高考复习课件第三章 三角函数、解三角形-.ppt.ppt
合集下载
2024年度高中数学必修四三角函数PPT课件
建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式
高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版
3 2.
由sin A= 3sin B及正弦定理得a= 3b.
于是3b22+b32b-2 c2= 23,由此可得b=c.
由③c= 3b,与b=c矛盾.
因此,选条件③时问题中的三角形不存在.
应用正、余弦定理的解题技能
技能 边化
角
角化 边
和积 互化
解读
将表达式中的边利用公式a=2Rsin A,b=2Rsin B,c=2Rsin C化为角的关系
得cos A·(sin B+sin C)=0,在△ABC中,sin B+sin C≠0,
则cos A=0,所以△ABC为直角三角形.
判断三角形形状的常用技能 若已知条件中既有边又有角,则 (1)化边:通过因式分解、配方等得出边的相应关系,从而判断三 角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形 的形状.此时要注意应用A+B+C=π这个结论.
=
43 3
.由余弦定理DC2+BC2-
2DC·BCcos∠DCB=BD2,可得3BC2+4
3 ·BC-5=0,解得BC=
3 3
或
BC=-5 3 3(舍去).故BC的长为
3 3.
求解该题第(2)问时易出现的问题是不能灵活利用“AB⊥BC”, 将已知条件和第(1)问中所求值转化为△BCD内的边角关系.解决 平面图形中的计算问题时,学会对条件进行分类与转化是非常重 要的,一般来说,尽可能将条件转化到三角形中,这样就可以根 据条件类型选用相应的定理求解.如该题中,把条件转化到 △BCD中后,利用正弦定理和余弦定理就可以求出BC的长.
解析:选条件①. 由C=π6和余弦定理得a2+2ba2b-c2= 23. 由sin A= 3sin B及正弦定理得a= 3b. 于是3b22+b32b-2 c2= 23, 由此可得b=c. 由①ac= 3,解得a= 3,b=c=1. 因此,选条件①时问题中的三角形存在,此时c=1.
2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件
(5)tan (α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan (α+β)=1t-antαan+αttaannββ(T(α+β)).
2.二倍角公式 (1)基本公式 ①sin 2α=2sin αcos α. ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
答案:C 【反思感悟】 理解数学文化内容,结合题目条件进行三角变换求值是关键.
【高分训练】
(2021 年泸州市模拟)《周髀算经》中给出了弦图,所谓弦图
是由四个全等的直角三角形和中间一个小正方形拼成
一个大的正方形,若图3-3-1中直角三角形两锐角分别
为α,β,且小正方形与大正方形面积之比为 9∶25,
答案:12
⊙三角变换与数学文化的创新问题 新高考数学考查的学科素养提炼为理性思维,数学应用,数 学探究和数学文化,其中数学文化作为素养考查的四大内涵之一, 以数学文化为背景的试题将是新高考的必考内容.
[例 4]公元前 6 世纪,古希腊的毕达哥拉斯学派研究过正五边 形和正十边形的作图方法,发现了黄金分割,其比值约为 0.618,
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
θ+cos θ)sin 2+2cos θ
2θ-cos
θ 2
=______.
解析:由 θ∈(0,π),得 0<2θ<π2, ∴cos 2θ>0,∴ 2+2cos θ= 4cos22θ=2cos2θ.
又(1+sin θ+cos θ)sin
解析:原式=1-cos22α-π3+1-cos 22α+π3-sin2α=1- 12cos2α-π3+cos 2α+π3-sin2α=1-cos2α·cos π3-sin2α=1- co2s2α-1-c2os 2α=12.
一轮复习三角函数PPT课件
[自主解答] (1)∵在(0,π)内终边在直线 y= 3x 上的角 是π3,∴终边在直线 y= 3x 上的角的集合为
α|α=π3+kπ,k∈Z. (2)∵θ=67π+2kπ(k∈Z), ∴θ3=27π+2k3π(k∈Z). 依题意 0≤27π+2k3π<2π⇒-37≤k<178,k∈Z.
[备考方向要明了]
考什么 1.了解任意角的概念. 2.了解弧度制的概念,能进
行弧度与角度的互化. 3.理解任意角三角函数(正
弦、余弦、正切)的定 义.
1.三角函怎数么的定考义与三 角恒等变换等相结 合,考查三角函数
求 值问 题,如2008
年 高考T15等.
[归纳
1.角的有关概念
知识整合]
角的特点
三角函数线
有向线段 ____ 有向线段____ 有向线段____
MP
OM
AT
为正弦线
为余弦线
为正切线
[探究] 3.三角函数线的长度及方向各有什么 意义?
提示:三角函数线的长度表示三角函数值的绝 对值,方向表示三角函数值的正负.
[自测 牛刀小试] 1.(教材习题改编)下列与94π的终边相同的角 α 的集合为___.
解析:∵94π=94×180°=360°+45° ∴与94π 终边相同的角可表示为 k·360°+45°(k∈Z)
答案:{α|α=k·360°+ 45°(k∈Z)}
2.(教材习题改编)若角θ同时满足sin θ<0且tan θ<0, 则角θ的终边一定落在第________象限. 解析:由sin θ<0,可知θ的终边可能位于第三或第 四象限,也可能与y轴的非正半轴重合.由tan θ<0, 可知θ的终边可能位于第二象限或第四象限,可知θ的
2.弧度的概念与公式
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
高考数学一轮复习第三章三角函数解三角形第五节y=Asinωx+φ的图象及应用课件新人教版
其中所有正确结论的编号是( D )
A.①④
B.②③ C.①②③ D.①③④
[解析] 已知 f(x)=sinωx+π5(ω>0)在[0,2π]有且仅有 5 个零点,如图, 其图象的右端点的横坐标在[a,b)上,此时 f(x)在(0,2π)有且仅有 3 个极
大值点,但 f(x)在(0,2π)可能有 2 或 3 个极小值点,所以①正确,②不正 确;当 x∈[0,2π]时,ωx+π5∈5π,2πω+π5,由 f(x)在[0,2π]有且仅有 5 个 零点可得 5π≤2πω+π5<6π,得 ω 的取值范围是152,2190,所以④正确; 当 x∈0,1π0时,π5<ωx+π5<π1ω0 +π5<41090π<π2,所以 f(x)在0,1π0单调递 增,所以③正确.
三角函数的零点、不等式问题的求解思路 (1)把函数表达式转化为正弦型函数情势y=Asin(ωx+φ)+B(A>0, ω>0). (2)画出长度为一个周期的区间上的函数图象. (3)利用图象解决有关三角函数的零点、不等式问题.
[题组突破]
1.(2021·佛山四校联考)已知x0=
π 3
是函数f(x)=sin(2x+φ)的一个极大值
点,则f(x)的一个单调递减区间是( B )
A.6π,23π C.2π,π
B.3π,56π D.23π,π
角,∴2A=π3,A=π6,故tan
A=
3 3.
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法 (1)求A,b.确定函数的最大值M和最小值m, 则A=M-2 m,b=M+2 m. (2)求ω.确定函数的最小正周期T,则ω=2Tπ.
(3)求φ常用的方法: ①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入 图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在 降落区间上). ②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体 如下:
三角函数公开课(高三复习) PPT课件 图文
(2)由S=12bcsin A=12bc·23= 43bc=5 3,得bc=20.又b= 5,知c=4.由余弦定理得a2=b2+c2-2bccos A=25+16-20= 21,故a= 21.
又由正弦定理得sin Bsin C=basin A·acsin A=bac2sin2A=2201 ×34=57.
(1)求ω的值; (2)求 f(x)在区间 π,32π 上的最大值和最小值.
[自主解答]
(1)f(x)= 3- 3sin2ωx-sin ωxcos ωx 2
= 3- 2
3·1-cos 2
2ωx-12sin
2ωx
=
3cos 2
2ωx-1sin 2
2ωx=-sin
2ωx-π 3
.
因为图像的一个对称中心到最近的对称轴的距离为π, 4
入手); (3)将已知条件代入所求式子,化简求值. 2.三角恒等变换的“五遇六想” (1)遇正切,想化弦;(2)遇多元,想消元;(3)遇差异,想联
系;(4)遇高次,想降次;(5)遇特角,想求值;(6)想消元,引辅 角.
——————————————————————
练习 1.(2013·北京高考)已知函数 f(x)=(2cos2x-1)sin 2x+ 1cos 4x. 2
(1)求三角函数的周期、单调区间、最值及判断三角函数 的奇偶性,往往是在定义域内,先化简三角函数式,尽量化 为y=Asin(ωx+φ)的形式,然后再求解.
(2)对于形如y=asin ωx+bcos ωx型的三角函数,要通过
引入辅助角化为y= a2+b2 sin(ωx+φ) cos φ= a2a+b2,
b
=cos C,求函数 f(A)的取值范围. cos B
解直角三角形(共30张)PPT课件
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
第七页,共45页。
(2)将三角变换与代数变换密切结合:三角变换主要是 灵活应用相应的三角公式,对于代数变换主要有因式分解、 通分、提取公因式、利用相应的代数公式等,例如,sin4x +cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22x.
第八页,共45页。
[诊断自测] 1.概念思辨 (1)两角和与差的正弦、余弦公式中的角 α,β 是任意 的.( √ ) (2)存在实数 α,β,使等式 sin(α+β)=sinα+sinβ 成 立.( √ ) (3)在锐角△ABC 中,sinAsinB 和 cosAcosB 大小关系不 确定.( × ) (4)公式 tan(α+β)=1t-anαta+nαttaannββ可以变形为 tanα+tanβ =tan(α+β)(1-tanαtanβ),且对任意角 α,β 都成立.( × )
第二十页,共45页。
冲关针对训练
已知锐角 α,β 满足 sinα= 55,cosβ=31010,则 α+β
等于( )
3π A. 4
B.π4或34π
π C.4
D.2kπ+π4(k∈Z)
第二十一页,共45页。
解析 由 sinα= 55,cosβ=31010,且 α,β 为锐角,可
知 cosα=255,sinβ= 1100,
(1)求函数 f(x)的最小正周期和单调递增区间;
(2)若函数 g(x)=f(x)-m 在0,π2上有两个不同的零点 x1,x2,求实数 m 的取值范围,并计算 tan(x1+x2)的值.
本题采用转化法、数形结合思想.
第二十三页,cosx+ 3, 化简可得 f(x)=2sinxcosx-2 3cos2x+ 3 =sin2x-2 312+21cos2x+ 3 =sin2x- 3cos2x =2sin2x-π3.
(2)将三角变换与代数变换密切结合:三角变换主要是 灵活应用相应的三角公式,对于代数变换主要有因式分解、 通分、提取公因式、利用相应的代数公式等,例如,sin4x +cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22x.
第八页,共45页。
[诊断自测] 1.概念思辨 (1)两角和与差的正弦、余弦公式中的角 α,β 是任意 的.( √ ) (2)存在实数 α,β,使等式 sin(α+β)=sinα+sinβ 成 立.( √ ) (3)在锐角△ABC 中,sinAsinB 和 cosAcosB 大小关系不 确定.( × ) (4)公式 tan(α+β)=1t-anαta+nαttaannββ可以变形为 tanα+tanβ =tan(α+β)(1-tanαtanβ),且对任意角 α,β 都成立.( × )
第二十页,共45页。
冲关针对训练
已知锐角 α,β 满足 sinα= 55,cosβ=31010,则 α+β
等于( )
3π A. 4
B.π4或34π
π C.4
D.2kπ+π4(k∈Z)
第二十一页,共45页。
解析 由 sinα= 55,cosβ=31010,且 α,β 为锐角,可
知 cosα=255,sinβ= 1100,
(1)求函数 f(x)的最小正周期和单调递增区间;
(2)若函数 g(x)=f(x)-m 在0,π2上有两个不同的零点 x1,x2,求实数 m 的取值范围,并计算 tan(x1+x2)的值.
本题采用转化法、数形结合思想.
第二十三页,cosx+ 3, 化简可得 f(x)=2sinxcosx-2 3cos2x+ 3 =sin2x-2 312+21cos2x+ 3 =sin2x- 3cos2x =2sin2x-π3.
2020版高考数学一轮复习第三章三角函数解三角形第3讲两角和与差的三角函数二倍角公式课件
A.12
C.
3 2
[解析]
cos2π8-sin2π8=cosπ4=
2 2.
B.
2 2
D.-
2 2
(B )
4.(2018·课标Ⅲ,4)若 sinα=13,则 cos2α=
(B )
A.89
B.79
C.-79
D.-89
[解析] 本题考查三角恒等变换.因为 sinα=13,所以 cos2α=1-2sin2α=1
2 2
[解析]
D.
3 2
原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选
A.
另解:原式=cos47°cos13°-sin47°sin13°=cos(47°+13°)=cos60°=12.故选 A.
2.(2018·湖北枣阳模拟)若 sinα=35(0<α<π2),则 sin(α+π6)=
-2×(13)2=1-29=79.故选 B.
5.化简cos(α-β)cosβ-sin(α-β)sinβ的结果为
A.sin(2α+β)
B.cos(α-2β)
C.cosα
D.cosβ
[解析] 原式即cos(α-β+β)=cosα.
(C)
6.(1+tan17°)(1+tan28°)的值为
(D)
A.-1
B.0
C.1
D.2
[解析] 原式=1+tan17°+tan28°+tan17°·tan28°=1+tan45°(1-
tan17°·tan28°)+tan17°·tan28°=1+1=2.故选D.
A.3Βιβλιοθήκη 3-4 10B.3
3+4 10
高三数学一轮总复习第三章三角函数解三角形3.7解三角形应用举例课件.ppt
解析:如图所示,某人在 C 处,AB 为塔高,他沿 CD 前进,CD=40,此时∠ DBF=45°,过点 B 作 BE⊥CD 于 E,则∠AEB=30°,
在△BCD 中,CD=40,∠BCD=30°,∠DBC=135°,由正弦定理,得 sin∠CDDBC=sin∠BDBCD, ∴BD=4s0insi1n3350°°=20 2(米)。 ∠BDE=180°-135°-30°=15°。 在 Rt△BED 中,
29
通关特训 3 如图所示,位于 A 处的信息中心获悉:在其正东方向相距 40 海里
的 B 处有一艘渔船遇险,在原地等待营救。信息中心立即把消息告知在其南偏西 30°,
相距 20 海里的 C 处的乙船,现乙船朝北偏东 θ 的方向即沿直线 CB 前往 B 处救援, 则 cosθ 等于( )
A.
21 7
解析:如图所示,
由题意知∠C=45°,
由正弦定理得siAn6C0°=sin245°,
∴AC=
2× 2
23=
6。
2
答案: 6
13
4.一船向正北航行,看见正东方向有相距 8 海里的两个灯塔恰好在一条直线 上。继续航行半小时后,看见一灯塔在船的南偏东 60°,另一灯塔在船的南偏东 75°, 则这艘船每小时航行__________海里。
并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求 A、B 之间的距
离。
16
解析:如图所示,在△ACD 中,∠ACD=120°,∠CAD=∠ADC=30°,
∴AC=CD= 3 km。
在△BCD 中,∠BCD=45°,
∠BDC=75°,∠CBD=60°。
∴BC=
s3isni6n07°5°=
高考数学一轮复习第三章三角函数解三角形第二节同角三角函数的基本关系及诱导公式课件新人教版
为( B )
A.a>b>c
B.b>a>c
C.b>c>a
D.a>c>b
5.(2021·唐山模拟)已知sin52π+α=35,那么tan α的值为( C )
A.-43
B.-34
C.±43
D.±34
6.(2021·苏州模拟)化简:sin1+π-siαnπ2++siαnαtacnosα α=________. 解析:sin1+π-siαnπ2++siαnαtacnosαα=sin1+α+cossinααtcaonsαα=cos α.
3 4
π,B=56π,不符合题意,舍去.
综上,C=172π.
[答案]
7 12π
三角形中的三角函数问题,要注意隐含条件的发掘以及三角形内 角和定理的应用.
(二)创新应用——斜率公式与三角函数的交汇问题
[例2] 已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上
有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( B )
1 A.5
B.
5 5
25 C. 5
D.1
本题主要通过商数关系进行弦化切,结合斜率公式求解,着重 考查了逻辑推理与数学运算核心素养.
[题组突破]
1.已知曲线f(x)=32x3在点(1,f(1))处的切线的倾斜角为α,则
2sinsiαn2cαo-s αc+osc2αos2α=( C )
1 A.2
B.2
函数名不变 符号看象限
函数名改变,符 号看象限
1.若sin6π-α=13,则cos3π+α=( C )
A.-79
B.-13
1 C.3
D.79
2.化简scions25απ-+π2α·sin(α-π)·cos(2π-α)的结果为________.
(新课标)高考数学大一轮复习第三章三角函数、解三角形第3节三角恒等变换第2课时简单的三角恒等变换课件
-α]=sin[(α+β)+α],
即 3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα +cos(α+β)sinα,
整理可得 sin(α+β)cosα=2cos(α+β)·sinα. 因为 α≠kπ+π2 ,α+β≠kπ+π2 (k∈Z), 所以 cos(α+β)·cosα≠0, 则有 tan(α+β)=2tanα.
第二十三页,共56页。
(2)∵α 为锐角,cosα+π6 =45,∴sinα+π6 =35, ∴sin2α+π3 =2sinα+π6 cosα+π6 =2245, cos2α+π3 =2cos2α+π6 -1=275, ∴sin2α+π 12=sin2α+π3 -π4 = 22sin2α+π3 -cos2α+π3 =1750 2.
第十二页,共56页。
考向 1 给角求值
【例 2】 sin47°-cosisn1177°°cos30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
第十三页,共56页。
【解析】 原式=sin(30°+17° cos)17-°sin17°cos30° =sin30°cos17°+cos3c0o°s1s7i°n17°-sin17°cos30° =sin3c0o°s1c7o°s17° =sin30°=12. 【答案】 C
第十八页,共56页。
cos2α-π4 =cos2α-π4 +π4 = 22cos2α-π4 -sin2α-π4 =-3510 2.
第十九页,共56页。
解法 2:由 cosπ4 -α=35,得 22(cosα+sinα)=35.① 两边平方,得 1+2cosαsinα=1285. sin2α=2cosαsinα=-275, (cosα-sinα)2=1--275=3225. 根据 2cosαsinα=-275<0 及-3π 2 <α<-π2 ,
即 3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα +cos(α+β)sinα,
整理可得 sin(α+β)cosα=2cos(α+β)·sinα. 因为 α≠kπ+π2 ,α+β≠kπ+π2 (k∈Z), 所以 cos(α+β)·cosα≠0, 则有 tan(α+β)=2tanα.
第二十三页,共56页。
(2)∵α 为锐角,cosα+π6 =45,∴sinα+π6 =35, ∴sin2α+π3 =2sinα+π6 cosα+π6 =2245, cos2α+π3 =2cos2α+π6 -1=275, ∴sin2α+π 12=sin2α+π3 -π4 = 22sin2α+π3 -cos2α+π3 =1750 2.
第十二页,共56页。
考向 1 给角求值
【例 2】 sin47°-cosisn1177°°cos30°=(
)
A.-
3 2
B.-12
C.12
D.
3 2
第十三页,共56页。
【解析】 原式=sin(30°+17° cos)17-°sin17°cos30° =sin30°cos17°+cos3c0o°s1s7i°n17°-sin17°cos30° =sin3c0o°s1c7o°s17° =sin30°=12. 【答案】 C
第十八页,共56页。
cos2α-π4 =cos2α-π4 +π4 = 22cos2α-π4 -sin2α-π4 =-3510 2.
第十九页,共56页。
解法 2:由 cosπ4 -α=35,得 22(cosα+sinα)=35.① 两边平方,得 1+2cosαsinα=1285. sin2α=2cosαsinα=-275, (cosα-sinα)2=1--275=3225. 根据 2cosαsinα=-275<0 及-3π 2 <α<-π2 ,
2023新教材高考数学二轮专题复习:三角函数与解三角形课件
技法领悟
1.若涉及已知条件中含边长之间的关系,且与面积有关的最值问题, 一般利用S=12ab sinC型面积公式及基本不等式求解.
2.若求与三角形边长有关的表达式的最值或取值范围时,一般把边
用三角形的一个角表示,利用角的范围求解.
巩固训练1 1.[2022·河北沧州二模]在△ABC中;内角A,B,C的对边分别为a, b,c,已知b(2sin A- 3cos A)=a sin B. (1)求A;
2,则sin B= 22且π>B>0,可得B=π4或B=34π,
(2)若a=2,求△ABC的面积.
解析:由题设,a=2,则b= 3,又B=π4,
所以cos B=a2+c2−b2=1+c2= 2,整理得c2-2 2c+1=0,解得c= 2±1,满足
2ac
4c 2
题设.
由S△ABC=12ac sin B= 22c, 所以,当c= 2+1时S△ABC=1+ 22;当c= 2-1时S△ABC=1- 22.
(2)将函数f(x)的图象向右平移π6个单位长度,再把各点的横坐标缩小 为原来的12(纵坐标不变),得到函数y=g(x)的图象,当x∈[-1π2,π6]时, 求函数g(x)的值域.
解析:将函数f(x)的图象向右平移π6个单位长度,可得y=2sin (2x-π3)的图象. 再把横坐标缩小为原来的12,得到函数y=g(x)=2sin (4x-π3)的图象. 当当当x44∈xx--[-ππ33==1π2-π3,时π2时,π6]时,函,函数4数gx(-xg)(取π3x∈)取得[-得最2最大3π 小值,值,π3],最,最 大小值值为为3-,2, 故函数g(x)的值域为[-2, 3].
1.已知函数f(x)= 称轴间的距离为π2.