电磁场理论习题及答案

合集下载

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。

答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。

答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。

(完整版)电磁场理论习题及答案7.

(完整版)电磁场理论习题及答案7.

习题:1. 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。

当该导线以速度24x y m v e e s=+在磁感应强度22363x y z B e x z e e xz T =+-的磁场中移动时,求感应电动势.解:给定的磁场为恒定磁场,故导线中的感应电动势只能是导线在恒定磁场中移动时由洛仑兹力产生的。

有 ()in v B dl ε=⨯⋅⎰ 根据已知条件,得2233()|(24)(363)|z x y x y z z v B e e e x z e e xz ==⨯=+⨯+- 210854(1236)x y z e x e x e x =-++- x dl e dx = 故感应电动势为0.520[10854(1236)]13.5in x y z x e x e x e x e dx V ε=-++-⋅=-⎰2。

长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。

当其在恒定磁场0z B e B =中以角速度ω旋转时,求导体棒中的感应电动势。

解:导体中的感应电动势是由洛仑兹力产生的,即 ()in v b dl ε=⨯⋅⎰根据已知条件,导体棒上任意半径r 处的速度为 v e r ωΦ= r dl e dr = 故感应电动势为200001()()2llLin z r v b dl e r e B e dr B rdr B l V εωωωΦ=⨯⋅=⨯⋅==⎰⎰⎰3.试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。

解:考察麦克斯韦方程中的参量,利用它们与电场强度E 和磁感应强度B 的关系,将,,H B D E J E μεσ===代入即可,注意在非均匀媒质中,,μεσ是空间坐标的函数.考察麦克斯韦第一方程,有 11()BH B B μμμ∇⨯=∇⨯=∇⨯+∇⨯211B B μμμ=-∇⨯+∇⨯D E J J t tε∂∂=+=+∂∂ 所以E BB J t μμμεμ∂∇⨯∇⨯=++∂ 而 ()D E E E εεερ∇⋅=∇⋅=⋅∇+∇⋅=,于是,微分形式的麦克斯韦方程用E 和B 表示为E BB J t μμμεμ∂∇⨯∇⨯=++∂ B E t∂∇⨯=-∂ 0B ∇⋅= E E εερ∇⋅+∇⋅= 对于无耗媒质,0σ=,因此有0J =。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。

答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。

电磁场期末考试题及答案

电磁场期末考试题及答案

电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。

A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。

A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。

A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。

A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。

B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。

A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。

A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。

A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。

A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。

A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。

2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。

答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。

答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度⽂库习题5.1 设的半空间充满磁导率为的均匀介质,的半空间为真空,今有线电流沿z轴⽅向流动,求磁感应强度和磁化电流分布。

5.2 半径为a的⽆限长圆柱导体上有恒定电流J均匀分布于截⾯上,试解⽮势A 的微分⽅程,设导体的磁导率为,导体外的磁导率为。

5.3 设⽆限长圆柱体内电流分布,求⽮量磁位A和磁感应B。

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平⾏,并近似为向左侧延伸⾄⽆穷远。

试求圆弧中⼼点处的磁感应强度。

5.5 两根⽆限长直导线,布置于处,并与z轴平⾏,分别通过电流I 及,求空间任意⼀点处的磁感应强度B。

5.6 半径的磁介质球,具有磁化强度为求磁化电流和磁荷。

5.7已知两个相互平⾏,相隔距离为d,共轴圆线圈,其中⼀个线圈的半径为,另⼀个线圈的半径为b,试求两线圈之间的互感系数。

5.8 两平⾏⽆限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培⼒Fm。

5.9 ⼀个薄铁圆盘,半径为a,厚度为,如题5.9图所⽰。

在平⾏于z轴⽅向均匀磁化,磁化强度为M。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

均匀磁化的⽆限⼤导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为⼀薄盘,空腔2像⼀长针,腔内都充有空⽓。

试求两空腔中⼼处磁场强度的⽐值。

5.11 两个⽆限⼤且平⾏的等磁位⾯D、N,相距h,,。

其间充以两种不同的导磁媒质,其磁导率分别为,,分界⾯与等磁位⾯垂直,求媒质分界⾯单位⾯积受⼒的⼤⼩和⽅向。

题5.11图5.12 长直导线附近有⼀矩形回路,回路与导线不共⾯,如题5.12图所⽰。

证明:直导线与矩形回路间的互感为题5.12图5.13 ⼀环形螺线管的平均半径,其圆形截⾯的半径,铁芯的相对磁导率,环上绕匝线圈,通过电流。

(1)计算螺线管的电感;(2)在铁芯上开⼀个的空⽓隙,再计算电感(假设开⼝后铁芯的不变);(3)求空⽓隙和铁芯内的磁场能量的⽐值。

电磁场理论期末复习题

电磁场理论期末复习题

电磁场理论期末复习题(附答案)一填空题1.静止电荷所产生的电场,称之为静电场;电荷Q在某点所受电场力为F,则该点电场强度的大小为QFE=。

2. 可以用电位的负梯度来表示电场强度;当电位的参考点选定之后,静电场中各点的电位值是唯一确定的。

3.__电荷_____的规则运动形成电流;将单位正电荷从电源负极移动到正极,非静电力__所做的功定义为电源的电动势4.由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场。

5.磁感应强度B是无散场,它可以表示为另一个矢量场A的旋度,称A为矢量磁位,为了唯一地确定A,还必须指定A的散度为零,称为库仑规范。

6.静电场的边界条件,即边值问题通常分为三类:第一类为给定整个边界上的位函数值;第二类为给定边界上每一点位函数的法向导数值;第三类为给定一部分边界上每一点的位函数值,同时给定另一部分边界上每一点的位函数的法向导数值。

7.位移电流扩大了电流的概念,它由电场的变化产生,相对于位移电流我们称由电荷规则运动形成的电流为传导电流和运流电流。

8. 在电磁波传播中,衰减常数α的物理意义为表示电磁波每传播一个单位的距离,其振幅的衰减量,相位常数β的物理意义为表示电磁波每传播一个单位距离相位偏移量。

10.静电场是有势场,静电场中各点的电场与电位关系用公式表示是__Eφ=-∇_______。

13._____恒定电流________________产生的磁场,叫做恒定磁场。

14.库仑规范限制了矢量磁位A的多值性,但不能唯一确定A。

为了唯一确定A,还必须给定A的____散度为零________________________。

16.时变电磁场分析中,引入洛仑兹规范是为了解决动态位的____惟一性__________。

18.载流导体在磁场中会受到电磁力的作用,电磁力的方向由__左手_____定则确定。

二、选择题1.磁感应强度B与磁场强度H的一般关系为 ( B )A.H=μBB.B=μHC.H=μr BD.B=μ0H2 导体在静电平衡下,其内部电场强度( B )A.为常数B.为零C.不为零D.不确定3 真空中磁导率的数值为( C )A. 4π×10-5H/mB. 4π×10-6H/mC. 4π×10-7H/mD. 4π×10-8H/m4.磁通Φ的单位为( B )A.特斯拉B.韦伯C.库仑D.安匝5.矢量磁位的旋度是 ( A )A.磁感应强度B.磁通量C.电场强度D.磁场强度6.真空中介电常数ε0的值为 ( D )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m7.下面说法正确的是 ( A )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量8 静电场中试验电荷受到的作用力大小与试验电荷的电量( C )A.成反比B.成平方关系C.成正比D.无关9.平板电容器的电容量与极板间的距离 ( B )A.成正比B.成反比C.成平方关系D.无关10.在磁场B中运动的电荷会受到洛仑兹力F的作用,F与B的空间位置关系 ( B )A.是任意的B.相互垂直C.同向平行D.反向平行2.高斯定理的积分形式描述了 B 的关系;A.闭合曲面内电场强度与闭合曲面内电荷之间的关系B. 闭合曲面的电场强度通量与闭合曲面内电荷之间的关系C.闭合曲面内电场强度与闭合曲面外电荷之间的关系D. 闭合曲面的电场强度通量与闭合曲面附近电荷之间的关系13.以下阐述中,你认为正确的一项为 D ;A. 可以用电位的函数的梯度表示电场强度B. 感应电场是保守场,其两点间线积分与路径无关C.静电场是无散场,其在无源区域的散度为零D.静电场是无旋场,其在任意闭合回路的环量为零14. 以下关于电感的阐述中,你认为错误的一项为 C ;A.电感与回路的几何结构有关B. 电感与介质的磁导率有关C.电感与回路的电流有关D.电感与回路所处的磁场强度无关17.若电介质中的极化强度矢量和电场强度成正比关系,则称这种电介质为 BC ;A.均匀的B.各向同性的C.线性的D.可极化的18. 均匀导电媒质是指其电导率无关于 B ;A.电流密度B.空间位置C.时间D.温度19.关于镜像法,以下不正确的是 B ;A.它是解静电边值问题的一种特殊方法B.用假想电荷代替原电荷C.假想电荷位于计算区域之外D.假想电荷与原电荷共同作用满足原边界条件20. 交变电磁场中,回路感应电动势与回路材料电导率的关系为 D ;A.电导率越大,感应电动势越大B.电导率越小,感应电动势越大C.电导率越大,感应电动势越小D.感应电动势大小与导电率无关22.相同尺寸和匝数的空心线圈的电感系数与铁心线圈的电感系数之比( C )A.大于1B.等于1C.小于1D.无确定关系24.真空中均匀平面波的波阻抗为 A ;A.377ΩB.237ΩC.277ΩD.337Ω25. 在磁场B 中运动的电荷会受到洛仑兹力F 的作用,F 与B 的空间位置关系 B ; A.是任意的 B.相互垂直 C.同向平行 D.反向平行三、简答题1.什么是接地电阻?其大小与哪些因素有关?答:接地设备呈现出的总电阻称之为接地电阻;其大小与土壤电导率和接地体尺寸(等效球半径)成反比2.写出微分形式的麦克斯韦的数学表达式。

电磁场理论课后习题1答案

电磁场理论课后习题1答案

电磁场理论课后习题1答案电磁场理论是物理学中的重要课程,它研究了电磁场的产生、传播和相互作用。

在学习这门课程时,课后习题是巩固知识、提高能力的重要途径。

本文将针对电磁场理论课后习题1给出详细的解答。

习题1:一个带电粒子在电磁场中运动,受到的洛伦兹力为F=q(E+v×B),其中q是粒子的电荷量,E是电场强度,v是粒子的速度,B是磁感应强度。

请证明:洛伦兹力对粒子所做的功率为P=qv·E。

解答:根据洛伦兹力的表达式F=q(E+v×B),我们可以将其展开为F=qE+qv×B。

其中第一项qE表示粒子在电场中受到的电力,第二项qv×B表示粒子在磁场中受到的磁力。

根据功率的定义,功率P等于力F对时间t的导数,即P=dW/dt,其中W表示对物体所做的功。

所以我们需要计算洛伦兹力对粒子所做的功。

根据力的功的定义,功W等于力F对位移的积分,即W=∫F·ds。

在这里,位移ds是粒子在运动过程中的微小位移。

将洛伦兹力F=qE+qv×B代入功的计算式中,得到W=∫(qE+qv×B)·ds。

由于电场强度E和磁感应强度B是空间中的矢量场,所以我们可以将其展开为E=E_xi+E_yj+E_zk和B=B_xi+B_yj+B_zk的形式。

对于微小位移ds,我们可以将其表示为ds=dx·i+dy·j+dz·k。

将上述表达式代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q(v_xi+v_yj+v_zk)×(B_xi+B_yj+B_zk))·(dx·i+dy·j+dz·k)。

根据矢量积的性质,可以得到v×B=(v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k。

将其代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q((v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k))·(dx·i+dy·j+dz·k)。

电磁场考试试题及答案

电磁场考试试题及答案

电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。

答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。

答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。

答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。

答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。

答案:电磁波是由变化的电场和磁场相互作用产生的。

当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。

电磁场理论课程习题答案

电磁场理论课程习题答案

电磁场理论习题集信息科学技术学院第1章1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即∇ ⋅ (∇ ⨯ E ) = 01-3 试由微分形式麦克斯韦方程组,导出电流连续性方程t∂∂-=∇⋅ρJ1-4 参看1-4题图,分界面上方和下方两种媒质的介电常数分别为 ε1和 ε2,分界面两侧电场强度矢量E 与单位法向矢量n 21之间的夹角分别是 θ1和 θ2。

假设两种媒质分界面上的电荷面密度 ρS = 0,试证明:2121tan tan εεθθ=上式称为电场E 的折射定律。

1-5 参看1-4题图,分界面上方和下方两种媒质的磁导率分别为 μ1和 μ2,假设两种媒质的分界面上的表面电流密度矢量J S = 0,把图中的电场强度矢量E 换成磁感应强度矢量B 。

试证明:2121tan tan μμθθ=上式称为磁场B 的折射定律。

若 μ1为铁磁媒质,μ2为非铁磁媒质,即 μ1>>μ2 ,当 θ1 ≠ 90︒ 时,试问 θ2的近似值为何?请用文字叙述这一结果。

1-6 已知电场强度矢量的表达式为E = i sin(ω t - β z )+j 2cos(ω t - β z )通过微分形式的法拉第电磁感应定律t∂∂-=⨯∇BE ,求磁感应强度矢量B (不必写出与时间t 无关的积分常数)。

1-7 一平板电容器由两块导电圆盘组成,圆盘的半径为R ,间距为d 。

其间填充介质的介电常数 ε 。

如果电容器接有交流电源,已知流过导线的电流为I (t ) = I 0sin(ωt )。

忽略边缘效应,求电容器中的电位移矢量D 。

1-8 在空气中,交变电场E = j A sin(ω t - β z )。

试求:电位移矢量D ,磁感应强度矢量B 和磁场强度矢量H 。

1-9 设真空中的磁感应强度为)106sin(10)(83kz t e t B y -⨯=-π试求空间位移电流密度的瞬时值。

电磁场期末考试试题及答案

电磁场期末考试试题及答案

电磁场期末考试试题及答案一、选择题(每题2分,共20分)1. 麦克斯韦方程组包括以下哪四个方程?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 所有上述选项答案:D2. 电磁波在真空中传播的速度是多少?A. 299792458 m/sB. 300000000 m/sC. 3×10^8 m/sD. 3×10^5 km/s答案:C3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 光波D. 声波答案:D4. 电磁波的频率和波长之间有什么关系?A. 频率与波长成反比B. 频率与波长相等C. 频率与波长成正比D. 没有关系答案:A5. 什么是电磁感应?A. 电流通过导线产生磁场B. 磁场变化产生电流C. 电流变化产生磁场D. 磁场变化产生电压答案:B6. 以下哪个不是电磁场的基本性质?A. 能量守恒B. 动量守恒C. 电荷守恒D. 质量守恒答案:D7. 什么是洛伦兹力?A. 电荷在电场中受到的力B. 电荷在磁场中受到的力C. 电荷在电场和磁场中受到的合力D. 电荷在磁场中受到的力,与电荷速度成正比答案:C8. 电磁波的偏振是指什么?A. 电磁波的传播方向B. 电磁波的振动方向C. 电磁波的频率D. 电磁波的波长答案:B9. 什么是电磁波的反射?A. 电磁波在不同介质界面上部分能量返回原介质的现象B. 电磁波在不同介质界面上全部能量返回原介质的现象C. 电磁波在不同介质界面上部分能量进入新介质的现象D. 电磁波在不同介质界面上全部能量进入新介质的现象答案:A10. 什么是电磁波的折射?A. 电磁波在不同介质界面上传播方向的改变B. 电磁波在不同介质界面上频率的改变C. 电磁波在不同介质界面上波长的改变D. 电磁波在不同介质界面上振幅的改变答案:A二、填空题(每空2分,共20分)11. 根据法拉第电磁感应定律,当磁通量变化时,会在闭合电路中产生_______。

答案:感应电动势12. 麦克斯韦方程组中,描述电场与电荷关系的方程是_______。

电磁场理论习题及答案2.

电磁场理论习题及答案2.

一.填空:(共20分,每小题4分)1.对于矢量A,若A=e x A+y e y A+z e z A,x则:e∙x e=;x e∙x e=;ze⨯y e=;y e⨯y e=z2.哈密顿算子的表达式为∇=,其性质是3.电流连续性方程在电流恒定时,积分形式的表达式为;微分形式的表达式为4.静电场空间中,在不同的导电媒质交界面上,边界条件为和5.用矢量分析方法研究恒定磁场时,需要两个基本的场变量,即和二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。

1.电磁场是具有确定物理意义的矢量场,这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。

()2.矢量场在闭合路径上的环流是标量,矢量场在闭合面上的通量是矢量。

()3.空间内标量值相等的点集合形成的曲面称为等值面。

()4.空间体积中有电流时,该空间内表面上便有面电流。

()5.电偶极子及其电场与磁偶极子及其磁场之间存在对偶关系。

()6.静电场的点源是点电荷,它是一种“标量点源”;恒定磁场的点源是电流元,它是一种“矢量性质的点源”。

( )7.泊松方程适用于有源区域,拉普拉斯方程适用于无源区域。

( )8.均匀导体中没有净电荷,在导体面或不同导体的分界面上,也没有电荷分布。

( )9.介质表面单位面积上的力等于介质表面两侧能量密度之差。

( )10.安培力可以用磁能量的空间变化率来计算。

( )三.简答:(共30分,每小题5分)1.说明力线的微分方程式并给出其在直角坐标系下的形式。

2.说明矢量场的环量和旋度。

3.写出安培力定律和毕奥-沙伐定律的表达式。

4.说明静电场中的电位函数,并写出其定义式。

5.写出真空中磁场的两个基本方程的积分形式和微分形式。

6.说明矢量磁位和库仑规范。

四.计算:(共10分)已知2223,3y z x y A x yze xy e ϕ==+求()rot A ϕ。

五.计算:(共10分)自由空间一无限长均匀带电直线,其线电荷密度为,求直线外一点的电场强度。

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。

答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。

答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。

答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。

求该电磁波的波长和频率。

解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。

代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。

(完整版)电磁场试题及答案

(完整版)电磁场试题及答案

、填空1. 方程▽ 2φ=0称为静电场的(拉普拉斯(微分))方程2. 在静电平衡条件下,导体内部的电场强度 E 为(0)3. 线性导电媒质是指电导率不随(空间位置)变化而变化4. 局外电场是由(局外力)做功产生的电场5. 电感线圈中的磁场能量与电流的平方(成正比)6. 均匀平面电磁波中,E 和I 均与波的传播方向(垂直)7. 良导体的衰减常数8. 真空中,恒定磁场安培环路定理的微分形式(▽x B= 0J)9. 在库伦规范和无穷远参考点前提下,面电流分布的矢量的磁位公式(A= 0Idl)公式3-434R10. 在导体中,电场力移动电荷所做的功转化为(热能)11. 在静电平衡条件下,由导体中E=0,可以得出导体内部电位的梯度为(0 )(p4页)12. 电源以外的恒定电场中,电位函数满足的偏微分方程为(p26页)13. --------------------------------------------------------------------- 在无源自由空间中,阿拉贝尔方程可简化为------------------------------- 波动方程。

瞬时值矢量齐次(p145 页)D E P14. ----------------------------------------------------------- 定义位移电流密度的微分表达式为---------------------------------------- D= 0 E + P(p123页)t 0t t15. 设电场强度E=4,则0 P12 页16. 在单位时间内,电磁场通过导体表面流入导体内部的能量等于导线电阻消耗的(热能)17. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)18. 电流连续性方程的积分形式为(s j?dS=-dq)s dt19. 两个同性电荷之间的作用力是(相互排斥的)20. 单位面积上的电荷多少称为(面电荷密度)21. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs)22. 矢量磁位A和磁感应强度B之间的关系式:(B=▽ x A )23. E(Z,t)=e x E m sin(wt-kz-错误!未找到引用源。

《电磁场理论》练习题与参考答案(最新版)

《电磁场理论》练习题与参考答案(最新版)

第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。

2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。

3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。

4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。

5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。

6. 电流连续性方程的微分和积分形式分别为 和 。

7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。

(b )E 与A 垂直,B与A 平行。

(c )E 与A 平行,B与A 垂直。

(d )E 、B 皆与A 平行。

答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。

则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。

电磁场理论习题解答

电磁场理论习题解答

电磁场理论习题解答信息科学技术学院第1章习题答案1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

解:在直角坐标系中矢量D 的散度运算如下:()z D y D x D D D D z y x z y x z y x ∂∂+∂∂+∂∂=++⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=∇⋅⋅k j i k j i D (1) 因此,高斯通量定理和磁通连续性原理分别是两个标量方程:0 , =∂∂+∂∂+∂∂=∂∂+∂∂+∂∂zB y B x Bz D y D x D z y x z y x ρ (2) 在直角坐标系中矢量E 的旋度运算如下:⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂∂∂=⨯∇y E x E x E z E z E y E E E E z y x x y z x y z zy x k j i kj i E (3) 法拉第电磁感应定律可以写成3个标量方程:tBy E x E t B x E z E t B z E y E z x y y z x x y z ∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂ ,, (4) 全电流定律也可以写成3个标量方程:tH J y H x H t D J x H z H t D J z H y H zz x y y y z x x x y z ∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂ ,, (5) 共8个标量方程。

1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即∇ ⋅ (∇ ⨯ E ) = 0 (1)证明:设A 为任意矢量场函数,由题1-1式(3)可知,在直角坐标系中,它的旋度为⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂=⨯∇y E x E x E z E z E y E x y zx y z k j i E (2) 再对上式进行散度运算0)(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂=⨯∇∇⋅zy E x z E y x E z y E x z E y x E y E x E z x E z E y z E y E x x y z x y z x y z x y z E (3)得证。

电磁场习题答案

电磁场习题答案

1-25 已知圆球坐标系中矢量为 A = a R (2 cos ϕ R 3 ) + a θ sin θ ,求该矢量在直角坐标系中
的表达式。
3
答案: A = ax Ax + a y Ay + az Az 其中, Ax = (
2 x2 x +y
2 2
+ x3 z + xy 2 z + xz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
1-9 已知一标量函数 φ = sin (πx 2) sin (πy 3) e − z ,求:① 点 p( 1, 2, 3) 处 φ 增加速率最
快的方向及大小; ② 点 p( 处向坐标原点方向 φ 增加速率 1, 2, 3) (方向导数) 的大小。 答案:① am =
-1
π 2 + 27
=
(π ay + 3 3az ), ∇u =
Ay = (
2 xy
x +y
2 2
+ x 2 yz + y 3 z + yz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
Az = (
2 xz
x +y
2 2
− x4 − 2 x2 y 2 − x2 z 2 − y 2 z 2 − y 4 ) ( x2 + y 2 + z 2 )2 。
1-26 球 坐 标 系 中 的 两 个 矢 径 r1 和 r2 的 终 点 p1 和 p 2 的 坐 标 分 别 为 ( R1 ,θ 1 , ϕ 1 ) 和
1 (ax + 2a y − 3az ) ;② A − B = 53 ;③ A • B = −11 ; 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题
5.1 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。

5.2 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。

5.3 设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应
B 。

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。

试求圆弧中心点处的磁感应强度。

5.5 两根无限长直导线,布置于1,0x y =±=处,并与z 轴平行,分别通过电流I 及I -,求空间任意一点处的磁感应强度B 。

5.6 半径的磁介质球,具有磁化强度为2()z M a Az B =+ 求磁化电流和磁荷。

5.7已知两个相互平行,相隔距离为d ,共轴圆线圈,其中一个线圈的半径为a ()a d <,另一个线圈的半径为b ,试求两线圈之间的互感系数。

5.8 两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。

5.9 一个薄铁圆盘,半径为a ,厚度为b ()b
a ,如题5.9图所示。

在平行
于z 轴方向均匀磁化,磁化强度为M 。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

5.10 均匀磁化的无限大导磁媒质的磁导率为μ,磁感应强度为B ,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。

试求两空腔中心处磁场强度的比值。

5.11 两个无限大且平行的等磁位面D 、N ,相距h ,10mD ϕ=A ,0mN ϕ=。

其间充以两种不同的导磁媒质,其磁导率分别为10μμ=,202μμ=,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。

题5.11图
5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图()a 所
示。

证明:直导线与矩形回路间的互感为
()
012
12
2
222ln 22a
R
M b R C b R μπ=-

⎤-++⎢⎥⎣

题5.12图()a
题5.12图()b
5.13 一环形螺线管的平均半径015r cm =,其圆形截面的半径2a cm =,铁芯的相对磁导率1400r μ=,环上绕1000N =匝线圈,通过电流0.7I A =。

(1) 计算螺线管的电感;
(2) 在铁芯上开一个00.1l cm =的空气隙,再计算电感(假设开口后铁芯
的r μ不变);
(3) 求空气隙和铁芯内的磁场能量的比值。

5.14 同轴线的内导体是半径为a 的圆柱,外导体是半径为b 的薄圆柱面,其厚度可忽略不计。

内、外导体间充有磁导率分别为1μ和2μ两种不同的磁介质,
如题5.14图所示。

设同轴线中通过的电流为I ,试求: (1)同轴线中单位长度所储存的磁场能量; (2)单位长度的自感。

5.15 已知一个平面电流回路在真空中产生的磁场强度为
H ,若此平面电
流回路位于磁导率分别为1μ和2μ的两种均匀磁介质的分界平面上,试求两种磁介质中的磁场强度1H 和2H 。

5.16 在阴极射线管中的均匀偏转磁场是由在管颈上放置一对按余弦定律绕线的线圈产生的。

分析管颈中的磁场时,可以将管颈视为无限长,其表面电流密度为0cos s z s J e J φ=,这样的线圈称为鞍线圈。

证明:管颈中的磁场是均匀的。

5.17 一半径为a ,厚度为h 的圆盘磁铁均匀磁化,磁化强度为z M e M =,求z 轴上任意点的磁坐标和磁场强度。

5.18 一铁制材料的螺线环,其平均周长为30cm ,截面积为21cm ,在环上均匀绕以300匝导线,当绕组内的电流为0.032A 时,环内磁通量为6210Wb -⨯。

试计算:
1 . 环内的磁通量密度;
2 . 磁场强度;
3 . 磁化面电流密度;
4 . 环内材料的磁导率和相对磁导率;
5 . 磁心内的磁化强度。

5.19 真空中长直线电流I 的磁场中有一等边三角形回路,如图所示,求直导线与三角回路之间的互感M 。

5.20 如图所示为一U 形电磁铁,其中通过N 匝线圈的电流I 在磁路中产生磁通1Φ,铁芯的截面积为S ,求衔铁受到的磁场力。

相关文档
最新文档