l i n e mi c r o — — n a n o c o m p o s i t e s w e r e f a b r i c a t e d a n d i t s c a p a c i t i v e p r o p e r t i e s
要 :本文主要对石墨烯/ 氧化锰/ 聚苯胺微纳米复合物作 为超级 电容 器电极材料 的制备及其 电容性质进行 了研 究。红 外
光谱 、x一 射线光电子能谱 和扫描 电镜等测试结果表 明 已成 功合成 了三元微纳米复合物。通过循环伏安测试和恒电流充放 电
测试表明石墨烯与氧化锰 以 1: 5 的质量 比进行复合得 到的产物电化 学储 能性质最好 。三元复合 时,随着苯胺的增加 ,三元 复合物的充放 电时间逐渐增 长,苯胺与石 墨烯/ 氧化锰 复合材料的质量比为2: 1 时 ,复合物的 比电容为 3 1 1 F / g ,比石墨烯/ 氧化锰的比电容 ( 1 7 1 F / g )高出近一倍 ,由此 可知 ,聚苯胺的加入显著提 高了二元复合 物的比电容。 关键词 :超级电容器;石墨烯 ;复合 材料 中图分类号 : 06 文献标识码 :A 文章编号 :1 6 7 2 ~ 9 8 7 O ( 2 O 1 3 ) O 6 一O 0 9 O 一 0 3

改性氧化石墨烯-聚苯胺复合材料的制备及防腐性能

改性氧化石墨烯-聚苯胺复合材料的制备及防腐性能

改性氧化石墨烯-聚苯胺复合材料的制备及防腐性能改性氧化石墨烯/聚苯胺复合材料的制备及防腐性能摘要:随着科技的不断发展和人们对环境保护的重视,防腐材料的研究逐渐成为热点。

本研究以聚苯胺(PANI)为基体,通过改性氧化石墨烯(GO)的加入制备了一种改性氧化石墨烯/聚苯胺(GO/PANI)复合材料,并对其防腐性能进行了研究。

结果表明,GO的引入显著提高了复合材料的电导率和机械性能,并且具有良好的防腐性能。

本研究为开发高性能防腐材料提供了新的思路。

关键词:改性氧化石墨烯,聚苯胺,复合材料,防腐性能 1. 引言近年来,防腐材料在工业生产和日常生活中扮演着重要的角色。

传统的防腐材料往往存在使用寿命短、防护效果不理想等问题,因此开发高性能的防腐材料成为迫切需求。

氧化石墨烯(GO)作为一种具有优异电子性能和化学稳定性的纳米材料,被广泛应用于各个领域。

然而,GO在防腐材料中的应用受限于其高电阻率和机械性能较差的问题。

因此,将GO与其他有机材料进行复合改性,以提高复合材料的电导率和力学性能,并同时具备优异的防腐性能,成为近年来的研究重点。

2. 实验部分2.1 材料的制备2.1.1 GO的制备采用改进的Hummers法制备GO。

首先将天然石墨加入浓硫酸中,并搅拌30分钟。

然后缓慢加入高锰酸钾,并继续搅拌1小时。

接下来将混合溶液稀释至10倍,加入冰浴中,并缓慢滴加稀磷酸。

最后用10% HCl溶液洗涤过滤得到GO。

2.1.2 GO/PANI复合材料的制备将得到的GO与聚苯胺(PANI)按照一定比例混合,并在溶剂中搅拌2小时使其均匀分散。

随后将混合物转移到模具中,用真空烘箱进行干燥,最后得到GO/PANI复合材料。

2.2 防腐性能测试采用电化学阻抗谱(EIS)技术对GO/PANI复合材料的防腐性能进行评估。

将复合材料制备成电极,并将其浸泡在含有NaCl的腐蚀介质中,通过测量电流和电位变化来研究复合材料的防腐蚀性能。

3. 结果与讨论3.1 GO/PANI复合材料的表征通过扫描电镜观察复合材料表面的形貌,可以看到GO均匀地分散在PANI的基体中。

氧化石墨烯_聚苯胺纳米复合材料的制备_表征及其潜在应用_马兴法

氧化石墨烯_聚苯胺纳米复合材料的制备_表征及其潜在应用_马兴法

氧化石墨烯/聚苯胺纳米复合材料的制备、表征及其潜在应用 马兴法1, 2∗ 郑静 1 贺笑春 1 高明军1 李光3(1烟台大学环境/材料学院, 山东,烟台264005, 2浙江大学硅材料国家重点实验室, 浙江,杭州310027, 3浙江大学工业控制技术国家重点实验室, 浙江,杭州310027)摘要氧化石墨烯、导电聚苯胺是重要的多功能材料,在高能量的锂电池、超级电容器、催化、太阳能电池、化学传感、生物传感等领域有着较高的研究价值和潜在应用。

本文采用化学氧化法制得了氧化石墨烯,之后利用原位聚合途径合成了氧化石墨烯/导电聚苯胺纳米复合材料。

采用透射电镜(TEM),原子力显微镜(AFM),红外光谱(FTIR),UV-Vis,X-射线衍射(XRD)等进行了相应表征。

为考察氧化石墨烯、氧化石墨烯/导电聚苯胺纳米复合材料的表面、界面特性,便于开发性能优异的纳电子器件,用所合成的纳/微米结构材料及其复合材料构筑了QCM结构化学传感器原型器件,对器件的吸附响应特性进行了对比考察。

探讨了存在的不足,并提出了一些改进的建议。

关键词: 氧化石墨烯; 纳米复合材料;表面与界面特性;吸附响应;化学传感Praparation, Characterizations, and Its Potential Applications of PANi/ Graphene Oxide Nanocomposite Xingfa Ma 1, 2*, Jing Zheng1, Xiaochun He1, Mingjun Gao1, and Guang Li3(1School of Environmental and Material Engineering, Yantai University, 264005, Yantai, 2State Key Laboratory of Silicon Materials, Zhejiang University, 310027, Hangzhou, 3National Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, 310027,Hangzhou)AbstractGraphene oxide (GO), nano/micro-structured polyaniline (PANi) are some typical important functional materials, which have many applications in lithium ion battery with high energy, supercapacitor, catalysts, solar cells, nanodevices, chemical sensors, biosensors and biomedical fields. In this paper, GO was obtained by using chemical oxidation method at room temperature, and nano/micro-structured GO/PANi composite was prepared with in-situ polymerization of aniline in the presence of GO suspension. A series of characterizations were examined by TEM (transmission electron microscopy), AFM (Atomic Force Microscope), XRD (X-ray diffraction), the Fourier-Transform Infrared (FTIR) spectra, UV-Vis, et al. To examine the surface and interface properties of GO, GO/PANi nanocomposite, chemical prototype sensors were constructed based on GO, GO/PANi nanocomposite and QCM device. The comparative response behaviors of the sensor to some typical volatile compounds operating at room temperature were investigated. The adsorption features to some typical volatile compounds were discussed. Some key issues and modification ideas were suggested for further investigation.Keywords: Graphene oxide (GO); Nanocomposites; Surface and Interface Features; Adsorption Response; Chemical sensors作者简介:马兴法,男,工学博士,副教授,从事有机-无机复合功能材料及器件性能研究; e-mail address: xingfamazju@。

电化学性能研究

电化学性能研究

“电化学性能研究”资料合集目录一、LiNiCoMn系锂电池正极材料的制备及其电化学性能研究二、高品质石墨烯聚苯胺复合材料的制备及电化学性能研究三、石墨烯及硒基纳米复合材料的设计合成与电化学性能研究四、细菌纤维素为基体合成Mo,Co,Cu基材料及其电化学性能研究五、剑麻纳米纤维素石墨烯聚苯胺复合材料的制备及其电化学性能研究六、纳米Fe3O4石墨烯电极材料制备及电化学性能研究LiNiCoMn系锂电池正极材料的制备及其电化学性能研究随着可再生能源技术的广泛应用,对高效、安全、长寿命的二次电池的需求也日益增长。

其中,具有高能量密度、长循环寿命的LiNiCoMn 系复合金属氧化物正极材料因其优秀的性能而备受。

本文将探讨LiNiCoMn系正极材料的制备方法及其电化学性能研究。

LiNiCoMn系正极材料的制备方法主要有固相合成法、液相合成法、溶胶-凝胶法、微波合成法等。

其中,液相合成法因为其制备过程简单、可大规模生产、成分均匀等优点而广泛使用。

液相合成法主要包括共沉淀法、溶胶-凝胶法等。

以共沉淀法为例,其制备过程如下:将含有Ni、Co、Mn的盐类溶解于水中,然后加入沉淀剂如氨水、氢氧化钠等,使金属离子形成氢氧化物沉淀。

然后将沉淀物过滤、洗涤、干燥,最后在一定温度下进行热处理,形成目标产物。

该方法可以制备出粒径均匀、分散性好的复合金属氧化物。

电化学性能是评价电池性能的重要指标,主要包括首次放电容量、循环效率、倍率性能等。

通过对这些指标的测量,可以了解材料的电化学活性、稳定性以及其在不同电流密度下的性能表现。

首次放电容量:指电池首次放电时的最大容量,通常以mAh/g为单位进行表示。

LiNiCoMn系正极材料具有较高的首次放电容量,显示出良好的电化学活性。

循环效率:指电池在充放电过程中,实际放出的能量与理论可放出能量的比值。

LiNiCoMn系正极材料在循环过程中表现出良好的结构稳定性和电化学稳定性,具有较高的循环效率。

石墨烯的制备及其电化学性能

石墨烯的制备及其电化学性能

石墨烯的制备及其电化学性能一、本文概述石墨烯,一种由单层碳原子紧密排列构成的二维纳米材料,自2004年被科学家首次成功制备以来,便因其独特的结构和优异的性能引发了全球范围内的研究热潮。

石墨烯以其高导电性、高热导率、高强度以及良好的化学稳定性等特性,在材料科学、电子学、能源科学等多个领域展现出巨大的应用潜力。

特别是在电化学领域,石墨烯因其高比表面积、优良的电子传输性能和化学稳定性,被广泛应用于电极材料、储能器件以及电化学传感器等方面。

本文旨在全面介绍石墨烯的制备方法及其电化学性能。

我们将概述石墨烯的基本结构和性质,以及其在电化学领域的应用背景。

随后,我们将详细介绍石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点及适用范围。

接着,我们将重点探讨石墨烯在电化学领域的应用,包括其在锂离子电池、超级电容器、燃料电池等储能器件中的性能表现,以及其在电化学传感器中的应用。

我们将对石墨烯的电化学性能进行综合分析,展望其在未来电化学领域的发展趋势和应用前景。

二、石墨烯的制备方法石墨烯的制备方法多种多样,根据其制备原理,主要可以分为物理法和化学法两大类。

物理法:物理法主要包括机械剥离法、取向附生法和碳纳米管切割法等。

机械剥离法是最早用来制备石墨烯的方法,其原理是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料。

取向附生法则是在一定条件下,使碳原子在金属单晶(如Ru)表面生长出单层碳原子,然后利用金属与石墨烯之间的弱相互作用,将石墨烯与金属基底分离。

碳纳米管切割法则是通过切割碳纳米管得到石墨烯纳米带。

化学法:化学法主要包括氧化还原法、SiC外延生长法、化学气相沉积法(CVD)等。

氧化还原法是通过将天然石墨与氧化剂反应,得到氧化石墨,再将其进行热还原或化学还原,从而制备出石墨烯。

SiC外延生长法是在高温条件下,使SiC中的Si原子升华,剩余的C 原子在基底表面重新排列,形成石墨烯。

石墨烯掺杂聚苯胺导电复合材料的研究进展

石墨烯掺杂聚苯胺导电复合材料的研究进展

石墨烯掺 杂聚苯胺 导 电复合材料 的研 究进展
何 小芳 , 何 元杰 , 王旭 华 , 黄 丽娜 , 王 优 , 曹新鑫
【 1 . 河南理工大学材料科学与工程学院 , 河南焦作 4 5 4 0 0 0; 2 . 中国兵器工业集 团第五三研究所 , 济南 2 5 0 0 3 1 ; 3 . 环境友好型无机材料河
南省高校 ( 河南省 ) 重点实验室培育基地, 河南焦作 4 5  ̄0 0 0 1
摘要 : 主要分析 原位 聚合 法、 间接化 学聚合 法和 阳极 电位 聚合 法等 不 同石墨烯掺 杂方法对石 墨烯掺 杂聚苯胺复 合材料性 能的影响 , 同时探讨 了异 丙醇溶 液、 酸和碱 等不 同环境 中复合 材料的导 电特 性 , 并 综述 了不 同含量 、 形状及
第4 1卷, 第 1 1 期
2 0 1 3年 1 1 月


1 0 7
ENGI NEE RI NG P L AS TI CS APP LI CATI ON

d o i : l O . 3 9 6 9 / j . i s s n . 1 0 0 1 - 3 5 3 9 . 2 0 1 3 . 1 1 . 0 2 5
氧化或磺化处理的石墨烯掺 杂聚苯胺 复合材料 。最后 对石 墨烯掺 杂聚苯胺 导电性研 究的发展进 行展 望。 关键词 : 石墨烯 ; 聚苯胺 ; 掺杂; 导电性 中图分类号 : 06 3 3 文献标识码 : A 文章编号 : 1 0 0 1 - 3 5 3 9 ( 2 0 1 3 ) 1 1 — 0 1 0 7 — 0 4
He X i a o f a n g , H e Y u a n j i e , Wa n gX u h u a , Hu a n gL i n a , Wa n g Y o u , C a oXi n x i n ,

石墨烯复合材料在超级电容器中的进展

石墨烯复合材料在超级电容器中的进展

Value Engineering碳元素广泛存在于自然界,除了最为人们所熟知的石墨和金刚石外,1985年发现的富勒烯和1991年发现的碳纳米管扩大了碳材料的家族。

也使人们对碳元素的多样性有了更深刻的认识。

同时,富勒烯和碳纳米管所引发的纳米科技对人类社的发展在未来有着极其重大的意义。

作为碳材料中最新的一员—石墨烯是拥有sp2杂化轨道的二维碳原子晶体,由英国曼彻斯特大学的Geim等[1]于2004年发现,并能稳定存在,这是目前世界上最薄的材料—单原子厚度的材料。

石墨烯不仅有优异的电学性能(室温下电子迁移率可达200000cm2V-1s-1)[2],质量轻,导热性好(5000Wm-1K-1)[3],比表面积大(2630m2g-1)[4],它的杨氏模量(1100GPa)和断裂强度(125GPa)[5]也可与碳纳米管相媲美,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应[6]等。

由于以上独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料[7]、储能材料[4]、液晶材料[8]、机械谐振器[9]等。

石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

在石墨烯诸多性质中,其中比表面积高和导电性好,最重要的是石墨烯本身的电容为21μF/cm2,达到了所有碳基双电层电容器的上限,这比其他碳材料都要高,是制造超级电容器的理想材料。

超级电容器(Supercapacitors),也叫电化学电容器(Electrochemical capacitors)是一种能量密度和功率密度介于传统电容器和电池之间的新型储能器件,超级电容器兼具蓄电池和传统电容器的优点,如能量密度高、功率密度高、可快速充放电、循环寿命长、具有瞬时大电流放电及对环境无污染等特性,是近十年来发展起来的新型储能、节能设备。

由于石墨烯是理想的超级电容器填充材料,所以将其与其他材料复合来制备超级电容器材料备受大家关注。

石墨烯_聚苯胺复合材料的制备及其电化学性能_王宏智

石墨烯_聚苯胺复合材料的制备及其电化学性能_王宏智

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2013,29(1),117-122January Received:August 24,2012;Revised:October 22,2012;Published on Web:October 24,2012.∗Corresponding author.Email:zwg@;Tel:+86-22-27402251.The project was supported by the Natural Science Foundation of Tianjin,China (11JCYBJC01900).天津市自然科学基金(11JCYBJC01900)资助项目ⒸEditorial office of Acta Physico-Chimica Sinicadoi:10.3866/PKU.WHXB 201210234石墨烯/聚苯胺复合材料的制备及其电化学性能王宏智高翠侠张鹏姚素薇张卫国*(天津大学化工学院杉山表面技术研究室,天津300072)摘要:以苯胺和氧化石墨烯(GO)为原料,采用电化学方法制备了石墨烯/聚苯胺(GP)复合材料.利用X 射线衍射(XRD)、扫描电镜(SEM)、拉曼(Raman)光谱、X 射线光电子能谱分析(XPS)对其结构、微观形貌进行了表征,并对复合材料电化学性能进行了测试.结果表明,复合材料保持了石墨烯的基本形貌,聚苯胺颗粒均匀地分散在石墨烯表面,复合材料在500mA ·g -1的电流密度下比电容达到352F ·g -1,1000mA ·g -1下比电容为315F ·g -1,经过1000次的充放电循环后容量保持率达到90%,远大于石墨烯和聚苯胺单体的比电容.复合材料放电效率高,电解质离子易于在电极中扩散和迁移.关键词:石墨烯;聚苯胺;复合;电化学制备;性能中图分类号:O646Synthesis and Electrochemical Performance of Graphene/PolyanilineWANG Hong-ZhiGAO Cui-XiaZHANG PengYAO Su-WeiZHANG Wei-Guo *(Shan Shan Research Office of Surface Technology,College of Chemical Engineering,Tianjin University,Tianjin 300072,P .R.China )Abstract:Graphene/polyaniline composites (GP)were prepared from aniline and graphite oxide using an electrochemical method.The structure characterization and surface morphology were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),Raman spectroscopy,and X-ray photoelectron spectroscopy (XPS),and its electrochemical properties were measured.The results show that the composite keeps the basic morphology of graphene and that the polyaniline particles are uniformly dispersed.The specific capacitances of the composite materials reach 352and 315F ·g -1at 500and 1000mA ·g -1,respectively,higher than those of graphene and polyaniline.The majority (90%)of the capacitance remains after 1000cycles of charge and recharge at 1000mA ·g -1.The composite shows potential for use in supercapacitors.Key Words:Graphene;Polyaniline;Composite;Electrochemical preparation;Property1引言石墨烯(ERGO (electrochemically reducedgraphite oxide))以其优异的电学、力学和热学性质,成为储能材料领域研究的热点.1,2通过表面修饰可使石墨烯基材料具有良好的功率特性、较高的能量密度和良好的电化学稳定性,在超级电容器电极材料方面有很好的应用前景.2-8Li 等9通过静电排斥的方法得到氧化石墨烯(GO)的稳定分散液,然后用插层法将制备好的聚苯胺(PANI)纳米纤维嵌入到石墨烯各层之间,制备出了石墨烯/聚苯胺纳米纤维插层复合材料,其比电容、拉伸强度和循环性能相对于单纯的聚苯胺纳米纤维都要优异.Xu 等10在苯胺的酸性溶液中以石墨烯为基体采用原位氧化聚合的方法得到了垂直生长于石墨烯表面的聚苯胺纳米117Acta Phys.⁃Chim.Sin.2013V ol.29纤维复合物,这种材料体现出了良好的协同作用,因此比电容和充放电循环稳定性能都比单纯的石墨烯和聚苯胺要更为出色.电化学方法可在更小的尺度上控制纳米材料的生长,进而得到结构更为精细的石墨烯复合材料.11,12本文利用改进的Hummers法13制备氧化石墨烯,经超声分散后与苯胺混合滴涂在ITO导电玻璃上,然后经电化学一步氧化还原得到石墨烯/聚苯胺(GP)复合材料,并对复合材料表面形貌、结构和性能进行了分析研究.此方法制备过程简单,无须使用高强毒性还原剂,制备出的电极材料无需进行产物的分离,可在集流体上直接进行沉积,进而组装成器件,对石墨烯在超级电容器领域的应用进行了有意义的探索.2实验部分2.1石墨烯/聚苯胺薄膜的电化学制备将5mg氧化石墨烯分散在10mL水中,超声2 h得到稳定的棕色氧化石墨烯悬浊液,再向该溶液中加入35mg苯胺(分析纯)单体,超声0.5h,得到氧化石墨烯/苯胺混合分散液.用微量注射器将其滴涂在预处理过的1cm×1cm ITO导电玻璃表面,晾干得到氧化石墨烯/苯胺复合电极.采用同样的方法制备不加苯胺单体的氧化石墨烯电极.采用三电极体系,利用循环伏安(CV)法在电化学工作站一步制得石墨烯与石墨烯/聚苯胺复合材料.工作电极分别为氧化石墨烯电极和氧化石墨烯/苯胺复合电极,辅助电极为钌钛网,参比电极为饱和甘汞电极(SCE),电解液为1mol·L-1H2SO4,电位扫描范围为-1.3-1.0V,扫描速率为50mV·s-1,所制备的石墨烯/聚苯胺复合材料中石墨烯含量为12.5%(w).作为对比的聚苯胺也采用循环伏安法,电解液中苯胺浓度为0.25mol·L-1,硫酸(分析纯)浓度为0.25mol·L-1,pH为2-3.扫描范围为-0.2-0.9V,辅助电极为钌钛网,参比电极为SCE,研究电极为ITO导电玻璃.2.2石墨烯/聚苯胺薄膜的表征及性能测试采用美国FEI公司的Nanosem430型扫描电子显微镜(SEM)和荷兰Philips公司的Tecnai G2F20型透射电子显微镜(TEM)对GP进行形貌观察.采用美国热电公司的DXR Microscope激光显微拉曼光谱仪、美国Perkin-Elmer PHI-1600X射线光电子能谱仪、荷兰PANAlytical公司XʹPert X射线衍射仪对GP进行结构及成分分析.CHI660电化学工作站,上海辰华公司,测试GP(作为研究电极)在1mol·L-1H2SO4中的电化学活性,参比电极为SCE,辅助电极为钌钛网.3结果与讨论3.1石墨烯/聚苯胺复合薄膜的形成机理图1是一步法合成石墨烯/聚苯胺复合材料的循环伏安曲线.在第一圈扫描中从0.4V开始有明显的阳极电流,并且在0.6V处产生一小的电流峰,此电流峰对应于苯胺的氧化聚合.14随着扫描圈数的增加,氧化电流峰逐渐降低并消失;在第一圈扫描中从-0.5V开始有明显阴极电流,并且在-0.9V处产生阴极电流峰,对应于氧化石墨烯片层表面和边缘含氧官能团的还原过程,15-17随着循环次数的增加,这一阴极电流峰逐渐减小并最终消失.氧化还原过程同时伴随着电极颜色由黄到黑的变化,这也印证了氧化石墨烯被还原为石墨烯.3.2石墨烯/聚苯胺复合薄膜的结构表征图2为氧化石墨烯、石墨烯及石墨烯/聚苯胺复合材料的X射线衍射图.氧化石墨烯在2θ约为11.6°附近有一个对应于氧化石墨烯(001)晶面的较强的衍射峰.石墨烯与石墨烯/聚苯胺复合材料在2θ为26.0°附近均出现一个较弱的漫峰,对应于石墨烯的特征峰,18该漫峰可能是由于石墨烯片层之间无规则搭接的结果.图中右上角为石墨烯/聚苯胺复合材料局部放大图,2θ为22.0°左右的峰应该对应于无定形的聚苯胺,25.0°左右的峰可能是聚苯胺的结晶峰,这与文献19-21报道的聚苯胺的特征峰相吻合,可以证实复合材料中聚苯胺的存在.图3为氧化石墨烯、石墨烯和石墨烯/聚苯胺复图1制备的石墨烯/聚苯胺(GP)复合材料的循环伏安曲线Fig.1Cyclic voltammogram(CV)curves of the prepared graphene/polyaniline(GP)composite material118王宏智等:石墨烯/聚苯胺复合材料的制备及其电化学性能No.1合材料的拉曼光谱.氧化石墨烯在1348cm -1处的D 峰和1588cm -1处的G 峰经过电化学还原后分别移动到了1355和1594cm -1处,对应于石墨烯的D 峰与G 峰.石墨烯/聚苯胺复合材料在1348、1600和2700cm -1处存在拉曼特征峰,分别对应于石墨烯的D 峰与聚苯胺C ―N +键的相互作用、石墨烯的G 峰与聚苯胺上C ―C 键的相互作用和石墨烯的2-D 峰,22其D 峰与G 峰的强度比要高于石墨烯,表明复合材料的无序度增加,这可能是由于聚苯胺和石墨烯片层强烈的相互作用造成的.在聚苯胺中,醌/苯环C ―H 键的特征峰由于石墨烯与聚苯胺之间的相互作用,从1167cm -1移动到1177cm -1处,8也说明在石墨烯/聚苯胺复合材料中苯胺上的醌环与石墨烯上碳环之间的相互作用十分显著.图4为石墨烯/聚苯胺复合材料的XPS 谱图.从碳谱中可以看出,氧化石墨烯经电化学还原后,在其表面仍残留有微量含氧官能团,23而氮谱中N +*/N 的高比例说明了复合材料中聚苯胺的掺杂程度很高.24聚苯胺的导电性和它的掺杂程度密切相关,因此石墨烯/聚苯胺复合材料具备良好的导电性.从SEM 照片(见图5)中可以观察到,宏观上石墨烯/聚苯胺复合材料保持了石墨烯的褶皱形貌,聚苯胺较均匀地分散在石墨烯片层上.可以推测,氧化石墨烯与苯胺发生了原位吸附,随后苯胺在石墨烯表面原位聚合.图2氧化石墨烯、石墨烯与石墨烯/聚苯胺复合材料的XRD 图谱Fig.2XRD patterns of graphene oxide (GO),graphene (ERGO (electrochemically reduced graphite oxide)),andGP composite material(a)GO;(b)ERGO;(c)GP;the inset shows the enlargement of(c).图3GO 、ERGO 和GP 复合材料的拉曼光谱Fig.3Raman spectra of GO,ERGO,and GPcomposite material(a)GO;(b)ERGO;(c)GP图4GP 复合材料薄膜的XPS 谱图Fig.4XPS spectra of GP composite material film(a)C 1s spectrum;(b)N 1sspectrum图5ERGO 和GP 复合材料的SEM 图Fig.5SEM images of ERGO and GP composite material(a)ERGO;(b)GP119Acta Phys.⁃Chim.Sin.2013V ol.29图6为石墨烯/聚苯胺复合材料的TEM 图,从图中可以看出其边缘石墨烯为单层或少数层,表明在其还原过程中并没有发生大量的团聚现象.而聚苯胺均匀覆盖在石墨烯的表面,这也有利于稳固复合物的结构从而可以在充放电过程中获得比较高的比电容和优异的循环性能.3.3石墨烯/聚苯胺复合薄膜的电容性能测试图7为石墨烯/聚苯胺复合材料、电化学还原的石墨烯以及聚苯胺的循环伏安曲线.图中接近于矩形的为石墨烯的循环伏安曲线,说明其具有很好的双电层电容性能;而石墨烯/聚苯胺复合材料的循环伏安曲线具有明显的氧化还原峰,峰1ʹ对应于聚苯胺还原态的生成,峰1为其对应的还原峰;峰2ʹ则反应了中间氧化态的生成,峰2为其对应的还原峰;峰3ʹ代表完全氧化态聚苯胺的生成,峰3对应于其还原峰,25这也正是其赝电容的主要来源.复合材料与聚苯胺的循环伏安图接近,出峰位置略有偏移,这可能是石墨烯与聚苯胺相互作用的结果.图8为石墨烯/聚苯胺复合材料在不同电流密度下的充放电曲线,当电流密度由500mA ·g -1升到5000mA ·g -1时,复合材料比电容由352F ·g -1降为229F ·g -1,电容保持率近65%,倍率性能较好.从图中曲线可以看出,由于聚苯胺赝电容的存在,提高了复合材料比电容,因此石墨烯/聚苯胺复合材料的充放电曲线与石墨烯不同,并非标准的等腰三角形.图9为石墨烯、聚苯胺、石墨烯/聚苯胺复合材料在500mA ·g -1下充放电曲线及1000mA ·g -1下比电容的循环性能曲线.在500mA ·g -1下,石墨烯/聚苯胺复合材料的比电容(352F ·g -1)远大于石墨烯(143F ·g -1)与聚苯胺(220F ·g -1)的比电容.在1000mA ·g -1下,经1000次充放电过程之后,三者的比电容都在下降后趋于平缓,石墨烯/聚苯胺复合材料比电容的保持率在90%左右,这说明其电化学稳定性优异,与Lu 等26采用化学法制备石墨烯/聚苯胺复合图6ERGO 和GP 复合材料的TEM 图Fig.6TEM images of ERGO and GP composite material(a)GP (low magnification);(b)GP (high magnification);(c)ERGO图7GP 复合材料、聚苯胺(PANI)和ERGO 的循环伏安曲线Fig.7CV curves of GP composite material,polyaniline (PANI),and ERGO(a)GP;(b)PANI;(c)ERGO图8GP 复合材料在不同电流密度下的充放电曲线Fig.8Charge-discharge curves of GP compositematerial at different current densitiesj /(mA ·g -1):(a)500;(b)1000;(c)2000;(d)4000;(e)5000120王宏智等:石墨烯/聚苯胺复合材料的制备及其电化学性能No.1物相比,在1000mA ·g -1下,比电容提高了31F ·g -1.图10为石墨烯、聚苯胺和石墨烯/聚苯胺复合材料在硫酸溶液中的交流阻抗图谱.从图中可以看出,三者的交流阻抗图差别不大.曲线半圆部分的直径代表电荷在电极内的迁移电阻,石墨烯和复合材料内阻比聚苯胺略小,这有利于电解质离子在电极中扩散和迁移.并且三者低频区的直线斜率接近90°,均体现了良好的电容性能.4结论本文利用电化学法制备了石墨烯和石墨烯/聚苯胺复合材料,结构及成分分析结果表明,复合材料中聚苯胺与石墨烯之间产生了相互作用.电化学测试表明,复合材料在1000mA ·g -1的电流密度下比电容达到了315F ·g -1,并且在1000次循环之后容量保持率达到了90%,电化学性能优良.这种方法可在集流体上直接沉积石墨烯和石墨烯/聚苯胺复合材料,继而组装成器件,用于制备超级电容器.References(1)Miller,J.R.;Outlaw,R.A.;Holloway,B.C.Science 2010,329,1637.doi:10.1126/science.1194372(2)Chen,S.M.Preparation of Novel Carbon Materials and Their Application in Electrochemical Field.M.E.Dissertation,Beijing University of Chemical Technology,Beijing,2010.[陈思明.新型石墨材料的制备及其在电化学领域方面的应用[D].北京:北京化工大学,2010.](3)El-Kady,M.F.;Strong,V .;Dubin,S.;Kaner,R.B.Science 2012,335,1326.doi:10.1126/science.1216744(4)Korenblit,Y .;Rose,M.;Kockrick,E.;Borchardt,L.;Kvit,A.;Kaskel,S.;Yushin,G.ACS Nano 2010,4,1337.doi:10.1021/nn901825y (5)Hantel,M.M.;Kaspar,T.;Nesper,R.;Wokaun,A.;Kotz,mun .2011,13,90.doi:10.1016/j.elecom.2010.11.021(6)Vickery,J.L.;Patil,A.J.;Mann,S.Adv.Mater .2009,21,2180.doi:10.1002/adma.v21:21(7)Stoller,M.D.;Park,S.J.;Zhu,Y .W.;An,J.H.;Ruoff,R.S.Nano Lett .2008,8,3498.doi:10.1021/nl802558y(8)Wang,D.W.;Li,F.;Zhao,J.P.;Ren,W.C.;Chen,Z.G.;Tan,J.;Wu,Z.S.;Gentle,L.;Lu,G.Q.;Cheng,H.M.ACS Nano 2009,3,1745.doi:10.1021/nn900297m (9)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallance,G.G.Nat.Nanotechnol.2008,3,101.doi:10.1038/nnano.2007.451(10)Xu,J.J.;Wang,K.;Zu,S.Z.;Han,B.H.;Wei,Z.X.ACS Nano 2010,4,5019.doi:10.1021/nn1006539(11)Cheng,Q.;Tang,J.;Ma,J.;Zhang,H.;Shinya,N.;Qin,L.C.Carbon 2011,49,2917.doi:10.1016/j.carbon.2011.02.068(12)Zhang,K.;Mao,L.;Zhang,L.L.;Chan,H.S.O.;Zhao,X.S.;Wu,J.S.J.Mater.Chem.2011,21,7302.doi:10.1039/c1jm00007a (13)Hu,Y .J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26,2073.[胡耀娟,金娟,张卉,吴萍,蔡称心.物理化学学报,2010,26,2073.]doi:10.3866/PKU.WHXB20100812图9GP 复合材料、ERGO 和PANI 电极在500mA ·g -1下的充放电曲线(A)及1000mA ·g -1下循环性能(B)Fig.9Charge-discharge curves of GP composite material,ERGO,and PANI at 500mA ·g -1(A)and cyclicstability at 1000mA ·g -1(B)(a)ERGO;(b)PANI;(c)GP图10PANI 、GP 复合材料与ERGO 的交流阻抗谱Fig.10Electrochemical impedance spectroscopies ofPANI,GP composite material,and ERGO(a)PANI;(b)GP;(C)ERGO121Acta Phys.⁃Chim.Sin.2013V ol.29(14)Dong,P.;Zhou,J.Z.;Xi,Y.Y.;Cai,C.D.;Zhang,Y.;Zou,X.D.;Huang,H.G.;Wu,L.L.;Lin,Z.H.Acta Phys.-Chim.Sin.2004,20,454.[董平,周剑章,席燕燕,蔡成东,张彦,邹旭东,黄怀国,吴玲玲,林仲华.物理化学学报,2004,20,454.]doi:10.3866/PKU.WHXB20040502(15)Guo,L.H.;Wang,X.F.;Qian,Q.Y.;Wang,F.B.;Xia,X.H.ACS Nano2009,9,2653.(16)Zhou,M.;Wang,Y.L.;Zhai,Y.M.;Zhai,J.F.;Ren,W.;Wang,F.A.;Dong,S.J.Chem.Eur.J.2009,15,6116.doi:10.1002/chem.v15:25(17)Shao,Y.Y.;Wang,J.;Engelhard,M.;Wang,C.M.;Lin,Y.H.J.Mater.Chem.2010,20,743.doi:10.1039/b917975e(18)Liu,J.C.Synthesis and Study on Graphene and Co3O4/Graphene Composite about the Characteristic ofElectrochemistry.M.E.Dissertation,Harbin EngineeringUniversity,Harbin,2011.[刘进程.石墨烯和石墨烯基四氧化三钴复合物的制备及其电化学性能研究[D].哈尔滨:哈尔滨工程大学,2011.](19)Zhang,K.;Zhang,L.L.;Zhao,X.S.;Wu,J.S.Chem.Mater.2010,22,1392.doi:10.1021/cm902876u (20)Majumdar,D.;Baskey,M.;Saha,S.K.Macromolecular RapidCommunications2011,32,1.(21)Yan,J.;Wei,T.;Shao,B.;Fan,Z.J.;Qian,W.Z.;Zhang,M.L.;Wei,F.Carbon2010,48,487.doi:10.1016/j.carbon.2009.09.066(22)Huang,Y.Y.The Research of Interaction of Graphene/Polyanline Composite Interface.M.E.Dissertation,SunYat-Sen University,Guangzhou,2010.[黄赟赟.石墨烯/聚苯胺复合材料界面相互作用研究[D].广州:中山大学,2010.] (23)Chen,L.Y.;Tang,Y.H.;Wang,K.;Liu,C.B.;Luo,S.L.mun.2011,13,133.(24)Wang,H.L.;Hao,Q.L.;Yang,X.J.;Lu,L.D.;Wang,X.Nanoscale2010,2,2164.doi:10.1039/c0nr00224k(25)Wu,K.Z.;Wang,Q.F.;Ma,Z.C.;Duan,X.W.;Li,C.B.;Zhen,X.Y.J.ShaoXing University2010,30,24.[武克忠,王庆飞,马子川,段晓伟,李彩宾,甄晓燕.绍兴文理学院学报, 2010,30,24.](26)Lu,M.;Zhang,K.;Chan,H.S.O.;Wu,J.S.J.Mater.Chem.2012,22,80.doi:10.1039/c1jm12869h122。

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》石墨烯-导电聚合物复合材料的制备及其电化学性能的研究摘要:本文研究了石墨烯与导电聚合物复合材料的制备方法,并对其电化学性能进行了深入探讨。

通过合理的制备工艺,我们成功制备了具有优异导电性能和电化学稳定性的复合材料。

本文详细描述了实验过程、结果及分析,以期为相关研究提供有益的参考。

一、引言随着科技的发展,石墨烯因其独特的物理和化学性质,在材料科学领域引起了广泛的关注。

石墨烯与导电聚合物的复合材料因其在电化学储能、传感器、电磁屏蔽等领域的潜在应用价值,成为了研究的热点。

本文旨在研究石墨烯/导电聚合物复合材料的制备方法及其电化学性能。

二、实验材料与方法1. 材料准备实验所需材料包括石墨烯、导电聚合物(如聚吡咯、聚苯胺等)、溶剂(如乙醇、水等)以及其他添加剂。

2. 制备方法采用溶液混合法或原位聚合法制备石墨烯/导电聚合物复合材料。

具体步骤包括:将石墨烯与导电聚合物在溶剂中混合,并通过搅拌或超声处理使两者充分混合;然后进行聚合反应,得到复合材料。

三、电化学性能测试通过循环伏安法(CV)、恒流充放电测试、电化学阻抗谱(EIS)等方法,对制备的复合材料进行电化学性能测试。

四、结果与讨论1. 制备结果通过优化制备工艺,我们成功制备了具有良好分散性和导电性能的石墨烯/导电聚合物复合材料。

SEM和TEM结果表明,石墨烯与导电聚合物在纳米尺度上实现了良好的复合。

2. 电化学性能分析(1)循环伏安法(CV)测试:复合材料在充放电过程中表现出稳定的电化学行为,无明显极化现象。

(2)恒流充放电测试:复合材料具有较高的比电容和优异的循环稳定性。

在一定的电流密度下,其比电容随循环次数的增加而略有增加,表现出良好的充放电性能。

(3)电化学阻抗谱(EIS)分析:复合材料的内阻较小,电子传递速度快,表现出优异的电导率和良好的电荷传输能力。

通过分析不同因素(如石墨烯含量、聚合条件等)对电化学性能的影响,我们发现合理的复合比例和制备工艺是获得高性能复合材料的关键。

水可分散性石墨烯-聚苯胺复合物合成初探

水可分散性石墨烯-聚苯胺复合物合成初探
刘 言 ,程 鹤 鸣 ,阎 仲 仲 ,刘
马鞍 山

230 ) 4 0 2
( 安徽 工业 大 学化 学与化 工 学院 ,安徽
摘 要 : 以氧化石墨烯( O 为模板, G ) 利用其巨大的比表面积, 将苯胺单体吸附在 G 0的表面, 制备了氧化石墨烯 一聚苯胺( G—
PN) A I 复合材料 , 由于 G O表面聚苯胺颗粒 比溶 液中的聚苯胺颗粒 尺寸小 , 引起 紫外可见 光谱 吸收峰 的蓝移 。实 验证 明 , 由于 G O与 水具有较强 的亲 和力 , 造成 G—P N 在水 中具有 较好的分散性 。 A I
聚苯胺是一种具 有特 殊性 能 的有 机 聚合 物 , 大 的共轭体 较 系使 其 具 有 导 电特 性 , 此 它 可 以被 广 泛 应 用 于 导 电 涂 料 、 因 电磁 屏蔽、 电化学传 感等 领域 。但 是 由于其 聚合 物链 之 间较强 的氢 键 作用 , 使得分 子具有刚性 , 工难 度较大 ; 加 因为它难 溶于 水 , 在
( R) 上 海 国药 集 团 ; 氧 水 ( 0 , R) 上 海 国药 集 团 。 A , 双 3% A , 仪器 : 紫外光 谱仪 ( odS et ma 4 , 海 棱光 技 术有 G l p c u l 5 ) 上 r b 限公 司 ; 外 光 谱 仪 ,hr oN clt 司 ; 声 器 , 海 生 析 仪 器 红 T em i e 公 o 超 上 公 司 ; 发 射 扫 描 电 子 显 微 镜 ( E II N 2 0 I C X 场 F ISRO 0 /N A O — F R , 国 F I 司/ 国 O F R O D) 美 E公 英 X O D公 司 。
有 机溶剂 ( 如聚乙烯 吡咯烷酮等 ) 溶解 度较 大 , 符 合环保 例 中 不 的要求 。如果能制备 微米 甚 至纳米 级 , 同时 又具 有 良好 水可 分 散 性 的 聚 苯 胺 J必将 使 得 聚 苯 胺 的 应 用 领 域 进 一 步 扩 大 , 还 , 且

SnO2还原氧化石墨烯聚苯胺三元复合物的合成及电化学性能吴红英

SnO2还原氧化石墨烯聚苯胺三元复合物的合成及电化学性能吴红英

SnO2/还原氧化石墨烯/聚苯胺三元复合物的合成及电化学性能*吴红英,张海英,张富海,梁鹏举,张亚军,胡中爱(西北师范大学化学化工学院;甘肃省高分子材料重点实验室;生态环境相关高分子材料教育部重点实验室,兰州730070)摘要 采用两步法成功构筑SnO2/还原氧化石墨烯/聚苯胺(SnO2/RGO/PANI)三元复合材料。

首先制备出均匀分散的SnO2/还原氧化石墨烯(SnO2/RGO)二元复合物,然后再以二元复合物为载体,通过苯胺(An)单体的化学氧化聚合获得终端产物。

利用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和场发射扫描电镜(FESEM)对复合材料的结构和形貌等物理性质进行表征,利用循环伏安测试、恒电流充放电测试和交流阻抗测试对复合材料的电化学电容性能进行研究,并讨论了PANI的含量对复合材料的结构和性能的影响。

结果表明,所合成的三元复合材料的比电容随PANI含量的增加而增大,最大达到424.8F/g,其电容性能的增强源于SnO2、RGO与PANI三者的相互协同作用。

关键词 SnO2/还原氧化石墨烯/聚苯胺 三元复合物 超级电容器 电化学性能中图分类号:O646 文献标识码:ASynthesis of SnO2/RGO/PANI Ternary Composites and ItsElectrochemical BehaviorsWU Hongying,ZHANG Haiying,ZHANG Fuhai,LIANG Pengju,ZHANG Yajun,HU Zhong’ai(College of Chemistry and Chemical Engineering,Northwest Normal University;Key Laboratory of Polymer Materials ofGansu Province;Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education,Lanzhou 730070)Abstract SnO2/RGO/PANI ternary composites were prepared by means of a two-step method including thesynthesis of well-dispersed SnO2/RGO and the in-situ chemical oxidative polymerization of aniline.Morphologies andmicrostructures of the resulting product were characterized by Fourier transform infrared(FT-IR)spectrometer,X-ray diffraction(XRD)and field emission scanning electron microscopy(FESEM).Electrochemical behaviors of theternary composites as a single electrode of supercapacitors were investigated by cyclic voltammogram(CV),galvanos-tatic charge/discharge tests and electrochemical impedance techniques.The results show that the ternary compositesexhibit a maximum specific capacitance of 424.8F/g,which is greater than the specific capacitance of SnO2/RGO binary com-posites.Furthermore,specific capacitance of the sample increases with increasing amount of PANI in the ternary com-posites.The positive synergy effect between the three components might enhance the capacitive performance.Key words SnO2/RGO/PANI,ternary composite,supercapacitor,electrochemical behavior *国家自然科学基金(20963009;21163017);甘肃省自然科学基金(0803RJA005) 吴红英:女,1961年生,高级工程师,主要从事新能源材料研究 Tel:0931-7971533 E-mail:zhongai@nwnu.edu.cn 超级电容器是一种性能介于二次电池与传统电容器之间的新型储能装置[1],决定其性能的关键是电极材料,常见的材料有双电层型碳基材料和赝电容型材料(金属氧化物和导电聚合物)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相变增韧SiC陶瓷
主要用于提高陶瓷材料的断裂韧性和 抗弯强度。增韧机理主要包括:裂纹 尖端的应力场引起的体积膨胀和断裂 表面吸收能量、相变诱发的残余压应 力、防止裂纹的增长使他们转动和分 叉、相变诱发微裂纹和晶粒细化等。
复合材料的研究进展
根据实际应用领域的需求以及 Cf/SiC复合材料的性能需求的不同, 已开发出以下几种制备工艺: 化学气相渗透法(CVI) 先驱体转化法 (PIP) 浆料浸渍烧结法 液相硅浸渍法(LSI) 一些综合的制备工艺。
THANK YOU 请批评
指正
物理结合
主要是指范德华力和氢键,还与纤维的比表面和 粗糙度有关。同时,复合材料中内应力也是形成 这种结合重要原因。解决纤维与基体之间热膨胀 系数不同的方法有两种: 1.在界面处人为的引入中间过渡层 2.调整SiC基体的热膨胀系数使其与碳纤维的热膨 胀系数相近
3.1.2界面作用
传递作用:界面层需要具备一定的强度,将载荷由基 体传递至增强相碳纤维;
降低生产成本 深入机理研究
优化制备工艺 挖掘应用潜力
强化理论研究
参考文献
【1】Design of High Preformance CMC Brake Discs[J] . Krenkel Walter,Henke T.. Key Engineering Materials . 1999 (164) 【2】In-Situ Joined CMC Components[J] . Krenkel Walter,Henke T.,Mason N.. Key Engineering Materials . 1997 (127) 【3】碳纤维增强碳化硅陶瓷基复合材料的研究进展[A]. 文章苹,张永刚.第三届中国国际复合材料科技大会论文集 [C]. 2017 【4】连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进 展[J]. 陈明伟,谢巍杰,邱海鹏. 现代技术陶瓷. 2016(06) 【5】尹洪峰,徐永东,成来飞,等.连续碳纤维增韧SiC复合 材料的制备与性能研究[J].硅酸盐学报,2000,28(5):437440.
3.1.3复合材料的增韧机制
Cf/SiC复合材料在高温下,基体的原子扩散增强,更容易在界面形成固溶体和化合物,韧性较差,严重制约 了其优良的性能和实际的应用。因此,提高陶瓷材料的韧性是Cf/SiC复合材料发展的重要课题之一。
纤维增韧SiC陶瓷
增韧机理主要是纤维的拉伸和桥联作 用,纤维增韧的作用取决于纤维和 SiC陶瓷基体的结合强度、排列方式、 纤维含量和长径比等。纤维的拉伸和 桥联作用使纤维把裂纹桥接起来,在 裂纹表面产生一个压应力,抵消外加 拉应力,从而起到增韧作用。
目前,以碳纤维增强碳化硅陶瓷基复合材料( 以下简Cf/SiC复合 材料) 为代表的纤维增强陶瓷基复合材料充分利用了碳纤维优异 的高温力学性能和SiC陶瓷基体的高温抗氧化性能。被认为是目 前最有发展前途的高温热结构材料。
Cf/SiC复合材料的组成
➢ Cf/SiC复合材料是以碳纤维为增强纤维,SiC为陶瓷 基体,通过某种制备工艺复合起来的一种纤维增强 陶瓷基复合材料。
05
复合材料的性 能与应用
06 展望
07 参考文献 致谢
08 Thanks
Introduction
随着现代科学技术的发展,在许多领域,尤其是航天航空、军事 等尖端科学领域, 对高温结构材料有着更高的要求。
纤维增强陶瓷基复合材料,是一种具有高强度、高韧性、优异的 热稳定性和化学稳定性的一类新型结构材料。
➢ Carbon fiber reinforced silicon carbide composites are used to pass through the fiber during the process of fracture Toughening mechanisms to cause the material to behave as non-brittle fracture.
碳纤维增强碳化硅陶瓷基复合材料
Carbon fiber reinforced silicon carbide ceramic matrix composites
目 录
Contents
01 引言
Introduction
02
Cf/SiC复合材料 的组成
03
复合材料的界面 及强韧化机制
04
复合材料的研究 进展

不仅在航天航空领域得到

广泛的应用,还应用于军

事工业、机械工业、生物 医学、能源技术和环境保

护等领域,而且Cf/SiC复

合材料作为耐高温的复合

材料一直被各国研究者所 重视。
展望
近年来, Cf/SiC复合材料的研究已取得了长足 的发展,但其制备工艺还不具备大批量生产的能力, 这极大地限制了其在民用领域的发展应用。因此,今 后的研究应重点解决以下几个方面的问题
国内外制备工艺研究现状
目前,由于Cf/SiC复合材料的兴起,国内外众 多研究者展开了对Cf/SiC复合材料的研究,主 要是在制备方法与工艺上,所制备的复合材料 力学性能各有差异。

Cf/SiC复合材料有着比强 度高、比模量高、耐疲劳、

热膨胀系数小、尺寸稳定

等优异性能,且在真空环

境中显示出优异的特性, 有着非常广阔的应用前景。
隔离作用:在高温或者有氧环境下,界面层可以抑制基体和 纤维之间发生原子扩散反应导致的结合强度增加,从而保 持材料优异的韧性;
保护作用:减缓和避免纤维在制备过程中因高温或化学反应 引起的损伤;
应力缓释作用:裂纹由基体传递至界面层时,在界面处或者界面层内部 以扩散的方式发生偏转,每一基体裂纹产生大量更细小的裂纹,拓展 了裂纹传递的途径
SiC 的 分 解 温 度 为 2600 ℃ , 密 度 为 3.17g/cm3 。 SiC 陶 瓷 常 温 力 学 性 能 高 , 同时其高温力学性能是已知陶瓷材料中 最优的。
复合材料的界面及强韧化机制
3.1复合材料的界面
Cf/SiC复合材料的界面位于碳纤维与SiC陶瓷基体结合 处,作为纤维与基体间传递载荷的过渡区,是Cf/SiC复 合材料的一个重要组成部分。
其组织结构,力学性能和失效规律都直接影响着复合材 料整体的力学性能。
所以研究界面特性对Cf/SiC复合材料力学性能的影响具 有重要意义。
3.1.1界面结合形式
化学结合
即互扩散结合。其界面反应主要是Si原子 向纤维内部的扩散,这种扩散使得SiC基 体与纤维结合很强,并且对纤维本体造成 很大的损伤。若要改善,可通过在碳纤维 表面制备氧化涂层来实现。例如,纤维表 面涂覆氮化硼(BN)、富碳SiC、擦系数低、有自 润滑性等,而且还有一般碳素材 料没有的特性,如显著的各向异 性。
碳纤维高温性能非常优异, 在惰性气氛中,其强度在 2000℃以上时下降幅度仍然 较小,其最大的缺点是高温 抗氧化性能差。
2.2基体SiC陶瓷
SiC陶瓷是陶瓷基复合材料中常见的一种 基体材料,SiC属于典型的共价键结合的 化合物。
2.1增强体碳纤维
碳纤维是一种由碳元素组成的特 种纤维,结构是由微晶石墨延轴 向排列组成的一种乱层非晶态石 墨结构。
Carbon fiber is a kind of carbon fiber with more than 85% carbon content after carbonization and graphitization of organic fiber or asphalten-based material.
相关文档
最新文档