蒙特卡洛分析PPT课件
合集下载
第六讲 蒙特卡洛方法ppt课件
蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
计算材料学概述之蒙特卡洛方法详解课件
组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为
。
密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。
MonteCarlo蒙特卡洛法简介.ppt
实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。
建立各种估计量
一般说来,构造了概率模型并能从中抽 样后,即实现模拟实验后,我们就要确 定一个随机变量,作为所要求的问题的 解,我们称它为无偏估计。建立各种估 计量,相当于对模拟实验的结果进行考 察和登记,从中得到问题的解。
例子
考虑平面上的一个边长为1的正方形及其 内部的一个形状不规则的“图形”,如 何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法: 向该正方形“随机地”投掷N个点落于 “图形”内,则该“图形”的面积近似 为M/N。
比喻
可用民意测验来作一个不严格的比喻。 民意测验的人不是征询每一个登记选民 的意见,而是通过对选民进行小规模的 抽样调查来确定可能的民意。其基本思 想是一样的。
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
.-0.4326 0.2877 -1.6656 -1.1465 0.1253 1.1909
精确性
由于Monte Carlo 方法的随机性,精确性 建立在大量的重复模拟上,最后去平均 值。
蒙特卡洛分析(课堂PPT)
3
Monte Carlo simulation(example) RF-front end (LNA)
➢ Knowing System requirement
➢ Initial design based on requirement like noise,gain,narrow or wide band.
➢Design- Specific Section – designer according to his need can specify Monte Carlo analysis.For example in a current mirror circuit,matched transistors are used and designer can give some correlation factor between these matched transistor.
9
Cadence simulation setup (Monte Carlo)
Monte Carlo simulation
Typical Model File Process Section
1
1. All parameter sets to their nominal value ,no statistical variation defined
6
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose analysis to run 2.Choose output to plot 3.Create netlist and run
Set up analysis(dc,ac,sp etc.),create netlist and run simulator
Monte Carlo simulation(example) RF-front end (LNA)
➢ Knowing System requirement
➢ Initial design based on requirement like noise,gain,narrow or wide band.
➢Design- Specific Section – designer according to his need can specify Monte Carlo analysis.For example in a current mirror circuit,matched transistors are used and designer can give some correlation factor between these matched transistor.
9
Cadence simulation setup (Monte Carlo)
Monte Carlo simulation
Typical Model File Process Section
1
1. All parameter sets to their nominal value ,no statistical variation defined
6
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose analysis to run 2.Choose output to plot 3.Create netlist and run
Set up analysis(dc,ac,sp etc.),create netlist and run simulator
《蒙特卡罗方法》PPT课件
5
1.引言
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
完整版ppt
L
d
p
2L d
6
1.引言
7 完整版ppt
1.引言
8 完整版ppt
1.引言
9 完整版ppt
23 完整版ppt
1.引言
注意以下两点: • Monte Carlo方法与数值解法的不同: ✓ Monte Carlo方法利用随机抽样的方法来求解物理问题;
✓数值解法:从一个物理系统的数学模型出发,通过求解一 系列的微分方程来的导出系统的未知状态;
• Monte Carlo方法并非只能用来解决包含随机的过程的问题:
28 完整版ppt
2.MC基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。
➢ 两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
4. 编程进行计算机模拟
5. 获得统计量
j
17 完整版ppt
1.引言
MC的模拟方法-1 确定统计方案
1 确定统计模型 1) 现象 模型
随机现象Y=Y(Xi), Xi={X1, X2, X3,…}
2) 确定随机变量Xi的分布特征fi(x) 平均分布,指数分布,正态分布,Γ分布…
2 确定统计量
j
i lnim1nkn1ik(xi,...)
1.引言
蒙特卡罗方法PPT课件
第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍
是
,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率
蒙特卡洛方法的应用课件
化结构的设计参数。
材料属性模拟
蒙特卡洛方法可以模拟材料的物理和化学属性,如热导率、电 导率、扩散系数等,为材料的选择和应用提供依据。
结构可靠性分析
蒙特卡洛方法可以用于结构可靠性分析,通过模拟结构在 不同工况下的失效概率,评估结构的可靠性和安全性。
系统可靠性分析
系统可靠性评估
蒙特卡洛方法可以用于评估系统 的可靠性,通过模拟系统在不同 条件下的运行状态,评估系统的 可靠性和故障概率。
控制系统优化
蒙特卡洛方法可以用于控制系统的优化,通过模拟控制系 统的不同参数和控制策略,优化控制系统的性能和稳定性 。
控制系统故障诊断
蒙特卡洛方法可以用于控制系统的故障诊断,通过模拟控 制系统的运行状态和故障模式,诊断控制系统的故障和问 题。
05
蒙特卡洛方法在社会科学领 域的应用
人口统计学模拟
总结词
要点一
金融风险管理
蒙特卡洛方法可以用于评估金融衍生品的风险,通过模拟 标的资产价格的波动,计算出衍生品的价值及其波动性。
要点二
物理模拟
蒙特卡洛方法可以用于模拟物理现象,如粒子运动、气体 扩散等,通过大量模拟实验得出物理量的统计结果。
感谢您的观看
THANKS
它通过构造一个概率模型或随机过程 ,将需要求解的问题转化为一个概率 问题,然后通过大量的随机抽样来近 似求解该概率问题。
蒙特卡洛方法的原理
蒙特卡洛方法的原理基于大数定律和中心极限定理,通过大量的随机抽样来逼近真实概率分布的特征 值或概率质量函数。
在每个抽样点上,根据问题的具体条件和约束,进行相应的计算和判断,最终得到问题的近似解。
化学反应模拟
总结词
蒙特卡洛方法在化学领域常用于模拟化 学反应的过程和机理。
材料属性模拟
蒙特卡洛方法可以模拟材料的物理和化学属性,如热导率、电 导率、扩散系数等,为材料的选择和应用提供依据。
结构可靠性分析
蒙特卡洛方法可以用于结构可靠性分析,通过模拟结构在 不同工况下的失效概率,评估结构的可靠性和安全性。
系统可靠性分析
系统可靠性评估
蒙特卡洛方法可以用于评估系统 的可靠性,通过模拟系统在不同 条件下的运行状态,评估系统的 可靠性和故障概率。
控制系统优化
蒙特卡洛方法可以用于控制系统的优化,通过模拟控制系 统的不同参数和控制策略,优化控制系统的性能和稳定性 。
控制系统故障诊断
蒙特卡洛方法可以用于控制系统的故障诊断,通过模拟控 制系统的运行状态和故障模式,诊断控制系统的故障和问 题。
05
蒙特卡洛方法在社会科学领 域的应用
人口统计学模拟
总结词
要点一
金融风险管理
蒙特卡洛方法可以用于评估金融衍生品的风险,通过模拟 标的资产价格的波动,计算出衍生品的价值及其波动性。
要点二
物理模拟
蒙特卡洛方法可以用于模拟物理现象,如粒子运动、气体 扩散等,通过大量模拟实验得出物理量的统计结果。
感谢您的观看
THANKS
它通过构造一个概率模型或随机过程 ,将需要求解的问题转化为一个概率 问题,然后通过大量的随机抽样来近 似求解该概率问题。
蒙特卡洛方法的原理
蒙特卡洛方法的原理基于大数定律和中心极限定理,通过大量的随机抽样来逼近真实概率分布的特征 值或概率质量函数。
在每个抽样点上,根据问题的具体条件和约束,进行相应的计算和判断,最终得到问题的近似解。
化学反应模拟
总结词
蒙特卡洛方法在化学领域常用于模拟化 学反应的过程和机理。
《蒙特卡罗方法》课件
蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡洛模拟课件PPT
斯密思(Smith) 投计次数:3204次 pi的实验值:3.1553
2021/3/10年9月2日
Monte Carlo方法的发展历史
▪ 20世纪四十年代,由于电子计算机的出现,利用电子计算机可以实 现大量的随机抽样的试验,使得用随机试验方法解决实际问题才有 了可能。其中作为当时的代表性工作便是在第二次世界大战期间, 为解决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数 学家冯.诺伊曼和乌拉姆等提出蒙特卡罗模拟方法.由于当时工作是保 密的,就给这种方法起了一个代号叫蒙特卡罗,即摩纳哥的一个赌 城的名字。用赌城的名字作为随机模拟的名称,既反映了该方法的 部分内涵,又易记忆,因而很快就得到人们的普遍接受。
2021/3/10年9月2日
Monte Carlo方法的基本思想
▪ 蒙特卡罗方法又称计算机随机模拟方法。它是以概 率统计理论为基础的一种方法。
▪ 由蒲丰实验可以知道,当所求问题的解是某个事件 的概率,或者是某个随机变量的数学期望,或者是 与概率、数学期望有关的量时。通过某种试验的方 法,得出该事件发生的频率,或者该随机变量若干 个具体观察值的算术平均值,通过它得到问题的解。 这就是蒙特卡洛方法的基本思想。
Monte Carlo方法的发展历史
历史上的实验
1901
1850
沃尔弗(Wolf) 投计次数:5000次 pi的实验值:3.1596
1855
1894
拉查里尼(Lazzarini) 投计次数:3408次 pi的实验值:3.141592
福克斯(Fox) 投计次数:1120次 pi的实验值:3.1419
2021/3/10年9月2日
例.蒲丰氏问题
▪ 设针投到地面上的位置可以用一组参数 (x,θ)来描述,x为针中心的坐标,θ为针 与平行线的夹角,如图所示。
蒙特卡洛方法第一讲PPT课件
扩散理论(diffusion theory):根据在均匀介 质中中子流密度与中子通量密度的负梯度成正 比的假定描述中子扩散过程的近似理论。
扩散理论关注的重点在于通过扩散方程解决中 子通量密度与空间位置的关系。
2021/3/12
12
扩散方程可以通过对输运方程中泄漏项 的角分布函数进行1阶PN近似得到,也可以 通过类比分子扩散运动,利用斐克定律 (Fick’s Law)得到,不过要假定以下前提:
2021/3/12
28
1.5.1 与能量相关的稳态中子扩散方程
稳态单能中子扩散方程:
S ( r ) D 2 ( r ) a ( r ) 0
其中:
• 产生率: S ( r )
• 泄漏率: D2(r)
• 移出率(损失率): a(r)
2021/3/12
29
在考虑能量变量后: • 产生率:
移出率(损失率):
R = ( Σ a ( r , E ) + Σ s ( r , E ) ) φ ( r , E ) = Σ t ( r , E ) φ ( r , E )
2021/3/12
31
与能量相关的中子扩散方程
1∂φ(r,E,t) v ∂t
=∇•D∇φ(r,E,t)-Σt(r,E)φ(r,E,t)+
2021/3/12
16
常用边界条件
• i. 在扩散方程适用范围内,中子通量密度 的数值必须为正的有限实数:
0
2021/3/12
17
常用边界条件
• ii. 在两种不同扩散性质的介质交界面上, 垂直于分界面的中子流密度相等,中子通 量密度相等:
A
2021/3/12
B
x
18
扩散理论关注的重点在于通过扩散方程解决中 子通量密度与空间位置的关系。
2021/3/12
12
扩散方程可以通过对输运方程中泄漏项 的角分布函数进行1阶PN近似得到,也可以 通过类比分子扩散运动,利用斐克定律 (Fick’s Law)得到,不过要假定以下前提:
2021/3/12
28
1.5.1 与能量相关的稳态中子扩散方程
稳态单能中子扩散方程:
S ( r ) D 2 ( r ) a ( r ) 0
其中:
• 产生率: S ( r )
• 泄漏率: D2(r)
• 移出率(损失率): a(r)
2021/3/12
29
在考虑能量变量后: • 产生率:
移出率(损失率):
R = ( Σ a ( r , E ) + Σ s ( r , E ) ) φ ( r , E ) = Σ t ( r , E ) φ ( r , E )
2021/3/12
31
与能量相关的中子扩散方程
1∂φ(r,E,t) v ∂t
=∇•D∇φ(r,E,t)-Σt(r,E)φ(r,E,t)+
2021/3/12
16
常用边界条件
• i. 在扩散方程适用范围内,中子通量密度 的数值必须为正的有限实数:
0
2021/3/12
17
常用边界条件
• ii. 在两种不同扩散性质的介质交界面上, 垂直于分界面的中子流密度相等,中子通 量密度相等:
A
2021/3/12
B
x
18
计算物理 蒙特卡罗方法基础ppt课件
这种模拟是以所谓“马尔科夫”(Markov)链的 形式产生系统的分布序列。该方法可以使我们能够研究 经典和量子多粒子系统的问题。
5
一 基本思想
直接蒙特卡洛模拟法: 对求解问题本身就具有概率和统计性的情况。
如:中子在介质中的传播,核衰变过程等, 思想是按照实际问题所遵循的概率统计规律,用计算
机进行直接的抽样试验,然后计算其统计参数。 该方法也就是通常所说的“计算机实验”。
对1,000,000次投针为, 0.0024
可见,增加模拟的次数可以减小误差,但不可消除误差。
12
前人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850
5000
3.1596
斯密思(Smith) 1855
3204
3.1553
福克斯(Fox) 1894
1120
3.1419
对100次投针为,
0.1642
对10,000次投针为, 0.0164
对1,000,000次投针为, 0.0016 15
投点法实验程序流程图
n n max
n n1
Yes
产生随机数 1 ,2
x L1 , y L2
r 2 x2 y2 L2
Yes
M M1
计1
if (mod(ncount,100) .eq. 0 ) then
write(10,"(I10,F15.6)")ncount,
4.0d0*dble(m)/dble(ncount)
end if
end do
end
17
结果和分析
(1) 总计投点1.0×105次 (2) 该算法收敛,
5
一 基本思想
直接蒙特卡洛模拟法: 对求解问题本身就具有概率和统计性的情况。
如:中子在介质中的传播,核衰变过程等, 思想是按照实际问题所遵循的概率统计规律,用计算
机进行直接的抽样试验,然后计算其统计参数。 该方法也就是通常所说的“计算机实验”。
对1,000,000次投针为, 0.0024
可见,增加模拟的次数可以减小误差,但不可消除误差。
12
前人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850
5000
3.1596
斯密思(Smith) 1855
3204
3.1553
福克斯(Fox) 1894
1120
3.1419
对100次投针为,
0.1642
对10,000次投针为, 0.0164
对1,000,000次投针为, 0.0016 15
投点法实验程序流程图
n n max
n n1
Yes
产生随机数 1 ,2
x L1 , y L2
r 2 x2 y2 L2
Yes
M M1
计1
if (mod(ncount,100) .eq. 0 ) then
write(10,"(I10,F15.6)")ncount,
4.0d0*dble(m)/dble(ncount)
end if
end do
end
17
结果和分析
(1) 总计投点1.0×105次 (2) 该算法收敛,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design
meets the
NO
goal ?
YES end
2
Monte Carlo simulation
➢We will perform Monte Carlo analysis on an RF-front end LNA and compare the result if no statistical analysis is done. ➢We will also see how to analyze yield and scalar data in Monte Carlo with the help of Low pass filter example.
Monte Carlo simulation
……for better yield and performance
--A tutorial
.
1
Monte Carlo simulation
……for better yield and performance
If fabrication process parameter and device mismatch effect on same die are not taken in to account then ➢ Some design may degrade in performance ➢Overall design yield could be unexpectedly low
.9Leabharlann Cadence simulation setup (Monte Carlo)
Monte Carlo simulation
Typical Model File Process Section
1
1. All parameter sets to their nominal value ,no statistical variation defined
Hence statistical analysis must find a high place in design cycle
.
start
System requirement Initial design
Statistical analysis include process, mismatch effects
➢Design- Specific Section – designer according to his need can specify Monte Carlo analysis.For example in a current mirror circuit,matched transistors are used and designer can give some correlation factor between these matched transistor.
.
5
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose setup model libraries
2.Browse and choose model file in the directory
Choosing model file,which contains all MOS,reg.,cap model parameters.
.
6
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose analysis to run 2.Choose output to plot 3.Create netlist and run
Set up analysis(dc,ac,sp etc.),create netlist and run simulator
2. Model (NMOS’s Rg) is calculated using nominal parameter value
2
Caden. ce simulation setup (Monte Car1l0o)
Monte Carlo simulation
Defining process,mismatch parameter as statistically assigned value Process Section
Bias N/W
Input matching
Linearity
.
Output matching
Cascode arch.to reduce feedback capacitance
4
Monte Carlo simulation
1. Choosing affirma analog artist
2. Choosing Spectre simulator
.
3
Monte Carlo simulation(example) RF-front end (LNA)
➢ Knowing System requirement
➢ Initial design based on requirement like noise,gain,narrow or wide band.
.
7
Cadence simulation setup (Normal)
Monte Carlo simulation
Plotting results 1.Choose direct plot for analysis 2.Click to view the desired result
3.Analyze waveform
.
8
Cadence simulation setup (Normal)
Monte Carlo simulation
Monte Carlo modeling in Cadence spectre simulator
➢ Process Section - describes manufacturing parameter,their statistical variation and a model for device that calculates its(width,length,cap,res. Etc.)according to process parameter.