2015年上海市静安区、青浦区中考数学二模试卷及答案解析(pdf版)

合集下载

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015 年上海市中考数学试卷答案与分析2015 年上海市中考数学试卷参照答案与试题分析一、选择题1.(4 分)(2015?上海)以下实数中,是有理数的为()A .B.C.πD.0考实数.点:分依占有理数能写成有限小数和无穷循环小析:数,而无理数只好写成无穷不循环小数进行判断即可.解解:是无理数,A不正确;答:是无理数,B不正确;π是无理数, C 不正确;0 是有理数, D 正确;应选: D.点本题主要考察了无理数和有理数的差别,解评:答本题的重点是要明确:有理数能写成有限小数和无穷循环小数,而无理数只好写成无穷不循环小数.2.(4 分)(2015?上海)当 a>0 时,以下对于幂的运算正确的选项是()A .a0=1B.a﹣1=﹣a C.(﹣a)D.a=2=﹣a2考负整数指数幂;有理数的乘方;分数指数点:幂;零指数幂.分分别利用零指数幂的性质以及负指数幂的析:性质和分数指数幂的性质分别剖析求出即可.解解: A 、a0=1(a>0),正确;答: B、a﹣1= ,故此选项错误;C、(﹣ a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.应选: A.点本题主要考察了零指数幂的性质以及负指评:数幂的性质和分数指数幂的性质等知识,正确掌握有关性质是解题重点.3.(4 分)(2015?上海)以下 y 对于 x 的函数中,是正比率函数的为()3考正比率函数的定义.点:分依据正比率函数的定义来判断即可得出答析:案.解解:A、y 是 x 的二次函数,故 A 选项错误;答: B、y 是 x 的反比率函数,故B 选项错误;C、y 是 x 的正比率函数,故 C 选项正确;D、y是 x 的一次函数,故 D 选项错误;应选 C.点本题考察了正比率函数的定义:一般地,两评:个变量 x,y 之间的关系式能够表示成形如 y=kx (k 为常数,且 k ≠0)的函数,那么 y就叫做 x 的正比率函数.4.(4 分)(2015?上海)假如一个正多边形的中心角为 72°,那么这个多边形的边数是()A .4B.5C.6D.7考多边形内角与外角.点:分依据正多边形的中心角和为360°和正多边析:形的中心角相等,列式计算即可.解解:这个多边形的边数是360÷72=5,答:应选: B.点本题考察的是正多边形的中心角的有关计评:算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的重点.5.(4 分)(2015?上海)以下各统计量中,表示一组数据颠簸程度的量是()A .均匀数 B.众数C.方差D.频次考统计量的选择.点:分依据均匀数、众数、中位数反应一组数据的析:集中趋向,而方差、标准差反应一组数据的失散程度或颠簸大小进行选择.解解:能反应一组数据颠簸程度的是方差或标答:准差,应选 C.点本题考察了标准差的意义,颠簸越大,标准评:差越大,数据越不稳固,反之也建立.6.(4 分)(2015?上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D,要使四边形 OACB 为菱形,还需要增添一个条件,这个条件能够是()A.A D= B.OD= C.∠CAD= ∠ D.∠OCA= ∠BD CD CBD OCB考菱形的判断;垂径定理.点:分利用对角线相互垂直且相互均分的四边形析:是菱形,从而求出即可.解解:∵在⊙ O 中,AB 是弦,半径 OC⊥AB ,答:∴AD=DB ,当 DO=CD ,则 AD=BD ,DO=CD ,AB ⊥CO,故四边形 OACB 为菱形.应选: B.点本题主要考察了菱形的判断以及垂径定评:理,娴熟掌握菱形的判断方法是解题重点.二、填空题7.(4 分)(2015?上海)计算: |﹣2|+2= 4.考有理数的加法;绝对值.点:分先计算 |﹣2|,再加上 2 即可.析:解解:原式 =2+2答: =4.故答案为 4.点本题考察了有理数的加法,以及绝对值的求评:法,负数的绝对值等于它的相反数.8.(4 分)(2015?上海)方程=2 的解是x=2.考无理方程.点:分第一依据乘方法消去方程中的根号,而后根析:据一元一次方程的求解方法,求出 x 的值是多少,最后验根,求出方程=2 的解是多少即可.解解:∵=2,答:∴3x﹣2=4,∴x=2,当 x=2 时,左侧=,右侧 =2,∵左侧 =右侧,∴方程=2 的解是: x=2.故答案为: x=2.点本题主要考察了无理方程的求解,要娴熟掌评:握,解答本题的重点是要明确:(1)解无理方程的基本思想是把无理方程转变为有理方程来解,在变形时要注意依据方程的结构特色选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设协助元素法,利用比率性质法等.(2)注意:用乘方法(马上方程两边各自乘同次方来消去方程中的根号)来解无理方程,常常会产生增根,应注意验根.9.(4 分)(2015?上海)假如分式存心义,那么 x 的取值范围是 x≠﹣ 3 .考分式存心义的条件.点:分依据分式存心义的条件是分母不为0,列出析:算式,计算获得答案.解解:由题意得, x+3≠0,答:即 x≠﹣ 3,故答案为: x≠﹣ 3.点本题考察的是分式存心义的条件,从以下三评:个方面透辟理解分式的观点:(1)分式无心义? 分母为零;(2)分式存心义 ? 分母不为零;(3)分式值为零 ? 分子为零且分母不为零.10.(4 分)(2015?上海)假如对于 x 的一元二次方程 x2+4x﹣m=0 没有实数根,那么 m 的取值范围是 m<﹣ 4 .考根的鉴别式.点:分依据对于x 的一元二次方程x2+4x﹣m=0 没析:有实数根,得出△ =16﹣4(﹣ m)< 0,从而求出 m 的取值范围.解解:∵一元二次方程x2+4x﹣m=0 没有实数答:根,∴△ =16﹣4(﹣ m)< 0,∴m<﹣ 4,故答案为 m<﹣ 4.点本题考察了一元二次方程ax2+bx+c=0评:(a≠0)的根的鉴别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0,方程没有实数根.11.(4 分)(2015?上海)同一温度的华氏度数y (℉)与摄氏度数x(℃)之间的函数关系是y= x+32,假如某一温度的摄氏度数是25℃,那么它的华氏度数是77℉.考函数值.点:分把 x 的值代入函数关系式计算求出y 值即析:可.解解:当 x=25°时,答: y= ×25+32=77,故答案为: 77.点本题考察的是求函数值,理解函数值的观评论:并正确代入正确计算是解题的重点.12.( 4 分)(2015?上海)假如将抛物线y=x 2+2x ﹣1 向上平移,使它经过点 A(0,3),那么所得新抛物线的表达式是 y=x 2+2x+3 .考二次函数图象与几何变换.点:分设平移后的抛物线分析式为 y=x2+2x﹣析:1+b,把点 A 的坐标代入进行求值即可获得b的值.解解:设平移后的抛物线分析式为y=x2+2x﹣答:1+b,把 A(0, 3)代入,得3=﹣1+b,解得 b=4,则该函数分析式为y=x2 +2x+3.故答案是: y=x2+2x+3.点主要考察了函数图象的平移,要求娴熟掌握评:平移的规律:左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.13.(4 分)(2015?上海)某校学生会倡导双休日到养老院参加服务活动,初次活动需要 7 位同学参加,现有包含小杰在内的 50 位同学报名,所以学生会将从这 50 位同学中随机抽取 7 位,小杰被抽到参加初次活动的概率是.考概率公式.点:分由某校学生会倡导双休日到养老院参加服析:务活动,初次活动需要7 位同学参加,现有包含小杰在内的 50 位同学报名,直接利用概率公式求解即可求得答案.解解:∵学生会将从这50 位同学中随机抽取答:7 位,∴小杰被抽到参加初次活动的概率是:.故答案为:.点本题考察了概率公式的应用.用到的知识评论:为:概率 =所讨状况数与总状况数之比.14.(4 分)(2015?上海)已知某校学生“科技创新社团”成员的年纪与人数状况以下表所示:年纪 11 12 13 14 15(岁)人数5516 1512那么“科技创新社团”成员年纪的中位数是14岁.考中位数.点:分一共有 53 个数据,依据中位数的定义,把析:它们按从小到大的次序摆列,第 27 名成员的年纪就是这个小构成员年纪的中位数.解解:从小到大摆列此数据,第27 名成员的答:年纪是 14 岁,所以这个小构成员年纪的中位数是14.故答案为 14.点本题属于基础题,考察了确立一组数据的中评:位数的能力.注意找中位数的时候必定要先排好次序,而后再依据奇数和偶数个来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.15.(4 分)(2015?上海)如图,已知在△ ABC 中, D、E 分别是边 AB 、边 AC 的中点, = ,= ,那么向量用向量,表示为﹣.考 * 平面向量.点:分由 = , = ,利用三角形法例求解即可求析:得,又由在△ ABC 中,D、E 分别是边 AB、边 AC 的中点,可得 DE 是△ ABC 的中位线,而后利用三角形中位线的性质求解即可求得答案.解解:∵ =, =,答:∴=﹣=﹣,∵在△ ABC 中,D、E 分别是边 AB、边 AC的中点,∴= =(﹣)= ﹣.故答案为:﹣.点本题考察了平面向量的知识以及三角形中评:位线的性质.注意掌握三角形法例的应用.16.(4 分)(2015?上海)已知 E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E作AC 的垂线,交边CD 于点F,那么∠FAD= 22.5 度.考正方形的性质;全等三角形的判断与性质.点:分依据正方形的性质可得∠DAC=45 °,再由析:AD=AE 易证△ADF ≌△AEF,求出∠FAD.解解:如图,答:在 Rt △AEF 和 Rt△ADF 中,∴R t △AEF ≌Rt △ADF ,∴∠ DAF= ∠EAF ,∵四边形 ABCD 为正方形,∴∠ CAD=45 °,∴∠ FAD=22.5°.故答案为: 22.5.点本题考察了正方形的性质,全等三角形的判评:定与性质,求证 Rt △AEF ≌Rt △ADF 是解本题的重点.17.(4 分)(2015?上海)在矩形ABCD 中,AB=5,BC=12,点 A 在⊙ B 上,假如⊙ D 与⊙ B 订交,且点B 在⊙ D 内,那么⊙ D 的半径长能够等于14(答案不独一).(只要写出一个切合要求的数)考圆与圆的地点关系;点与圆的地点关系.点:专开放型.题:分第一求得矩形的对角线的长,而后依据点A析:在⊙B 上获得⊙ B 的半径为 5,再依据⊙ D 与⊙ B 订交,获得⊙ D 的半径 R 知足 8<R<18,在此范围内找到一个值即可.解解:∵矩形 ABCD 中, AB=5 ,BC=12,答:∴AC=BD=13 ,∵点 A 在⊙B 上,∴⊙ B 的半径为 5,∵假如⊙ D 与⊙ B 订交,∴⊙ D 的半径 R 知足 8<R<18,∵点 B 在⊙D 内,∴R>13,∴13<R<18,∴14 切合要求,故答案为: 14(答案不独一).点本题考察了圆与圆的地点关系、点与圆的位评:置关系,解题的重点是第一确立⊙ B 的半径,而后确立⊙ D 的半径的取值范围,难度不大.18.(4 分)(2015?上海)已知在△ ABC 中,AB=AC=8 ,∠ BAC=30 °,将△ ABC 绕点 A 旋转,使点 B 落在原△ ABC 的点 C 处,此时点 C落在点 D 处,延伸线段 AD ,交原△ ABC 的边BC 的延伸线于点 E,那么线段 DE 的长等于4﹣4.考解直角三角形;等腰三角形的性质.点:专计算题.题:分作 CH ⊥AE 于 H ,依据等腰三角形的性质析:和三角形内角和定理可计算出∠ ACB=(180°﹣∠ BAC )=75°,再依据旋转的性质得 AD=AB=8 ,∠CAD= ∠BAC=30 °,则利用三角形外角性质可计算出∠E=45°,接着在 Rt△ACH 中利用含 30 度的直角三角形三边的关系得 CH= AC=4 ,AH= CH=4,所以DH=AD﹣AH=8﹣4,而后在Rt △CEH 中利用∠E=45°获得 EH=CH=4 ,于是可得 DE=EH ﹣DH=4﹣4.解解:作 CH ⊥AE 于 H,如图,答:∵AB=AC=8 ,∴∠ B=∠ACB= (180°﹣∠ BAC )=(180°﹣ 30°) =75°,∵△ ABC 绕点 A 旋转,使点 B 落在原△ABC 的点 C 处,此时点 C 落在点 D 处,∴A D=AB=8 ,∠CAD= ∠BAC=30 °,∵∠ ACB= ∠CAD+ ∠E,∴∠ E=75°﹣ 30° =45°,在 Rt △ACH 中,∵∠ CAH=30 °,∴CH= AC=4 ,AH= CH=4 ,∴DH=AD ﹣AH=8 ﹣4 ,在 Rt △CEH 中,∵∠ E=45°,∴EH=CH=4 ,∴DE=EH ﹣DH=4 ﹣( 8﹣4 )=4 ﹣4.故答案为 4 ﹣4.点本题考察认识直角三角形:在直角三角形评:中,由已知元素求未知元素的过程就是解直角三角形.也考察了等腰三角形的性质和旋转的性质.三、解答题19.(10 分)(2015?上海)先化简,再求值:÷﹣,此中x=﹣1.考分式的化简求值.点:分先依据分式混淆运算的法例把原式进行化析:简,再把 x 的值代入进行计算即可.解解:原式=? ﹣答:=﹣=,当 x= ﹣1 时,原式 == ﹣1.点本题考察的是分式的化简求值,熟知分式混评:合运算的法例是解答本题的重点.20.(10 分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考解一元一次不等式组;在数轴上表示不等式点:的解集.分先求出每个不等式的解集,再依据找不等式析:组解集的规律找出不等式组的解集即可.解解:答:∵解不等式①得: x>﹣ 3,解不等式②得: x≤2,∴不等式组的解集为﹣ 3<x≤2,在数轴上表示不等式组的解集为:.点本题考察认识一元一次不等式组,在数轴上评:表示不等式组的解集的应用,解本题的重点是能依据不等式的解集求出不等式组的解集,难度适中.21.(10 分)(2015?上海)已知:如图,在平面直角坐标系 xOy 中,正比率函数 y= x 的图象经过点 A ,点 A 的纵坐标为 4,反比率函数 y= 的图象也经过点 A,第一象限内的点 B 在这个反比率函数的图象上,过点 B 作 BC∥x 轴,交 y 轴于点C,且 AC=AB .求:(1)这个反比率函数的分析式;(2)直线 AB 的表达式.考反比率函数与一次函数的交点问题.点:分(1)依据正比率函数 y= x 的图象经过点析:A,点 A 的纵坐标为 4,求出点 A 的坐标,依据反比率函数y= 的图象经过点 A ,求出m的值;(2)依据点A 的坐标和等腰三角形的性质求出点 B 的坐标,运用待定系数法求出直线AB 的表达式.解解:∵正比率函数 y= x 的图象经过点 A,答:点 A 的纵坐标为 4,∴点 A 的坐标为( 3,4),∵反比率函数 y= 的图象经过点 A ,∴m=12,∴反比率函数的分析式为:y=;(2)如图,连结 AC 、AB ,作 AD ⊥BC 于D,∵A C=AB ,AD ⊥BC,∴B C=2CD=6 ,∴点 B 的坐标为:(6,2),设直线 AB 的表达式为: y=kx+b ,由题意得,,解得,,∴直线 AB 的表达式为: y=﹣ x+6.点本题主要考察了待定系数法求反比率函数评:与一次函数的分析式和一次函数与反比率函数的解得的求法,注意数形联合的思想在解题中的应用.22.(10 分)(2015?上海)如图, MN 表示一段笔挺的高架道路,线段 AB 表示高架道路旁的一排居民楼,已知点 A 到 MN 的距离为 15 米,BA 的延伸线与 MN 订交于点 D,且∠ BDN=30 °,假定汽车在高速道路上行驶时,四周 39 米之内会遇到噪音( XRS )的影响.(1)过点 A 作 MN 的垂线,垂足为点 H,假如汽车沿着从 M 到 N 的方向在 MN 上行驶,当汽车抵达点 P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点 H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点 Q 时,它与这一排居民楼的距离 QC 为 39 米,那么对于这一排居民楼,高架道路旁安装的隔音板起码需要多少米长?(精准到 1 米)(参照数据:≈1.7)考解直角三角形的应用;勾股定理的应用.点:分(1)连结 PA.在直角△ PAH 中利用勾股析:定理来求 PH 的长度;(2)由题意知,隔音板的长度是PQ 的长度.经过解 Rt △ADH 、Rt △CDQ 分别求得DH 、DQ 的长度,而后联合图形获得:PQ=PH+DQ ﹣ DH,把有关线段的长度代入求值即可.解解:(1)如图,连结 PA.由题意知,AP=39m.答:在直角△ APH 中, PH== =36 (米);(2)由题意知,隔音板的长度是 PQ 的长度.在 Rt △ADH 中, DH=AH ?cot30°=15(米).在 Rt △CDQ 中, DQ===78(米).则 PQ=PH+HQ=PH+DQ ﹣DH=36+78 ﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板起码需要 89米.25点本题考察认识直角三角形的应用、勾股定理评:的应用.依据题目已知特色采用适合锐角三角函数或边角关系去解直角三角形,获得数学识题的答案,再转变获得实质问题的答案.23.(12 分)(2015?上海)已知,如图,平行四边形 ABCD 的对角线订交于点 O,点 E 在边BC 的延伸线上,且 OE=OB ,连结 DE.(1)求证: DE ⊥BE;(2)假如 OE⊥CD,求证: BD?CE=CD ?DE .考相像三角形的判断与性质;等腰三角形的性点:质;平行四边形的性质.专证明题.题:分(1)由平行四边形的性质获得 BO= BD,析:由等量代换推出 OE= BD,依据平行四边形的判断即可获得结论;26(2)依据等角的余角相等,获得∠CEO= ∠CDE,推出△ BDE ∽△ CDE,即可获得结论.解证明:(1)∵四边形 ABCD 是平行四边形,答:∴BO= BD,∵OE=OB ,∴OE= BD,∴∠ BED=90 °,∴DE⊥BE;(2)∵ OE⊥CD∴∠ CEO+ ∠DCE= ∠CDE+ ∠DCE=90 °,∴∠ CEO= ∠CDE ,∵OB=OE ,∴∠ DBE= ∠CDE ,∵∠ BED= ∠BED ,∴△ BDE ∽△ CDE ,∴,∴BD?CE=CD ?DE.点本题考察了相像三角形的判断和性质,直角评:三角形的判断和性质,平行四边形的性质,熟记定理是解题的重点.24.(12 分)(2015?上海)已知在平面直角坐标系 xOy 中(如图),抛物线 y=ax2﹣4 与 x 轴的负半轴( XRS)订交于点 A,与 y 轴订交于点 B,AB=2 ,点 P 在抛物线上,线段 AP 与 y 轴的正半轴交于点 C,线段 BP 与 x 轴订交于点 D,设点 P 的横坐标为 m.(1)求这条抛物线的分析式;(2)用含 m 的代数式表示线段 CO 的长;(3)当 tan∠ODC= 时,求∠ PAD 的正弦值.考二次函数综合题.点:分(1)依据已知条件先求出 OB 的长,再根析:据勾股定理得出 OA=2 ,求出点 A 的坐标,再把点 A 的坐标代入 y=ax2﹣4,求出 a 的值,从而求出分析式;(2)依据点P 的横坐标得出点P 的坐标,过点P 作PE⊥x 轴于点E,得出OE=m ,PE=m 2﹣4,从而求出 AE=2+m ,再依据=,求出 OC;(3)依据 tan ∠ODC= ,得出 = ,求出OD 和 OC ,再依据△ ODB ∽△ EDP,得出=,求出 OC,求出∠ PAD=45°,从而求出∠ PAD 的正弦值.解解:(1)∵抛物线 y=ax2﹣4 与 y 轴订交于答:点 B,∴点 B 的坐标是( 0,﹣ 4),∴O B=4 ,∵A B=2 ,∴OA==2,∴点 A 的坐标为(﹣ 2,0),把(﹣ 2,0)代入 y=ax2﹣4 得: 0=4a﹣4,解得: a=1,则抛物线的分析式是:y=x2﹣4;(2)∵点 P 的横坐标为 m,∴点P 的坐标为( m,m2﹣4),过点 P 作 PE⊥x 轴于点 E,∴OE=m ,PE=m 2﹣4,∴A E=2+m ,∵ = ,∴= ,∴CO=2m ﹣4;(3)∵ tan ∠ODC= ,∴ = ,∴OD= OC= ×( 2m﹣4)=,∵△ ODB ∽△ EDP ,∴= ,∴=,∴m1=﹣1(舍去),m2=3,∴O C=2×3﹣4=2,∵OA=2 ,∴O A=OC ,∴∠ PAD=45°,∴sin∠PAD=sin45°=.点本题考察了二次函数的综合,用到的知识评论:是相像三角形的判断与性质、勾股定理、特殊角的三角函数值,重点是依据题意作出协助线,结构相像三角形.25.(14 分)(2015?上海)已知,如图, AB 是半圆 O 的直径,弦 CD ∥AB ,动点 P,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延伸线与射线 OQ 订交于点 E,与弦 CD 订交于点 F(点 F 与点 C,D 不重合),AB=20 ,cos∠AOC= ,设 OP=x ,△ CPF 的面积为y.(1)求证: AP=OQ ;(2)求 y 对于 x 的函数关系式,并写出它的定义域;(3)当△ OPE 是直角三角形时,求线段 OP 的长.考圆的综合题.点:分(1)连结 OD,证得△ AOP ≌△ ODQ 后即析:可证得 AP=OQ ;(2)作 PH⊥OA ,依据 cos∠AOC= 获得OH= PO= x,从而获得 S△AOP = AO ?PH=3x ,利用△ PFC ∽△ PAO 适合对应边的比相等即可获得函数分析式;(3)分当∠ POE=90°时、当∠ OPE=90°时、当∠ OEP=90°时三种状况议论即可获得正确的结论.解解:(1)连结 OD ,答:在△ AOP 和△ ODQ 中,,∴△ AOP ≌△ ODQ ,∴AP=OQ ;(2)作 PH⊥OA ,∵cos∠AOC= ,∴OH= PO= x,∴S△AOP = AO ?PH=3x ,又∵△ PFC ∽△ PAO,∴==()2,整理得: y=(<x<10);(3)当∠ POE=90°时, CQ== ,PO=DQ=CD ﹣CQ= (舍);当∠OPE=90°时,PO=AO ?cos∠COA=8 ;当∠ OEP=90°时,∠AOQ= ∠DQO= ∠APO ,∴∠ AOC= ∠AEO ,即∠ OEP= ∠COA ,此种状况不存在,∴线段 OP 的长为 8.点本题考察了圆的综合知识、相像三角形的判评:定及性质等知识,综合性较强,难度较大,特别是第三题的分类议论更是本题的难点.。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

上海市2015年最新静安青浦九年级数学一模试卷及答案

上海市2015年最新静安青浦九年级数学一模试卷及答案

BA D CO(第6题图)S 1S 2S 3S 4 静安区、青浦区2014学年第一学期期末教学质量调研九年级数学试卷 2015.1(完成时间:100分钟 满分:150分 )考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各式中与32)(a -相等的是 (A )5a ;(B )6a ; (C )5a -; (D )6a -.2.下列方程中,有实数解的是(A )12-=-x ; (B )x x -=-2; (C )0242=--x x ; (D )0422=--x x . 3.将抛物线2)1(-=x y 向左平移2个单位,所得抛物线的表达式为 (A )2)1(+=x y ;(B )2)3(-=x y ; (C )2)1(2+-=x y ;(D )2)1(2--=x y .4.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是 (A )两条直角边成正比例; (B )两条直角边成反比例; (C )一条直角边与斜边成正比例;(D )一条直角边与斜边成反比例.5.在四边形ABCD 中,AB =AD ,AC 平分∠DAB ,AC 与BD 相交于点O ,要使四边形ABCD 是菱形,那么还需满足下列条件中的 (A )CD =CB ;(B )OB =OD ; (C )OA =OC ;(D )AC ⊥BD .6.如图,已知在梯形ABCD 中,AD ∥BC ,BC =2AD ,如果对角线AC 与BD 相交于点O , △AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中, 不正确的是 (A )S 1=S 3; (B )S 2=2S 4;(C )S 2=2S 1;(D )4231S S S S ⋅=⋅.二、填空题:(本大题共12题,每题4分,满分48分)27.计算:02144+-= ▲ .8.使代数式12-x 有意义的实数x 的取值范围为 ▲ .9.如果关于x 的方程032=+-m x x 有相等的实数根,那么m 的值为 ▲ .10.布袋中有两个红球和两个白球它们除了颜色外其他都相同,从中摸出两个球,那么“摸到一红一白两球”的概率为 ▲ .11.如果抛物线5)3(2-+=x a y 不经过第一象限,那么a 的取值范围是 ▲ .12.已知二次函数的图像经过点(1,3),对称轴为直线1-=x ,由此可知这个二次函数的图像一定经过除点(1,3)外的另一确定的点,这点的坐标是 ▲ . 13.如图,已知D 、E 分别是△ABC 的边BC 和AC 上的点,AE =2,CE =3,要使DE ∥AB ,那么BC ∶CD 应等于 ▲ . 14.已知点G 是面积为27cm 2的△ABC 的重心,那么△AGC 的面积等于 ▲ cm 2.15.已知在△ABC 中,AD 是边BC 上的中线.设BA a =,BC b =.那么AD = ▲ .(用向量a 、b 的式子表示);16.在Rt △ABC 中,∠C =90°,点D 是AB 的中点,如果BC =3, CD =2,那么=∠DCB cos ▲ . 17.已知不等臂跷跷板AB 长为3米.当AB 的一端点A 碰到地面时(如图1),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面夹角的正弦值为31,那么跷跷板AB 的支撑点O 到地面的距离OH = ▲ 米18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,放大或缩小后的三角形与原三角形对应边的比称为T-变换比.已知△ABC 在直角坐标平面内,点A (0,-1),B (-3,2),C (0,2),将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为32,那么经过T-变换后点C 所对应的点的坐标为 ▲ . BA CED(第13题图)(第17题图1)(第17题图2)第 3 页 共 8 页三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:221212222-++++--x x xx x x x ,并求当3=x 时的值.20.(本题满分10分)解方程组:⎪⎩⎪⎨⎧=+--=+.022,4222y x y xy y x21.(本题满分10分)已知直线)0(>=m m x 与双曲线xy 6=和直线2--=x y 分别相交于点A 、B ,且AB =7, 求m 的值. 22.(本题满分10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD .小明在离旗杆下方的大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D 的仰角为45°,求旗杆CD 的长度.(结果精确到0.1米. 参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 到点F ,使得EF =DE ,联结BF ,交边AC 于点G ,联结CF .(1)求证:CG EGAC AE =; (2)如果FB FG CF ⋅=2,求证:DE BC CE CG ⋅=⋅.ADBCF E G(第23题图)(第22题图)424.(本题满分12分,其中每小题各4分)已知在平面直角坐标系xOy 中,二次函数bx ax y +=2的图像经过点(1,-3)和点(-1,5). (1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图像顶点M 的坐标;(3)在第(2)小题的条件下,如果点P 的坐标为(2,3),CM 平分∠PCO ,求m 的值.25.(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)如图,在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得∠ABE =∠CBP .如果AB =2,BC =5,AP =x ,PM =y .(1)求y 关于x 的函数解析式,并写出它的定义域; (2)当AP =4时,求∠EBP 的正切值;(3)如果△EBC 是以∠EBC 为底角的等腰三角形,求AP 的长.C D (第25题图)(第24题图)第 5 页 共 8 页静安区、青浦区2014学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2015.1一、选择题:1.D ; 2.C ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:7.23; 8.21≥x ; 9.49; 10.32;11.a <-3; 12.(-3,3); 13.35; 14.9; 15.b a 21+-; 16.43;17.53; 18.(-3,0).三、解答题: 19.解:原式=)1)(2()2()1()1)(1(2-+++-+-x x x x x x x ……………………………………………(4分) =111-+-+x x x x =112-+x x .…………………………………………………(1+1分) 当3=x 时,原式=2337)13)(13()13)(132(13132+=+-++=-+.………………(1+1+2分)20.解:由(2)得0)1)(2(=--y y x , 0102=-=-y y x 或,……………………………(4分)原方程可化为⎩⎨⎧==+⎩⎨⎧=-=+.1,4,02,42222y y x y x y x …………………………………………(2分) 解得原方程的解是⎪⎪⎩⎪⎪⎨⎧==,552,55411y x ⎪⎪⎩⎪⎪⎨⎧-=-=,552,55422y x ⎪⎩⎪⎨⎧==,1,333y x ⎪⎩⎪⎨⎧=-=.1,333y x ……………(4分)621.解:点A 、B 的坐标分别为(mm 6,)、(2,--m m ).……………………………(2分) 7)2(6=---m m,…………………………………………………………………(3分)0652=+-m m ,……………………………………………………………………(2分)3,221==m m .………………………………………………………………………(2分)经检验它们都是原方程的根,且符合题意,………………………………………(1分) 所以m 的值为2或3.22.解:过点B 的水平线交直线CD 于点H .由题意,得BH =AE =24,∠CBH =40°,∠DBH =45°,∴CH =24tan40°,DH =BH =24.……………………………………………………(6分) ∴CD =24-24tan40°≈3.8.…………………………………………………………(3分) 答:旗杆CD 的长度约为3.8米.…………………………………………………(1分)23.证明:(1)∵DE ∥BC ,∴BC DE AC AE =,BCEFCG EG =.…………………………(各2分) ∵EF =DE ,∴CGEGAC AE =.…………………………………………………………(1分) (2)∵FB FG CF ⋅=2,∴FBCFCF FG =.…………………………………………(1分) ∵∠CFG =∠BFC ,∴△CFG ∽△BFC .…………………………………………(1分) ∴∠FCG =∠FBC .…………………………………………………………………(1分) ∵DE ∥BC ,∴∠FEC =∠ECB .∴△CEF ∽△BCG .…………………………………………………………………(1分)∴CGEFBC CE =.………………………………………………………………………(1分) 而EF =DE ,∴CGDEBC CE =.…………………………………………………………(1分) ∴DE BC CE CG ⋅=⋅.……………………………………………………………(1分)第 7 页 共 8 页24.解:(1)∵二次函数bx ax y +=2的图像经过点(1,-3)和点(-1,5),∴⎩⎨⎧-=+=-.5,3b a b a ………………………………………………………………………(1分)解得⎩⎨⎧-==.4,1b a …………………………………………………………………………(2分)∴这个二次函数的解析式是x x y 42-=.………………………………………(1分) (2)∵将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,∴这个二次函数的解析式是m x x y +-=42.……………………………………(1分)4)2(422-+-=+-=m x m x x y .………………………………………………(2分)∴这个二次函数图像的顶点M 的坐标为(2,m –4).…………………………(1分) (3)∵点P 的横坐标与顶点M 的横坐标都为2,∴PM ∥y 轴.………………(1分) ∴∠PMC =∠OCM .∵CM 平分∠PCO ,∴∠PCM =∠OCM . ∴∠PMC =∠PCM .∴PC =PM .…………………………………………………………………………(1分) ∴222)7()3(2-=-+m m .………………………………………………………(1分) 解得m =29.…………………………………………………………………………(1分) 25.解:(1)在矩形ABCD 中,∵AD ∥BC ,∴∠APB =∠CBP .∵∠ABE =∠CBP ,∴∠APB =∠ABE .∵∠A =∠A ,∴△ABP ∽△AMB .…………………………………………………(1分)∴APABAB AM =. ∵AB =2,AP =x ,PM =y ,∴x y x 22=-.…………………………………………(1分) ∴所求函数的解析式为xx y 4-=.………………………………………………(1分)定义域为52≤<x .…………………………………………………………………(1分) (2)∵AP =4,∴MP =3.…………………………………………………………(1分) ∵AP =4,AD =5,∴PD =1.∴CDPDAP AB =. ∵∠A =∠D ,∴△ABP ∽△DPC .8∴∠APB =∠DCP .∵∠DPC+∠DCP =90°,∴∠DPC+∠APB =90°.∴∠BPE =∠BPC =90°.……………………………………………………………(1分) ∵AD ∥BC ,∴BC MPEC EP =,即535=+EP EP . 解得523=EP .……………………………………………………………………(1分) 又∵AP =4,AB =2,∴52=BP . ∴43tan ==∠BP EP EBP .……………………………………………………………(1分) 另解:作MH ⊥BP ,垂足为点H .∵AP =4,∴MP =3.…………………………………………………………………(1分)∵AP =4,AB =2,∴52=BP .由△BPM 的面积,可得AB M P M H BP ⋅=⋅,即2352⨯=⋅MH . 解得553=MH .…………………………………………………………………(1分) ∵AM =1,AB =2,∴5=BM .∴554=BH .………………………………………………………………………(1分) ∴43tan ==∠BH MH EBP .…………………………………………………………(1分)(3)(i )当∠EBC =∠ECB 时,可得∠AMB =∠DPC ,△AMB ≌△DPC .∴AM =DP .…………………………………………………………………………(1分) ∴x +x -y =5,即54=+xx .…………………………………………………………(1分) 解得x =4或x =1(不符合题意,舍去).…………………………………………(1分) (ii )当∠EBC =∠BEC 时,可得EC =BC =5,PE =PM =y .………………………(1分) ∴2222)5()5(+-=-x y .整理,得3x 2-10x -4=0.……………………………………………………………(1分)解得3375+=x 或3375-=x (不符合题意,舍去). ………………………(1分) 综上所述,AP 的长为4或3375+.。

初中数学 上海市静安区、青浦区中考模拟第二次模拟考试数学考试卷考试题及答案

初中数学 上海市静安区、青浦区中考模拟第二次模拟考试数学考试卷考试题及答案

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列式子中,从左到右的变形为多项式因式分解的是()A.B.C.D.阿试题2:下列方程中,有实数根的是()A.B.C. x3+3=0 D. x4+4=0试题3:函数y=kx﹣k﹣1(常数k>0)的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题4:已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4 B.中位数是5,平均数是5C.中位数是5,众数是4 D.中位数是4.5,平均数是5试题5:如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD为菱形的是()A.∠OAB=∠OBA B.∠OAB=∠OBC C.∠OAB=∠OCD D.∠OAB=∠OAD试题6:一个图形沿一条直线翻折后再沿这条直线的方向平移,我们把这样的图形运动称为图形的翻移,这条直线称为翻移线.如图△A2B2C2是由△ABC沿直线l翻移后得到的.在下列结论中,图形的翻移所具有的性质是()A.各对应点之间的距离相等 B.各对应点的连线互相平行C.对应点连线被翻移线平分 D.对应点连线与翻移线垂直试题7:计算:= .试题8:不等式组的解集是.试题9:如果一个数的倒数等于它本身,则这个数是.试题10:如果关于x的方程x2﹣6x+m﹣1=0没有实数根,那么m的取值范围是.试题11:如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随着x的增大而(填“增大”或“减小”).试题12:将抛物线y=2x2+1向右平移3个单位,所得抛物线的表达式是.试题13:某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25 .试题14:从点数为1、2、3、4、5的五张扑克牌中随机摸出两张牌,摸到的两张牌的点数之和为素数的概率是.试题15:在梯形ABCD中,AD∥BC,BC=3AD,,那么= .试题16:如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是.试题17:在△ABC中,∠A=40°,△ABC绕点A旋转后点C落在边AB上的点C′,点B落到点B′,如果点C、C′、B′在同一直线上,那么∠B的度数是.试题18:在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.试题19:化简:,并求当时的值.试题20:解方程组:.试题21:已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD相交于点E,BD⊥CD,AB=12,cot∠ADB=.求:(1)∠DBC的余弦值;(2)DE的长.试题22:一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.试题23:已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF•AF.试题24:已知AB是⊙O的直径,弦CD⊥AB,垂足为H,AH=5,CD=,点E在⊙O上,射线AE与射线CD相交于点F,设AE=x,DF=y.(1)求⊙O的半径;(2)如图,当点E在AD上时,求y与x之间的函数解析式,并写出函数的定义域;(3)如果EF=,求DF的长.试题25:如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD的长.试题1答案:解答:解:A、符合因式分解的定义,故本选项正确;B、结果不是整式积的形式,不是因式分解,故本选项错误;C、结果不是整式积的形式,不是因式分解,故本选项错误;D、结果不是整式积的形式,不是因式分解,故本选项错误;故选A.试题2答案:解答:解:A、≥0,因而方程一定无解;B、x﹣1≥0,解得:x≥1,则﹣x<0,故原式一定不成立,方程无解;C、x3+3=0,则x=﹣,故选项正确;D、x4+4≥4,故原式一定不成立,故方程无解.故选C.试题3答案:解答:解:∵k>0∴﹣k<0,∴﹣k﹣1<0∴y=kx﹣k﹣1(常数k>0)的图象经过一、三、四象限,故选B.试题4答案:解答:解:平均数=(3+4+4+5+6+7+4+7)÷8=5,中位数是(4+5)÷2=4.5,在这组数据中4出现3次,最多,则众数是4.故选D.试题5答案:解答:解:∵四边形ABCD是平行四边形,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选D.试题6答案:解答:解:∵如图所示:△A2B2C2是由△ABC沿直线l翻移后得到的,∴图形的翻移所具有的性质是:对应点连线被翻移线平分.故选:C.试题7答案:解答:解:原式==.故答案为:解答:解:,由①得,x>;由②得,x>2,故此不等式组的解集为:x>.故答案为:x>.试题9答案:解答:解:如果一个数的倒数等于它本身,则这个数是±1.试题10答案:考点:根的判别式.解答:解:∵关于x的方程x2﹣6x+m﹣1=0没有实数根,∴△=(﹣6)2﹣4×1×(m﹣1)<0,即40﹣4m<0,解得,m>10.故答案是:m>10.试题11答案:解答:解:设正比例函数解析式为y=kx(k≠0),∵过点(﹣1,2),∴2=k×(﹣1),解得k=﹣2,故正比例函数解析式为:y=﹣2x,∵k=﹣2<0,∴y随着x的增大而减小,故答案为:减小.试题12答案:解答:解:抛物线y=2x2+1的顶点坐标为(0,1),向右平移3个单位后的顶点坐标是(3,1),所以,平移后得到的抛物线的表达式是y=2(x﹣3)2+1.故答案为:y=2(x﹣3)2+1.试题13答案:解答:解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.试题14答案:解答:解:画树状图得:∵共有20种等可能的结果,摸到的两张牌的点数之和为素数的有10种情况,∴摸到的两张牌的点数之和为素数的概率是:=.故答案为:.试题15答案:解答:解:过点D作DE∥AB交BC于点E,则BE=AD,∵AD∥BC,BC=3AD,=,∴==,又∵==,∴=﹣﹣=﹣﹣.故答案为:﹣﹣.试题16答案:解答:解:根据题意两圆内含,故知r﹣3>4,解得r>7.故答案为:r>7.试题17答案:解答:解:如图,∵△AB′C′是△ABC旋转得到,∴AC=AC′,∠B′AC′=∠BAC=40°,∴∠AC′C=(180°﹣∠BAC)=(180°﹣40°)=70°,∵点C的对应点C′落在AB上,∴∠AB′C′=∠AC′C﹣∠B′AC′=70°﹣40°=30°.故答案为:30°.试题18答案:解答:解:由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,∵△BEF∽△CFG,EF=2FG,设正方形的边长为3a,即S正方形ABCD=9a2,则BE=BF=DH=DG=2a,AE=AH=CG=CF=a,根据勾股定理得:EF=2a,EH=a,∴S矩形EFGH=EF•EH=4a2,则矩形EFGH与正方形ABCD的面积比是.故答案为:试题19答案:解答:解:原式==+==.当时,原式=.试题20答案:解答:解:,由(1)得:x+2y=±3,由(2)得:x﹣y=0或x+y﹣4=0,原方程组可化为,,,,解得原方程组的解是,,,.试题21答案:解答:解:(1)∵Rt△ABD中,cot∠ADB=,∴=,则AD=16,∴BD===20,∵AD∥BC,∴∠DBC=∠ADB,∴cos∠DBC=cos∠ADB===;(2)在Rt△BCD中,cos∠DBC=,即=,解得:BC=25,∵AD∥BC,∴==,∴=,∴DE=×BD=×20=.试题22答案:解答:解:设这辆高铁列车全程的运行时间为x小时,则那辆动车组列车全程的运行时间为(x+3)小时,由题意,得,.x2+3x﹣40=0,x1=5,x2=﹣8.经检验:它们都是原方程的根,但x=﹣8不符合题意.当x=5时,.试题23答案:解答:(1)证明:∵DA=DB,∴∠FBA=∠EAC,∵∠AFD=∠BEC,∴180°﹣∠AFD=180°﹣∠BEC,即∠BFA=∠AEC.∵在△BFA和△AEC中,∴△BFA≌△AEC(AAS).∴AF=CE.(2)解:∵△BFA≌△AEC,∴BF=AE.∵∠EAF=∠ECA,∠FEA=∠AEC,∴△EFA∽△EAC.∴.∴EA2=EF•CE.∵EA=BF,CE=AF,∴BF2=EF•AF.试题24答案:解答:解:(1)连接OD,设⊙O的半径OA=OD=r,∵AB是⊙O的直径,弦CD⊥AB,∴DH=DC=×4=2,在Rt△OHD中,∵OD2﹣OH2=DH2,OH2=(AH﹣OA)2=(5﹣r)2,∴r2﹣(5﹣r)2=(2)2,解得r=,∴⊙O的半径为;(2)作OG⊥AE,垂足为G,如图,∴AG=AE=x,∴△AOG∽△AFH,∴AG:AH=AO:AF,即x:5=:AF,解得AF=,∴FH===,∵DF=FH﹣DH,∴y关于x的函数解析式为y=﹣2,定义域为0<x≤3;(3)当点E在弧AD上时,如图,∵AF﹣AE=EF,即﹣x=,化为整式方程得2x2+3x﹣90=0,解得x1=﹣(舍去),x2=6,∴DF=y=﹣2=;当点E在弧DB上时,如图,∵AE﹣AF=EF,即x﹣=,化为整式方程得2x2﹣3x﹣90=0,解得x1=,x2=6(舍去),∵AB为直径,∴∠E=90°,∴△AHF∽△AEB,BE==,∴FH:BE=AH:AE,即FH:=5:,解得FH=∴DF=DH﹣FH=2﹣当点E在BC弧上时,同上得FH=,∴DF=DH+FH=2+.试题25答案:解答:解:(1)设反比例函数的解析式为y=,∵点A(2,6)在反比例函数的图象上,∴6=,∴k=12,∴反比例函数的解析式为,作AM⊥BC,垂足为M,交x轴于N,∴CM=2.在Rt△ACM中,AM=CM•tan∠ACB=2×2=4,∵BC∥x轴,OC=MN=AN﹣AM=6﹣4=2,∴点C的坐标(0,2).当x=2时,y=6,∴点B的坐标(6,2)设二次函数的解析式为y=ax2+bx+2,则,解得,故二次函数的解析式为;(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,∵在平行四边形ACDE中,AC∥DE,∴∠AGO=∠EDH,∵BC∥x轴,∴∠ACM=∠AGO,∴∠ACM=∠EDH.∵∠AMC=∠EHD=90°,AC=ED,∴△ACM≌△EDH,∴EH=AM=4,DH=CM=2.∴点E(3,4),∴OE=3,OD=OE﹣DH=1,∴CD=.。

2015年上海市静安区、青浦区中考数学一模试卷及答案解析

2015年上海市静安区、青浦区中考数学一模试卷及答案解析
2015 年上海市静安区、青浦区中考数学一模试卷
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.(4 分)(2015•青浦区一模)下列各式中与(﹣a2)3 相等的是( )
A. a5
B. a6
C. ﹣a5
D.﹣a6
2.(4 分)(2015•青浦区一模)下列方程中,有实数解的是( )
A.
边的关系中,正确的是( )
A. 两条直角边成正比例
B. 两条直角边成反比例
C. 一条直角边与斜边成正比例
D.一条直角边与斜边成反比例
5.(4 分)(2015•青浦区一模)在四边形 ABCD 中,AB=AD,AC 平分∠DAB,AC 与 BD
相交于点 O,要使四边形 ABCD 是菱形,那么还需满足下列条件中的( )
解答:解:A、∵△ABD 和△ ACD 同底、同高,则 S△ ABD=S△ ACD, ∴S1=S3,故命题正确; B、∵AD∥BC, ∴△AOD∽△COB, 又∵BC=2AD,

=( )2= ,
则 S2=2S4 正确.故命题错误; C、作 MN⊥BC 于点 N,交 AD 于点 M. ∵△AOD∽△COB, 又∵BC=2AD,
18.(4 分)(2015•青浦区一模)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这 个顶点不变),我们把这样的三角形运动称为三角形的 T﹣变换,这个顶点称为 T﹣变换中 心,旋转角称为 T﹣变换角,三角形与原三角形的对应边之比称为 T﹣变换比;已知△ ABC 在直角坐标平面内,点 A(0,﹣1),B(﹣ ,2),C(0,2),将△ ABC 进行 T﹣变换,
∴ = = ,即 = ,

=,
则设 S△ OBC=2x,则 S△ ABC=3x,则 S△ AOB=x, 即 S2=2S1,故命题正确; D、设 AD=y,则 BC=2y,设 OM=z,则 ON=2z,

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

5.(4 分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是( )
A 平均数
B.众数
C.方差
D 频率



考 统计量的选择. 点: 分 根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数 析: 据的离散程度或波动大小进行选择. 解 解:能反映一组数据波动程度的是方差或标准差, 答: 故选 C. 点 本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立. 评:
3
解 答:
解:∵
∴3x﹣ 2=4, ∴x=2, 当 x=2 时,
=2,
左边=

右边=2, ∵左边=右边,
∴方程
=2 的解是:x=2.
故答案为:x=2. 点 此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解 评: 无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程
D、a = (a>0),故此选项错误. 故选:A. 点 此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识, 评: 正确把握相关性质是解题关键.
3.(4 分)(2015•上海)下列 y 关于 x 的函数中,是正比例函数的为( )
A y=x2 .
B.y=
C.y=
D y= .
1
考 正比例函数的定义. 点: 分 根据正比例函数的定义来判断即可得出答案. 析: 解 解:A、y 是 x 的二次函数,故 A 选项错误; 答: B、y 是 x 的反比例函数,故 B 选项错误;
6.(4 分)(2015•上海)如图,已知在⊙O 中,AB 是弦,半径 OC⊥AB,垂足为点 D, 要使四边形 OACB 为菱形,还需要添加一个条件,这个条件可以是( )

【解析版】上海市静安区、青浦区2015年中考数学一模试卷

【解析版】上海市静安区、青浦区2015年中考数学一模试卷

2015年上海市静安区、青浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.下列各式中与(﹣a2)3相等的是()A. a5 B. a6 C.﹣a5 D.﹣a62.下列方程中,有实数解的是()A.=﹣1 B.=﹣x C.=0 D.=03.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A. y=(x+1)2 B. y=(x﹣3)2 C. y=(x﹣1)2+2 D. y=(x﹣1)2﹣24.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例5.在四边形ABCD中,AB=AD,AC平分∠DAB,AC与BD相交于点O,要使四边形ABCD是菱形,那么还需满足下列条件中的()A. CD=CB B. OB=OD C. OA=OC D. AC⊥BD6.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A. S1=S3 B. S2=2S4 C. S2=2S1 D. S1•S3=S2•S4二、填空题:(本大题共12题,每题4分,满分48分)7.计算:+40= .8.使代数式有意义的实数x的取值范围为.9.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.10.布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.11.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.12.已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.13.如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.14.已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.已知在△ABC中,AD是边BC上的中线.设=,=.那么= .(用向量、的式子表示).16.在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD=2,那么cos∠DCB= .17.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH= 米.18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三、解答题:(本大题共7题,满分78分)19.化简:+,并求当x=时的值.20.解方程组:.21.已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.22.如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.2015年上海市静安区、青浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.下列各式中与(﹣a2)3相等的是()A. a5 B. a6 C.﹣a5 D.﹣a6考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣a2)3=﹣a6.故选D.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.2.下列方程中,有实数解的是()A.=﹣1 B.=﹣x C.=0 D.=0考点:无理方程;分式方程的解.分析:对所给的方程逐一分析、判断,即可解决问题.解答:解:∵,∴x2﹣4=0,∴x=﹣2或2;经检验:x=2是原方程的增根,∴原方程的解为x=﹣2,故选C.点评:该题主要考查了无理方程或分式方程的求解、判断问题;解题的关键是借助无理方程或分式方程的有关定理、定义,来灵活分析、判断、求解.3.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A. y=(x+1)2 B. y=(x﹣3)2 C. y=(x﹣1)2+2 D. y=(x﹣1)2﹣2考点:二次函数图象与几何变换.专题:几何变换.分析:先根据二次函数的性质得到抛物线y=(x﹣1)2的顶点坐标为(1,0),再利用点平移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后抛物线的表达式.解答:解:抛物线y=(x﹣1)2的顶点坐标为(1,0),点(1,0)向左平移2个单位得到对应点的坐标为(﹣1,0),所以平移后抛物线的表达式为y=(x+1)2.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例考点:反比例函数的定义;正比例函数的定义.分析:直角三角形的面积一定,则该直角三角形的两直角边的乘积一定.解答:解:设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.点评:本题考查了反比例函数和正比例函数的定义.反比例函数上点的坐标的横、纵坐标的乘积是定值.5.在四边形ABCD中,AB=AD,AC平分∠DAB,AC与BD相交于点O,要使四边形ABCD是菱形,那么还需满足下列条件中的()A. CD=CB B. OB=OD C. OA=OC D. AC⊥BD考点:菱形的判定.分析:根据等腰三角形的性质可得BO=DO,再添加条件AO=CO,可得四边形ABCD是平行四边形,又AB=AD,再根据邻边相等的平行四边形是菱形可进行判定.解答:解:添加条件AO=CO,∵AB=AD,AC平分∠DAB,∴BO=DO,∵AO=CO,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形,故选:C.点评:此题主要考查了菱形的判定,关键是掌握邻边相等的平行四边形是菱形.6.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A. S1=S3 B. S2=2S4 C. S2=2S1 D. S1•S3=S2•S4考点:相似三角形的判定与性质.分析:证三角形相似,再根据三角形的面积公式和相似三角形的面积比等于相似比的平方,以及三角形的面积公式即可得出结论.解答:解:A、∵△ABD和△ACD同底、同高,则S△ABD=S△ACD,∴S1=S3,故命题正确;B、∵AD∥BC,∴△AOD∽△COB,又∵BC=2AD,∴=()2=,则S2=2S4正确.故命题错误;C、作MN⊥BC于点N,交AD于点M.∵△AOD∽△COB,又∵BC=2AD,∴==,即=,∴=,则设S△OBC=2x,则S△ABC=3x,则S△AOB=x,即S2=2S1,故命题正确;D、设AD=y,则BC=2y,设OM=z,则ON=2z,则S2=×2y×2z=2yz,S4=×y×z=yz,S△ABC=BC•MN=×2y•3z=3yz,则S1=S3=3yz﹣2yz=yz,则S1•S3=y2z2,S2•S4=y2z2,故S1•S3=S2•S4正确.故选B.点评:本题考查了相似三角形的判定与性质,相似三角形面的比等于相似比的平方,高线的比等于相似比,正确表示出S1、S2、S3、S4,是解决本题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:+40= .考点:分数指数幂;零指数幂.分析:根据分数指数幂的运算法则进行计算.解答:解:原式=+1=+1=.故答案是:.点评:本题考查了分数指数幂和零指数幂.任何不等于0的数的0次幂都等于1.8.使代数式有意义的实数x的取值范围为.考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意得 2x﹣1≥0,解得.故答案是:.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.考点:根的判别式.分析:由方程x2﹣3x+m=0有两个相等的实数根,即可得根的判别式△=b2﹣4ac=0,即可得方程9﹣4m=0,解此方程即可求得答案.解答:解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m=9﹣4m=0,解得:m=.故答案为:.点评:此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.考点:列表法与树状图法.分析:列举出所有情况,看所求的情况占总情况的多少即可求出摸到一红一白两球概率.解答:解:画树形图得:共有4×3=12种可能,所以摸到一红一白两球概率为=.故答案为:点评:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是a<﹣3 .考点:二次函数的性质.分析:根据抛物线y=(a+3)x2﹣5不经过第一象限可以确定不等式的开口方向,从而确定a的取值范围.解答:解:∵抛物线y=(a+3)x2﹣5不经过第一象限,∴a+3<0,解得:a<﹣3,故答案为:a<﹣3.点评:考查了二次函数的性质,根据抛物线的开口方向,与y轴的交点,对称轴判断抛物线经过的象限.12.已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是(﹣3,3).考点:二次函数图象上点的坐标特征.专题:计算题.分析:先确定点(1,3)关于直线x=﹣1的对称点的坐标为(﹣3,3),然后根据抛物线的对称性求解.解答:解:点(1,3)关于直线x=﹣1的对称点的坐标为(﹣3,3),所以这个二次函数的图象一定点(﹣3,3).故答案为(﹣3,3).点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.13.如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.考点:平行线分线段成比例.专题:计算题.分析:直接根据平行线分线段成比例进行计算.解答:解:∵DE∥AB,∴====.故答案为.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于9cm2.考点:三角形的重心.分析:首先根据题意画出图形,由三角形重心的性质得出AG:GD=2:1,利用比例的性质结合三角形的面积公式得到S△AGC=S△ABC,然后代入数值计算即可.解答:解:如图,∵点G是△ABC的重心,连结AG并延长交BC于点D,∴AG:GD=2:1,∴S△AGC=2S△CGD,S△AGC=S△ACD,∵D为BC中点,∴S△ACD=S△ABC,∴S△AGC=×S△ABC=S△ABC=×27=9(cm2).故答案为:9cm2.点评:此题考查了三角形的重心的性质:三角形的重心到顶点的距离是它到对边中点的距离的2倍.根据题意得出S△AGC=S△ABC是解题的关键.15.已知在△ABC中,AD是边BC上的中线.设=,=.那么= ﹣.(用向量、的式子表示).考点: *平面向量.分析:首先根据题意画出图形,然后由三角形中线的性质,求得==,再利用三角形法则求解即可求得答案.解答:解:如图,∵在△ABC中,AD是边BC上的中线,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意数形结合思想的应用.16.在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD=2,那么cos∠DCB= .考点:解直角三角形.分析:根据题意画出图形,将cos∠DCB转化为cos∠DBC解答.解答:解:如图,∵∠BCA=90°,BC=3,CD=2,∴BD=AD=4,∵BD=CD,∴∠DCB=∠DBC,∴cos∠DCB=cos∠DBC==.故答案为.点评:本题考查了解直角三角形,熟悉直角三角形的性质和三角函数的定义是解题的关键.17.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH= 米.考点:解直角三角形的应用.分析:利用锐角三角函数关系以及特殊角的三角函数关系表示出AB的长,进而求出即可.解答:解:设OH=x,∵当AB的一端点A碰到地面时,AB与地面的夹角为30°,∴AO=2xm,∵当AB的另一端点B碰到地面时,AB与地面的夹角的正弦值为,∴BO=3xm,则AO+BO=2x+3x=3m,解得;x=.故答案为:.点评:此题主要考查了解直角三角形的应用,正确用未知数表示出AB的长是解题关键.18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为(﹣,0).考点:坐标与图形变化-旋转.专题:新定义.分析:根据题意判断△ABC为直角三角形,得到∠BAC=30°,根据T﹣变换角为60°,得到经过T﹣变换后点C所对应的点在x轴上,计算得到答案.解答:解:∵B(﹣,2),C(0,2),∴△ABC为直角三角形,∠BAC=30°,绕点A逆时针旋转60°后,B′A⊥y轴,则点C′在x轴上,T﹣变换比为,AC=3,∴AC′=2,OC′=,∴经过T﹣变换后点C所对应的点的坐标为(﹣,0).点评:本题考查的是坐标与图形变化,理解新定义和旋转的概念是解题的关键,注意旋转中心、旋转方向和旋转角在旋转中的应用.三、解答题:(本大题共7题,满分78分)19.化简:+,并求当x=时的值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=代入进行计算即可解答:解:原式=+=+=.当x=时,原式===.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解方程组:.考点:高次方程.分析:将方程②借助因式分解来降次、转化;再次联立方程①,得到两个低次方程组;解方程组即可解决问题.解答:解:,由(2)得(x﹣2y)(y﹣1)=0,x﹣2y=0或y﹣1=0,原方程可化为.解两个方程组得:.点评:该题主要考查了高次方程的解法问题;解高次方程的一般策略是运用因式分解法,化高次方程为低次方程,然后求解.21.已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.考点:反比例函数与一次函数的交点问题.分析:根据题意求得A、B的坐标,然后根据AB=7列出关于m的方程,解方程即可求得m.解答:解:∵直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,∴点A、B的坐标分别为()、(m,﹣m﹣2),∵AB=7,∴,整理得m2﹣5m+6=0,解得m1=2,m2=3.经检验它们都是原方程的根,且符合题意,所以m的值为2或3.点评:本题考查了反比例函数与一次函数的交点问题,交点坐标符合反比例函数的解析式,同时也符合一次函数的解析式.22.如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)考点:解直角三角形的应用-仰角俯角问题.分析:过点B作BF⊥DE于点F,可得四边形ABFE为矩形,先在△BCF中求出CF的长度,然后在△BDF中求出DF的长度,最后DF﹣CF可求得CD的长度.解答:解:过点B作BF⊥DE于点F,则四边形ABFE为矩形,在△BCF中,∵∠CBF=40°,∠CFB=90°,BF=AE=24m,∴=tan40°,∴CF=0.84×24≈20.16(m),在△BDF中,∵∠DBF=45°,∴DF=24m,则CD=DF﹣CF=24﹣20.16=3.84≈3.8(m).故旗杆CD的长为3.8m.点评:本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.23.已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.考点:相似三角形的判定与性质.专题:证明题.分析:(1)首先证明△ADE∽△ABC,△EFG∽△CBG,根据相似三角形的对应边的比相等,以及DE=EF即可证得;(2)首先证明△CFG∽△BFC,证得=,∠FCE=∠CBF,然后根据平行线的性质证明∠FEG=∠CEF,即可证得△EFG∽△ECF,则==,即可证得=,则所证结论即可得到.解答:证明:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴=,=,又∵DE=EF,∴=,∴=;(2)∵CF2=FG•FB,∴=,又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴=,∠FCE=∠CBF,又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG,又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴==,∴=,即CG•CE=BC•DE.点评:本题考查了相似三角形的判定与性质,正确理解相似三角形的判定方法,证明∠FEG=∠CEF,证得△EFG∽△ECF是解决本题的关键.24.已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.考点:二次函数综合题.分析:(1)根据待定系数法,可得函数解析式;(2)根据顶点坐标公式,可得顶点坐标,根据图象的平移,可得M点的坐标;(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质,可得方程组,根据解方程组,可得答案.解答:解:(1)由二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5),得,解得.二次函数的解析式y=x2﹣4x;(2)y=x2﹣4x的顶点M坐标(2,﹣4),这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m﹣4);(3)由待定系数法,得CP的解析式为y=x+m,如图:作MG⊥PC于G,设G(a,a+m).由角平分线上的点到角两边的距离相等,DM=MG.在Rt△DCM和Rt△GCM中,Rt△DCM≌Rt△GCM(HL).CG=DC=4,MG=DM=2,,化简,得8m=36,解得m=.点评:本题考察了二次函数综合题,(1)利用了待定系数法求函数解析式,(2)利用了二次函数顶点坐标公式,图象的平移方法;(3)利用了角平分线的性质,全等三角形的性质.25.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.考点:相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义.专题:综合题.分析:(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DPC,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.点评:本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x与y的等量关系是解决第(3)小题的关键.。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

上海中考各区二模数学试题及答案汇总

上海中考各区二模数学试题及答案汇总

2014学年虹口区调研测试九年级数学。

(满分分,考试时间分钟)考生注意:1.本试卷含三个大题,共题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共题,每题分,满分分).计算的结果是().;.;.; ...下列代数式中,的一个有理化因式是( ).; .;.;...不等式组的解集是( ).; .;.;...下列事件中,是确定事件的是( ).上海明天会下雨;.将要过马路时恰好遇到红灯;.有人把石头孵成了小鸭;.冬天,盆里的水结成了冰..下列多边形中,中心角等于内角的是().正三角形;.正四边形; .正六边形;.正八边形..下列命题中,真命题是().有两边和一角对应相等的两个三角形全等;.有两边和第三边上的高对应相等的两个三角形全等;.有两边和其中一边上的高对应相等的两个三角形全等;.有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共题,每题分,满分分).据报道,截止年月某市网名规模达人。

请将数据用科学记数法表示为。

.分解因式:。

.如果关于的方程有两个相等的实数根,那么。

.方程的根是。

初三数学基础考试卷—1—初三数学基础考试卷—2—(第题图) (第题图) (第题图)(第题图).函数的定义域是 。

.在反比例函数的图像所在的每个象限中,如果函数值随自变量的值的增大而增大,那么常数的取值范围是 。

.为了了解某中学学生的上学方式,从该校全体学生名中,随机抽查了名学生,结果显示有名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学"。

.在中,,点是的重心,如果,那么斜边的长等于 。

.如图,在中,点、分别在边、上,∥,,若,,则 。

.如图,、的半径分别为、,圆心距为.将由图示位置沿直线向右平移,当该圆与内切时,平移的距离是 ..定义为函数的“特征数".如:函数“特征数”是,函数“特征数"是.如果将“特征数”是的函数图像向下平移个单位,得到一个新函数图像,那么这个新函数的解析式是 。

上海市静安、杨浦、松江、青浦、闵行、浦东等六区2015年中考一模(即期末)数学试卷及答案

上海市静安、杨浦、松江、青浦、闵行、浦东等六区2015年中考一模(即期末)数学试卷及答案

五区联考2015年上海市初三一模数学试卷(满分150分,时间100分钟) 2015.1一. 选择题(本大题满分4×6=24分)1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值( ) A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为( ) A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是( )A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于( ) A. 2; B. 4; C.245; D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于( ) A. 2sin m α⋅; B. 2cos m α⋅; C. 2tan m α⋅; D. 2cot m α⋅;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;二. 填空题(本大题满分4×12=48分)7. 已知34x y =,那么22x y x y -=+ ; 8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于 cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为 ; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于 ;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值范围是 ; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于 ;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC = 米(结论可保留根号)16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是 ;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时(如图1),AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时(如图2),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH = 米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(B ,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为 ;三. 解答题(本大题满分10+10+10+10+12+12+14=78分)19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式; (2)求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; (1)求AD (用向量,a b 的式子表示)(2)如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D 的仰角为45°,求旗杆CD 的长度;(结果精确到0.1米,参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)22. 用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:12可表示为1sin 30cos 60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60填空:2= = = =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:AE EGAC CG=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; (1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;(3)在第(2)小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域; (2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年上海市五区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二. 填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 915.16. (3,3)- 17.3518. ( 三. 解答题19.(1)256y x x =-+; (2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=; 20.(1)12b a -; (2)略; 21. 3.84CD m ≈22.(1)sin 60︒,cos 30︒,tan 45sin 60︒⋅︒; (2)(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.(1)24y x x =-; (2)(2,4)M m -; (3)92m =;25.(1)4y x x =-(25x <≤); (2)3tan 4EBP ∠=; (3)53+;。

8、2015 上海青浦区中考数学二模压轴题

8、2015 上海青浦区中考数学二模压轴题

OE =x,得 OE=x. OD BC 如图 6,在 Rt△OBC 中,由 sin∠BOC= =x,得 BC=x. OB OD OE 1 x 如图 7,由 OD//CB,得 .所以 . BC BE x 1 x
1 2
5 39 5 ,所以 CM= 42 . 2 2 2
2
由 tan∠COF=
CM FC CM OC 39 5 4 39 ,得 FC . 4 OM OC OM 2 2 5
4 39 . 5
此时 AF=AC+FC= 3
(3)设⊙O 的半径为 1,设 sin∠ODC=x. 如果 OD//AB,CD⊥OB,那么∠COD=90°,∠ODC=∠BOC.
16a 8a c 0, c 2.
1 4
1 2 1 x x2. 4 2
(2)因为△ADG 与△AFG 是同高三角形,所以
S△ADG DG 3 . S△AFG GF 2
所以
GF 2 . DF 5 1 x 2. 2
由 A(4,0)、B(0, 2),得直线 AB 的解析式为 y
思路点拨
1.反反复复的勾股定理和三角比的运算,要仔细哦.
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
2.第(2)题等腰三角形 OCD 只存在两种情况,因为 OC<OD. 3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢? 设⊙的半径为 1,设 sin∠ODC=x,然后把其他线段用 x 表示出来.这个设法不多见哦.
图2
图3
图4
(2)因为 OC<OD,所以等腰三角形 OCD 存在两种情况: ①如图 3,当 DO=DC 时,作 DH⊥OC,那么 DH 是△OCF 的中位线. 在 Rt△ODH 中,OD=5,OH=2,所以 DH= 52 22 21 . 所以 FC=2DH= 2 21 .此时 AF=AC+FC= 3 2 21 . ②,如图 4,当 CO=CD 时,作 CM⊥OD,那么 CM 平分 OD. 在 Rt△OCM 中,OC=4,OM= OD =

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷答案与解析

2015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015•上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015•上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015•上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015•上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点:菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015•上海)计算:|﹣2|+2= 4 .考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015•上海)方程=2的解是x=2 .考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3 .考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(4分)(2015•上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4 .考点:根的判别式.分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015•上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77 ℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015•上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3 .考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015•上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分析:由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是14 岁.考点:中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015•上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015•上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC 的垂线,交边CD于点F,那么∠FAD=22.5 度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B 相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考点:圆与圆的位置关系;点与圆的位置关系.专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D 与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015•上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于4﹣4 .考点:解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解答:解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015•上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015•上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015•上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解答:解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015•上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)考点:解直角三角形的应用;勾股定理的应用.分析:(1)连接PA.在直角△PAH中利用勾股定理来求PH的长度;(2)由题意知,隔音板的长度是PQ的长度.通过解Rt△ADH、Rt△CDQ分别求得DH、DQ的长度,然后结合图形得到:PQ=PH+DQ﹣DH,把相关线段的长度代入求值即可.解答:解:(1)如图,连接PA.由题意知,AP=39m.在直角△APH中,PH===36(米);(2)由题意知,隔音板的长度是PQ的长度.在Rt△ADH中,DH=AH•cot30°=15(米).在Rt△CDQ中,DQ===78(米).则PQ=PH+HQ=PH+DQ﹣DH=36+78﹣15≈114﹣15×1.7=88.5≈89(米).答:高架道路旁安装的隔音板至少需要89米.点评:本题考查了解直角三角形的应用、勾股定理的应用.根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(12分)(2015•上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.考点:相似三角形的判定与性质;等腰三角形的性质;平行四边形的性质.专题:证明题.分析:(1)由平行四边形的性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形的判定即可得到结论;(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△CDE,∴,∴BD•CE=CD•DE.点评:本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.24.(12分)(2015•上海)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴(XRS)相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.考点:二次函数综合题.分析:(1)根据已知条件先求出OB的长,再根据勾股定理得出OA=2,求出点A的坐标,再把点A的坐标代入y=ax2﹣4,求出a的值,从而求出解析式;(2)根据点P的横坐标得出点P的坐标,过点P作PE⊥x轴于点E,得出OE=m,PE=m2﹣4,从而求出AE=2+m,再根据=,求出OC;(3)根据tan∠ODC=,得出=,求出OD和OC,再根据△ODB∽△EDP,得出=,求出OC,求出∠PAD=45°,从而求出∠PAD的正弦值.解答:解:(1)∵抛物线y=ax2﹣4与y轴相交于点B,∴点B的坐标是(0,﹣4),∴OB=4,∵AB=2,∴OA==2,∴点A的坐标为(﹣2,0),把(﹣2,0)代入y=ax2﹣4得:0=4a﹣4,解得:a=1,则抛物线的解析式是:y=x2﹣4;(2)∵点P的横坐标为m,∴点P的坐标为(m,m2﹣4),过点P作PE⊥x轴于点E,∴OE=m,PE=m2﹣4,∴AE=2+m,∵=,∴=,∴CO=2m﹣4;(3)∵tan∠ODC=,∴=,∴OD=OC=×(2m﹣4)=,∵△ODB∽△EDP,∴=,∴=,∴m1=﹣1(舍去),m2=3,∴OC=2×3﹣4=2,∵OA=2,∴OA=OC,∴∠PAD=45°,∴sin∠PAD=sin45°=.点评:此题考查了二次函数的综合,用到的知识点是相似三角形的判定与性质、勾股定理、特殊角的三角函数值,关键是根据题意作出辅助线,构造相似三角形.25.(14分)(2015•上海)已知,如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E,与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=,设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.考点:圆的综合题.分析:(1)连接OD,证得△AOP≌△ODQ后即可证得AP=OQ;(2)作PH⊥OA,根据cos∠AOC=得到OH=PO=x,从而得到S△AOP=AO•PH=3x,利用△PFC∽△PAO得当对应边的比相等即可得到函数解析式;(3)分当∠POE=90°时、当∠OPE=90°时、当∠OEP=90°时三种情况讨论即可得到正确的结论.解答:解:(1)连接OD,在△AOP和△ODQ中,,∴△AOP≌△ODQ,∴AP=OQ;(2)作PH⊥OA,∵cos∠AOC=,∴OH=PO=x,∴S△AOP=AO•PH=3x,又∵△PFC∽△PAO,∴==()2,整理得:y=(<x<10);(3)当∠POE=90°时,CQ==,PO=DQ=CD﹣CQ=(舍);当∠OPE=90°时,PO=AO•cos∠COA=8;当∠OEP=90°时,∠AOQ=∠DQO=∠APO,∴∠AOC=∠AEO,即∠OEP=∠COA,此种情况不存在,∴线段OP的长为8.点评:本题考查了圆的综合知识、相似三角形的判定及性质等知识,综合性较强,难度较大,特别是第三题的分类讨论更是本题的难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的 内心就是三角形三个内角角平分线的交点.记住三角形的内心到三角形三边的距离相 等;三角形的内心与三角形顶点的连线平分这个内角.
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.(4 分)(2015•青浦区二模)计算:
50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数和中位数分别是( )
A.12 元、12 元
B. 12 元、11 元
C.11.6 元、12 元 D.11.6 元、11 元
考点:加权平均数;中位数. 菁优网版权所有
分析:根据平均数的计算公式和该校师生某一天购买的这三种价格盒饭数所占的百分比,列 式计算即可; 根据中位数的定义先按从小到大的顺序排列起来,再找出最中间两个数的平均数即 可.
解答:解:这一天该校师生购买盒饭费用的平均数是:10×50%+12×30%+15×20%=11.6(元); 中位数是 10 和 12 的平均数,则(10+12)÷2=11(元); 故选 D.
点评:此题考查了加权平均数和中位数,注意,当所给数据有单位时,所求得的平均数、众 数和中位数与原数据的单位相同,不要漏单位.
22.(10 分)(2015•青浦区二模)甲乙两人各加工 30 个零件,甲比乙少用 1 小时完成任务; 乙改进操作方法,使生产效率提高了一倍,结果乙完成 30 个零件的时间比甲完成 24 个零件 所用的时间少 1 小时.问甲乙两人原来每小时各加工多少个零件.
23.(6 分)(2015•青浦区二模)如图,在梯形 ABCD 中,AB∥CD,AD=BC,E 是 CD 的 中点,BE 交 AC 于 F,过点 F 作 FG∥AB,交 AE 于点 G. (1)求证:AG=BF; (2)当 AD2=CA•CF 时,求证:AB•AD=AG•AC.
∴△≥0,
∴(﹣1)2﹣4m≥0,
∴m≤ ,
故选:D. 点评:本题考查了根的判别式,一元二次方程根的情况与判别式△ 的关系:
(1)△ >0⇔方程有两个不相等的实数根; (2)△ =0⇔方程有两个相等的实数根; (3)△ <0⇔方程没有实数根.
4.(4 分)(2015•青浦区二模)某餐饮公司为一所学校提供午餐,有 10 元、12 元、15 元三 种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占
5.(4 分)(2015•青浦区二模)下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. 正三角形
B. 正六边形
C. 平行四边形
D.菱形
考点:中心对称图形;轴对称图形. 菁优网版权所有
分析:根据轴对称图形与中心对称图形的概念求解. 解答:解:A、是轴对称图形,不是中心对称图形.故正确;
B、是轴对称图形,也是中心对称图形.故错误; C、不是轴对称图形,是中心对称图形.故错误; D、是轴对称图形,不是中心对称图形.故错误. 故选 A. 点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图 形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与 原图重合.
考点:无理方程. 菁优网版权所有
分析:此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可得出答案. 解答:解:两边平方得:3﹣2x=x2,
整理得:x2+2x﹣3=0, (x+3)(x﹣1)=0, 解得:x1=﹣3,x=1, 检验:当 x=﹣3 时,原方程的左边≠右边, 当 x=1 时,原方程的左边=右边, 则 x=1 是原方程的根.
2015 年上海市静安区、青浦区中考数学二模试卷
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.(4 分)(2015•青浦区二模)下列二次根式中,最简二次根式是( )
A.
B.
C.
D.
2.(4 分)(2015•青浦区二模)某公司三月份的产值为 a 万元,比二月份增长了 m%,那么
二月份的产值(单位:万元)为( )
A. 正三角形
B. 正六边形
C. 平行四边形
D.菱形
6.(4 分)(2015•青浦区二模)三角形的内心是( )
A. 三边垂直平分线的交点
B. 三条角平分线的交点
C. 三条高所在直线的交点
D.三条中线的交点
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.(4 分)(2015•青浦区二模)计算:
=

考点:负整数指数幂. 菁优网版权所有
分析:根据负整数指数幂的运算法则进行计算即可. 解答:解:原式=
=.
故答案为: . 点评:本题考查的是负整数指数幂,熟知非 0 数的负整数指数幂等于该数正整数指数幂的倒
数是解答此题的关键.
8.(4 分)(2015•青浦区二模)分解因式:x2﹣6xy+9y2= (x﹣3y)2 .
每天出次品的个数 0
2
3
4
天数
3
2
4
1
那么在这 10 天中这个小组每天所出次品数的标准差是

12.(4 分)(2015•青浦区二模)从①AB∥CD,②AD∥BC,③ AB=CD,④ AD=BC 四个
关系中,任选两个作为条件,那么选到能够判定四边形 ABCD 是平行四边形的概率


13.(4 分)(2015•青浦区二模)如图,在 Rt△ ABC 中,∠ACB=90°,AB=2AC,点 E 在中
考点:因式分解-
运用公式法. 菁优网版权所有
专题:计算题.
分析:原式可用完全平方公式分解即可.
解答:解:x2﹣6xy+9y2=(x﹣3y)2. 故答案为:(x﹣3y)2
点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.
9.(4 分)(2015•青浦区二模)方程
=x 的根是 1 .
=
8.(4 分)(2015•青浦区二模)分解因式:x2﹣6xy+9y2=
9.(4 分)(2015•青浦区二模)方程
=x 的根是
. .

10.(4 分)(2015•青浦区二模)函数
的定义域是

11.(4 分)(2015•青浦区二模)某工厂对一个小组生产的零件进行调查.在 10 天中,这个
小组出次品的情况如表所示:
中点,如 =
= ,那么 =

16.(4 分)(2015•青浦区二模)当 x=2 时,不论 k 取任何实数,函数 y=k(x﹣2)+3 的值
为 3,所以直线 y=k(x﹣2)+3 一定经过定点(2,3);同样,直线 y=k(x﹣3)+x+2 一定
经过的定点为

17.(4 分)(2015•青浦区二模)将矩形 ABCD(如图)绕点 A 旋转后,点 D 落在对角线
解答:A、 =2 故不是最简二次根式,故 A 选项错误;
B、
=13 故不是最简二次根式,故 B 选项错误;
C、
是最简二次根式,故 C 选项正确;
D、 = 故不是最简二次根式,故 D 选项错误;
故选:C. 点评:本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关
键.
2.(4 分)(2015•青浦区二模)某公司三月份的产值为 a 万元,比二月份增长了 m%,那么 二月份的产值(单位:万元)为( )
A. a(1+m%)
B. a(1﹣m%)
C.
D.
考点:列代数式(分式). 菁优网版权所有
分析:由题意可知:三月份的产值是二月份的(1+m%),进而用除法求得单位“1”的量,即
二月份的产值.
解答:解:二月份的产值为 a÷(1+m%)=
万元.
故选:C. 点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.
19.(10 分)(2015•青浦区二模)化简:

x= ﹣30 时的值.
(x2+x),并求当
20.(10 分)(2015•青浦区二模)求不等式组
的整数解.
21.(10 分)(2015•青浦区二模)如图,在直角坐标系 xOy 中,反比例函数图象与直线 y=x ﹣2 相交于横坐标为 3 的点 A. (1)求反比例函数的解析式; (2)如果点 B 在直线 y=x﹣2 上,点 C 在反比例函数图象上,BC∥x 轴,BC=4,且 BC 在 点 A 上方,求点 B 的坐标.
故答案为:1. 点评:本题主要考查解无理方程,在解无理方程时最常用的方法是两边平方法及换元法,本
题用了平方法.注意要把求得的 x 的值代入原方程进行检验.
10.(4 分)(2015•青浦区二模)函数
的定义域是 x>2 .
考点:函数自变量的取值范围. 菁优网版权所有
专题:计算题. 分析:根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求
A. a(1+m%)
B. a(1﹣m%)
C.
D.
3.(4 分)(2015•青浦区二模)如果关于 x 的方程 x2﹣x+m=0 有实数根,那么 m 的取值范
围是( )
A. m>
B. m≥
C. m<
D.m≤
4.(4 分)(2015•青浦区二模)某餐饮公司为一所学校提供午餐,有 10 元、12 元、15 元三
24.(12 分)(2015•青浦区二模)如图,在直角坐标系 xOy 中,抛物线 y=ax2﹣2ax+c 与 x 轴的正半轴相交于点 A、与 y 轴的正半轴相交于点 B,它的对称轴与 x 轴相交于点 C,且 ∠OBC=∠OAB,AC=3. (1)求此抛物线的表达式; (2)如果点 D 在此抛物线上,DF⊥OA,垂足为 F,DF 与线段 AB 相交于点 G,且 S△ ADG: S△ AFG=3:2,求点 D 的坐标.
相关文档
最新文档