对数计算公式.
对数运算的十个公式
对数运算的十个公式对数运算是数学中的重要概念,通过将复杂的乘法、除法运算转化为简单的加法、减法运算,极大地方便了计算。
下面将介绍十个常用的对数运算公式。
1.基本定义:2.对数的基本性质:loga(1) = 0,即任何数以其本身为底的对数等于0。
loga(a) = 1,即任何数以其本身为底的对数等于1loga(b) = loga(c) 表示以a为底的b与c相等。
3.对数的运算性质:loga(b * c) = loga(b) + loga(c) ,即对数的乘法法则。
loga(b / c) = loga(b) - loga(c) ,即对数的除法法则。
loga(b ^ n) = n * loga(b) ,即对数的指数法则。
4.对数的换底公式:loga(b) = logc(b) / logc(a) ,其中c为任意正数。
5.对数的积和商:loga(b * c) = loga(b) + loga(c) ,即对数的乘法属性。
loga(b / c) = loga(b) - loga(c) ,即对数的除法属性。
6.对数的幂和根:loga(b ^ n) = n * loga(b) ,即对数的指数属性。
loga√b = 1/2 * loga(b) ,即对数的根属性。
7.对数的阶:loga(b) = 1 / logb(a),即一个数以其本身为底的对数,等于以该数为底的对数的倒数。
8.对数的换元公式:logab = 1 / logba,即两个不同底数的对数可以相互转换。
9.对数的对数:loga(loga(b)) = logb(b) = 1,即一个数以以其本身为底的对数的对数等于110.对数的特殊值:log10(10) = 1,常用于计算数的数量级。
ln(e) = 1,其中ln为以自然常数e为底的对数。
通过掌握这些对数运算的公式,我们可以在计算中更加便捷地进行复杂的乘除运算,为数学问题的解决提供了有效的工具。
对数函数运算公式大全
对数函数运算公式大全对数函数是指以常数为底的对数函数。
对数函数运算公式如下:1. 对数函数定义:对数函数的定义为 y = logₐ(x),其中 a 为底数,x 为实数。
2.换底公式:- logₐ(x) = logₑ(x) / logₑ(a),其中 logₑ表示以自然对数为底的对数。
- logₐ(x) = 1 / logₐ(a)。
- logₐ(b) = logₐ(c) / logₐ(b),其中 b、c 为任意正数。
3.对数函数的性质:- logₐ(1) = 0,对于任意正数 a。
- logₐ(a) = 1,对于任意正数 a。
- logₐ(a^m) = m,对于任意正数 a 和整数 m。
- logₐ(m * n) = logₐ(m) + logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m / n) = logₐ(m) - logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m^n) = n * logₐ(m),对于任意正数 a、m,并且 n 为任意实数。
- a^logₐ(x) = x,对于任意正数 a 和实数 x。
4.常用对数函数:- 以底数 10 的对数函数称为常用对数函数,记为 log(x) 或 lg(x)。
- log(x) 的运算规则与对数函数相同。
5.自然对数函数:- 以底数 e(自然常数) 的对数函数称为自然对数函数,记为 ln(x)。
- ln(x) 的运算规则与对数函数相同。
6.对数函数的图像及性质:-对数函数的图像是一个以点(1,0)为对称轴的增函数,即随着x的增大,y也增大。
- 当 x > 1 时,logₐ(x) > 0;当 0 < x < 1 时,logₐ(x) < 0;当 x = 1 时,logₐ(x) = 0。
-当a>1时,对数函数呈现上凸形状;当0<a<1时,对数函数呈现下凸形状。
以上是对数函数运算公式的大致内容,其中包含了对数函数的定义、换底公式、性质以及常用对数函数和自然对数函数的特点。
log运算法则公式14个
log运算法则公式14个log运算法则是一种经典的数学运算,在各种高等数学课程中都有涉及。
log运算法则主要用于计算幂和对数。
它们可以帮助我们快速计算出幂和对数。
log运算法则一共有14个,如下:1、对数的乘法法则:loga(mn) = loga m + loga n;2、对数的除法法则:loga(m/n) = loga m - loga n;3、对数的乘方法则:loga(m^n) = nloga m;4、对数的开方法则:loga(m^(1/n)) = loga m / n;5、乘方的乘法法则:(m^n)(m^p) = m^(n+p);6、乘方的除法法则:(m^n)/(m^p) = m^(n-p);7、乘方的乘方法则:(m^n)^p = m^(np);8、乘方的开方法则:(m^n)^(1/p) = m^(n/p);9、对数的加法法则:loga(m + n) = loga m + loga n;10、对数的减法法则:loga(m - n) = loga m - loga n;11、乘方的加法法则:(m + n)^p = m^p + n^p;12、乘方的减法法则:(m - n)^p = m^p - n^p;13、乘方的乘积法则:(m*n)^p = m^p * n^p;14、乘方和开方的混合法则:(m^n)^(1/p) = m^(n/p)。
log运算法则在数学中有着重要的地位,它可以把复杂的问题简化,帮助我们更快更有效地进行计算。
14个法则就是由它而来,它们可以帮助我们快速计算出幂和对数。
由于log 运算法则可以把复杂的问题变得更加容易理解,所以在研究数学的过程中,应该充分利用它们,努力掌握log运算法则,从而更好地掌握数学知识。
log公式大全计算公式
log公式大全计算公式
log运算法则是一种经典的数学运算,在各种高等数学课程中都有涉及。
log运算法则主要用于计算幂和对数。
以下是一些常见的log 运算法则公式:
1. 对数的乘法法则:loga(mn) = loga m + loga n。
2. 对数的除法法则:loga(m/n) = loga m - loga n。
3. 自然对数的性质:ln(1) = 0。
4. 换底公式:logb(a) = logc(a) / logc(b)。
5. 换底公式的推导公式:logb(a) * loga(b) = 1。
6. loge(x) = ln(x)。
7. lg(x) = log10(x)。
8. loga(b) * logb(a) = 1。
9. loga(b) / loga(c) = logc(b) / logc(a)。
10. logc(c^x) = x。
11. logc(a * b) = logc(a) + logc(b)。
12. logc(a / b) = logc(a) - logc(b)。
13. logc(sqrt[n](a)) = logc(a) / n。
14. logc(a^n) = n * logc(a)。
这些公式在计算对数和幂时非常有用,可以帮助我们快速得到结
果。
记住这些公式需要理解和练习,建议多做习题以加深对这些公式的理解和掌握。
对数公式的计算方式
对数公式的计算方式一、引言对数公式是数学中常用的一种运算方式,它可以将指数运算转化为对数运算,使得复杂的计算变得简单和便捷。
本文将重点介绍对数公式的计算方式及其应用。
二、对数公式的定义对数公式是数学中用来描述指数运算与对数运算之间关系的一种公式。
对数公式的定义如下:若a^x = b,其中a为底数,x为指数,b为真数,则称x为以a 为底b的对数,记作x = loga(b)。
1. 常用对数计算方式常用对数的底数为10,常用对数的计算方式为:若10^x = b,则x = log10(b),简写为x = log(b)。
2. 自然对数计算方式自然对数的底数为e(欧拉常数),自然对数的计算方式为:若e^x = b,则x = ln(b)。
3. 对数公式的换底公式对数公式中,当底数不为10时,可以通过换底公式将对数转化为常用对数或自然对数。
对数的换底公式如下:若a^x = b,则x = loga(b) = log10(b) / log10(a)。
四、对数公式的应用1. 对数公式在指数运算中的应用对数公式可以将复杂的指数运算转化为简单的对数运算,从而简化计算过程。
例如,若要求解方程2^x = 8,可以通过对数公式将指数运算转化为对数运算:2^x = 8 可转化为 x = log2(8)。
利用换底公式,可得 x = log10(8) / log10(2) = 3。
2. 对数公式在科学计算中的应用对数公式在科学计算中有广泛的应用。
例如,在天文学中,对数公式可以用来计算星等,即天体的亮度。
星等的计算公式为:m = -2.5 * log(I / I0),其中m为星等,I为天体的亮度,I0为参考亮度。
3. 对数公式在经济学中的应用对数公式在经济学中也有重要的应用。
例如,在经济增长模型中,经济增长率的计算可以通过对数公式来实现。
经济增长率的计算公式为:g = (ln(Yt) - ln(Yt-1)) / (t - t-1),其中g为经济增长率,Yt为当前期的产出,Yt-1为上期的产出,t 为时间。
对数ln计算公式
对数ln计算公式一、自然对数ln的定义。
如果a = e(e≈2.71828),那么y = log_ex就写成y=ln x,其含义是e^y=x。
二、对数ln的基本计算公式。
1. 对数恒等式。
- e^ln x=x(x > 0),因为ln x表示的是e的多少次幂等于x,那么e的ln x次幂自然就等于x。
- ln(e^x) = x,根据对数的定义,e的x次幂的自然对数就是x。
2. 对数运算法则。
- 乘积法则:ln(ab)=ln a+ln b(a > 0,b > 0)。
- 证明:设ln a = m,ln b=n,则a = e^m,b = e^n。
那么ab=e^m× e^n=e^m + n,所以ln(ab)=m + n=ln a+ln b。
- 商法则:ln(a)/(b)=ln a-ln b(a > 0,b > 0)。
- 证明:设ln a = m,ln b=n,则a = e^m,b = e^n。
那么(a)/(b)=frac{e^m}{e^n}=e^m - n,所以ln(a)/(b)=m - n=ln a-ln b。
- 幂法则:ln(a^n)=nln a(a > 0,n∈ R)。
- 证明:设ln a = m,则a = e^m。
那么a^n=(e^m)^n=e^mn,所以ln(a^n)=mn=nln a。
3. 换底公式。
- ln a=frac{log_ca}{log_ce}(a > 0,c > 0,c≠1),在实际计算中,有时会将自然对数转换为以其他底数的对数来计算。
特别地,当c = 10时,ln a=(lg a)/(lg e)(其中lg 表示以10为底的对数)。
对数计算公式
性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N (a>0 ,a≠1)3运算法则①loga(MN)=l ogaM+l ogaN;②loga(M/N)=l ogaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。
定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=l og(a)(M)+l og(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);4、log(a)(M^n)=nl og(a)(M)5、log(a^n)M=1/nl og(a)(M)推导:1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)3、与(2)类似处理 M/N=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M÷N) = log(a)(M) - log(a)(N)4、与(2)类似处理M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)换底公式的推导:设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]4换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)………………………………①对①取以a为底的对数,有:log(a)(b)=m……………………………..②对①取以c为底的对数,有:log(c)(b)=mn……………………………③③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)注:log(a)(b)表示以a为底x的对数。
对数函数运算法则公式
对数函数运算法则公式一、什么是对数函数对数函数,又称为指数函数,是一类常见的数学函数,它可以用来表达不同系数的多次方之间的关系。
它的基本形式为y=loga x (a>0, a≠1),其中 a 为底数,x 为真数,y 为对数。
二、对数函数运算法则1. 同底数相加/减法则:若 y1=loga x,y2=loga m,则有:y1+y2=loga x+loga m =loga (xm)y1-y2=loga x-loga m =loga (x/m)2. 同底数乘/除法则:若 y1=loga x,y2=loga m,则有:y1*y2=loga x*loga m =loga (x^m)y1/y2=loga x/loga m =loga (x^(1/m))3. 相乘/除法则:若 y1=loga x,y2=logb m,则有:y1*y2=loga x*logb m =loga (x^b)y1/y2=loga x/logb m =loga (x^(1/b))4. 幂函数的对数运算法则:若 y=ax,则有:loga y=x*loga a5. 指数函数的对数运算法则:若 y=a^x,则有:loga y=x*loga a6. 反函数的对数运算法则:若 y=f-1(x),则有:loga y=loga f-1(x)=loga x7. 同余式的对数运算法则:若y=a^x ≡ b^x mod c,则有:loga y=x*loga a ≡ x*loga b mod c三、总结以上就是关于“对数函数运算法则公式” 的详细介绍,它是一类常见的数学函数,可以用来表达不同系数的多次方之间的关系,它有 7 种运算法则,即同底数相加/减法、同底数乘/除法、相乘/除法、幂函数的对数运算法则、指数函数的对数运算法则、反函数的对数运算法则以及同余式的对数运算法则。
对数的运算法则及公式是什么
对数的运算法则及公式是什么对数是数学中比较重要的知识点之一,那么对数都有哪些公式呢?下面是由编辑为大家整理的“对数的运算法则及公式是什么”,仅供参考,欢迎大家阅读本文。
运算法则loga(MN)=logaM+logaN;loga(M/N)=logaM-logaN;logaNn=nlogaN;(n,M,N∈R);如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。
定义:若an=b(a>0,a≠1)则n=logab。
换底公式logMN=logaM/logaN;换底公式导出:logMN=-logNM。
推导公式log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);loga(b)*logb(a)=1;loge(x)=ln(x);lg(x)=log10(x)。
拓展阅读:学好数学的几条建议1、要有学习数学的兴趣。
“兴趣是最好的老师”。
做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。
但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。
有的同学老想做难题,看到别人上数奥班,自己也要去。
如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。
建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。
2、要有端正的学习态度。
首先,要明确学习是为了自己,而不是为了老师和父母。
因此,上课要专心、积极思考并勇于发言。
其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。
3、要有“持之以恒”的精神。
要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。
即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。
对数计算公式
性质①loga(1)=0 ;②loga (a)=1 ;③负数与零无对数.2对数恒等式a A logaN=N (a>0 , a^ 1)3运算法则①loga(MN)=l ogaM+logaN;②loga(M/N)=l ogaM —logaN;③对logaM中M的n次方有=nlogaM ;如果a=eAm则m为数a的自然对数,即lna=m,e=2.718281828… 为自然对数的底。
定义:若aAn=b(a>0且a^ 1)贝S n=log(a)(b)基本性质:1、aA(log(a)(b))=b2、log(a)(MN)=l og(a)(M)+l og(a)(N);3、log(a)(M 宁N)=j(a)(M)-log(a)(N);4、log(a)(MAn)二nl og(a)(M)5、log(aAn)M=1/nl og(a)(M)推导:1、因为n=log(a)(b),代入则aAn=b,即aA(log(a)(b))=b 。
2、MN=M N由基本性质1(换掉M和N)aA[log(a)(MN)] = a A[log(a)(M)] x a A[log(a)(N)]由指数的性质aA[log(a)(MN)] = a“{[log (a) (M)] + [log( a)(N)]}又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)3、与(2)类似处理M/N二叶N由基本性质1(换掉M和N)aA[log(a)(M - N)] = aA[log (a) (M)] - aA[log(a)(N)]由指数的性质aA[log(a)(M 宁N)] = a“{[log (a)(M)] - [log (a)(N)]}又因为指数函数是单调函数,所以log(a)(M - N) = log(a)(M) - log(a)(N)4、与(2)类似处理MAn二MAn 由基本性质1(换掉M) aA[log(a)(M A n)] {aA[log (a) (M/n由指数的性质aA[log(a)(MA n)] = aA{[log (a) (M)]* n}又因为指数函数是单调函数,所以log(a)(MA n)二 nlog(a) (M)基本性质4推广log(aA n)(bAm)二m/n*[log (a) (b)]推导如下:由换底公式(换底公式见下面)[Inx是log(e)(x), e 称作自然对数的底]log(a"n)(b^m)=ln(Zm) —In(a A n)换底公式的推导:设eAx=bAm,eAy=aAn 则Iog(aAn)(bAm)=log(eAy)(eAx)二x/y x=ln(bAm),y=ln(aAn) 得:Iog(aA n)(bAm)=l n( bAm) —In(aAn)由基本性质 4 可得Iog(aA n)(bAm) = [m x In (b)] —[n x In (a)]= (m宁n) x {[In(b)]宁[ln(a)]}再由换底公式Iog(aAn)(bAm)=m - n x [log(a)(b)]4换底公式设b=aAm , a=cA n , 贝Ub=(cAnFm二cA(mn) ...................................... ①对①取以 a 为底的对数,有:log(a)(b)=m ............................................. ②对①取以 c 为底的对数,有:log(c)(b)=mn ....................................... ③③ / ②,得:log(c)(b)/log(a)(b)=n=log(c)(a) 二log(a) (b)=log(c)(b)/log(c)(a)注:log(a)(b)表示以a为底x的对数。
对数四则运算公式
对数四则运算公式
1.对数加法:logaM+logaN=loga(MN)。
即同底数下对数相加,等于对数所代表的数的乘积的对数。
2. 对数减法:logaM - logaN = loga(M/N)。
即同底数下对数相减,等于对数所代表的数的商的对数。
3. 对数乘法:logaM × logaN = loga(MN)。
即不同底数下对数相乘,等于对数所代表的数的乘积的对数,底数取其中任意一个。
4. 对数除法:logaM / logaN = loga(M/N)。
即不同底数下对数相除,等于对数所代表的数的商的对数,底数取其中任意一个。
对数四则运算可以简化计算,也能够将对数运算转化为数字运算,使得对数运算变得更加方便和高效。
- 1 -。
ln对数的计算公式
ln对数的计算公式
自然对数是以常数e为底数的对数,记作lnN(N>0)。
对数ln公式:ln(mn)=lnm+lnn;ln(m/n)=lnm-lnn;ln(m^n)=nlnm;ln1=0;lne=1。
自然对数是以常数e为底数的对数,记作lnN(N>0)。
在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。
数学中也常见以logx表示自然对数。
常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
当自然对数lnN中真数为连续自变量时,称为对数函数,记作y=lnx(x为自变量,y为因变量)。
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。
其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。
它实际上就是指数函数的反函数,可表示为x=ay。
因此指数函数里对于a的规定,同样适于对数函数。
ln对数基本公式
自然对数是以e 为底的对数,通常表示为ln(x)。
对数是一种数学运算,它的目的是找出一个数的指数。
对于自然对数,我们有以下基本公式:
ln(a × b) = ln(a) + ln(b)
ln(a / b) = ln(a) - ln(b)
ln(a^n) = n × ln(a)
这些公式都是基于对数的定义和性质。
例如,第三个公式是因为a^n 可以写成e^(n × ln(a))。
记住这些公式,你就可以更有效地进行对数计算。
总结:
1. ln(a × b) = ln(a) + ln(b):这是因为当两个数相乘时,它们的对数也相加。
2. ln(a / b) = ln(a) - ln(b):这是因为当两个数相除时,它们的对数的差等于第一个数的对数减去第二个数的对数。
3. ln(a^n) = n × ln(a):这是因为任何数的指数等于该数的对数乘以指数的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质
①loga(1)=0;
②loga(a)=1;
③负数与零无对数.
2对数恒等式
a^logaN=N (a>0 ,a≠1)
3运算法则
①loga(MN)=l ogaM+l ogaN;
②loga(M/N)=l ogaM-logaN;
③对logaM中M的n次方有=nlogaM;
如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数
的底。
定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(MN)=l og(a)(M)+l og(a)(N);
3、log(a)(M÷N)=log(a)(M)-log(a)(N);
4、log(a)(M^n)=nl og(a)(M)
5、log(a^n)M=1/nl og(a)(M)
推导:
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3、与(2)类似处理 M/N=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
4、与(2)类似处理
M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]
4换底公式
设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)………………………………①
对①取以a为底的对数,有:log(a)(b)=m……………………………..②
对①取以c为底的对数,有:log(c)(b)=mn……………………………③
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴
log(a)(b)=log(c)(b)/log(c)(a)
注:log(a)(b)表示以a为底x的对数。
换底公式拓展:
以e为底数和以a为底数的公式代换:
logae=1/(lna)
5推导公式
log(1/a)(1/b)=loga(b)
loga(b)*logb(a)=1
6求导数
(xlogax)'=logax+lna
其中,logax中的a为底数,x为真数;
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x。