中考数学几何圆专题训练

合集下载

中考数学复习专题24:圆的有关计算(含中考真题解析)

中考数学复习专题24:圆的有关计算(含中考真题解析)

专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。

中考数学几何综合圆的综合大题压轴题

中考数学几何综合圆的综合大题压轴题

圆的综合大题1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP.(1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由;(2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);(2)与是否相等?请你说明理由;(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.7.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.(1)求证:BC是⊙O的切线;(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.8.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.9.已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,P A是⊙O 的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.(1)求证:P A∥BC;(2)求⊙O的半径及CD的长.10.如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O 的切线与AC的延长线交于点E.(1)求证:BC∥DE;(2)若AB=3,BD=2,求CE的长;(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).11.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长.12.已知:以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D作⊙O的切线交BC边于点E.(1)如图,求证:EB=EC=ED;(2)试问在线段DC上是否存在点F,满足BC2=4DF•DC?若存在,作出点F,并予以证明;若不存在,请说明理由.13.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC 的面积;(3)若EC=4,BD=,求⊙O的半径OC的长.14.已知:如图,P A、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,(1)若∠AOP=60°,求∠OPB的度数;(2)过O作OC、OD分别交AP、BP于C、D两点,①若∠COP=∠DOP,求证:AC=BD;②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.15.如图1,已知正方形ABCD的边长为,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线);(2)求四边形CDPF的周长;(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF•FG=CF •OF?如果存在,试求此时AP的长;如果不存在,请说明理由.16.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O 直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.17.如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.(1)求证:DA=DC;(2)当DF:EF=1:8,且DF=时,求AB•AC的值;(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF 与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O 的半径,AB的延长线交⊙O于C,过C作⊙O的切线交EF于D.试猜想DA =DC是否仍然成立?并证明你的结论.18.如图,圆O是以AB为直径的△ABC的外接圆,D是劣弧的中点,连AD 并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.19.如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.(1)求证:CB平分∠PCM;(2)若∠CBA=60°,求证:△ADM为等边三角形;(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2﹣(2m+1)x+4m=0的两根,求m的值.20.已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD,求sin∠CAB的值;②若=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).21.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP 的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)求证:OB2=PB•PQ+OP2;(3)当RA≤OA时,试确定∠B的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC 的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.23.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.24.如图,CD为⊙O的直径,直线AB与⊙O相切于点D,过C作CA⊥CB,分别交直线AB于点A和B,CA交⊙O于点E,连接DE,且AE=CD.(1)如图1,求证:△AED≌△CDB;(2)如图2,连接BE分别交CD和⊙O于点F,G,连接CG,DG.i)试探究线段DG与BF之间满足的等量关系,并说明理由.ii)若DG=,求⊙O的周长(结果保留π)25.在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:①∠PEF的大小是否发生变化?请说明理由;②求从开始到停止,线段EF的中点所经过的路线长.26.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是劣弧AC上的一点,连结AD并延长与BC的延长线交于点E,AC、BD相交于点M.(1)求证:BC•CE=AC•MC;(2)若点D是劣弧AC的中点,tan∠ACD=,MD•BD=10,求⊙O的半径.(3)若CD∥AB,过点A作AF∥BC,交CD的延长线于点F,求﹣的值.27.如图,⊙O是△ABC的外接圆,AB为直径,过点O作OM∥BC,交AC于点M.(1)求∠AMO;(2)延长OM交⊙O于点E,过E作⊙O的切线,交BC延长线于点F,连接FM,并延长FM交AB于点G.①试判断四边形CFEM的形状,并说明理由;②若AG=2,CM=3,求四边形CFEM的面积.28.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作DP∥BA交CA的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.29.如图,P A为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.30.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB 相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.31.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B 重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)32.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B 作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S=,求DE的长;△AOC(3)连接EF,求证:EF是⊙O的切线.33.⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC 是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.34.如图1,点O和矩形CDEF的边CD都在直线l上,以点O为圆心,以24为半径作半圆,分别交直线l于A,B两点.已知:CD=18,CF=24,矩形自右向左在直线l上平移,当点D到达点A时,矩形停止运动.在平移过程中,设矩形对角线DF与半圆的交点为P(点P为半圆上远离点B的交点).(1)如图2,若FD与半圆相切,求OD的值;(2)如图3,当DF与半圆有两个交点时,求线段PD的取值范围;(3)若线段PD的长为20,直接写出此时OD的值.35.图1和图2中,优弧纸片所在⊙O的半径为2,AB=2,点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.发现:(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=;(2)当BA′与⊙O相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁,得到半圆形纸片,点P(不与点M,N重合)为半圆上一点,将圆形沿NP折叠,分别得到点M,O的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O相切,当α=°时,点O′落在上.(3)当线段NO′与半圆O只有一个公共点N时,直接写出α的取值范围.36.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C 作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.37.如图,点B,C为⊙O上两定点,点A为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=CD,试判断四边形EBCA的形状,并说明理由.38.(1)特例探究.如图(1),在等边三角形ABC中,BD是∠ABC的平分线,AE是BC边上的高线,BD和AE相交于点F.请你探究=是否成立,请说明理由;请你探究=是否成立,并说明理由.(2)归纳证明.如图(2),若△ABC为任意三角形,BD是三角形的一条内角平分线,请问=一定成立吗?并证明你的判断.(3)拓展应用.如图(3),BC是△ABC外接圆⊙O的直径,BD是∠ABC的平分线,交⊙O 于点E,过点E作AB的垂线,交BA的延长线于点F,连接OF,交BD于点G,连接CG,其中cos∠ACB=,请直接写出的值;若△BGF的面积为S,请求出△COG的面积(用含S的代数式表示).39.已知:AB是⊙O直径,C是⊙O外一点,连接BC交⊙O于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,过点C作CF⊥AB于点F,交⊙O于点E,延长CF交⊙O于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若OK=1,AC=CG,求线段AL的长.40.如图,以△ABC的AB边为直径作⊙O交BC于点D,过点D作⊙O切线交AC于点E,AB=AC.(1)如图1,求证:DE⊥AC;(2)如图2,设CA的延长线交⊙O于点F,点G在上,=,连接BG,求证:AF=BG;(3)在(2)的条件下,如图3,点M为BG中点,MD的延长线交CE于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,求DE长.41.已知AB,CD都是⊙O的直径,连接DB,过点C的切线交DB的延长线于点E.(1)如图1,求证:∠AOD+2∠E=180°;(2)如图2,过点A作AF⊥EC交EC的延长线于点F,过点D作DG⊥AB,垂足为点G,求证:DG=CF;(3)如图3,在(2)的条件下,当=时,在⊙O外取一点H,连接CH、DH分别交⊙O于点M、N,且∠HDE=∠HCE,点P在HD的延长线上,连接PO并延长交CM于点Q,若PD=11,DN=14,MQ=OB,求线段HM的长.42.已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:=;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.43.已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM 的长.44.已知:⊙O是△ABC的外接圆,点D在上,连接AD,BD,AD的延长线交BC的延长线于点E,点F在BD上,连接EF,∠ACB=2∠DEF.(1)如图1,求证:∠DEF=∠DFE;(2)如图2,延长EF交AB于点G,若AE=BF,求证:AG=BG;=60,(3)如图3,在(2)的条件下,连接OG,若cos∠AGE=,S△BEF AD=BD,求线段OG的长.45.已知AB为⊙O的直径,CD为⊙O的弦,CD∥AB,过点B的切线与射线AD交于点M,连接AC、BD.(1)如图l,求证:AC=BD;(2)如图2,延长AC、BD交于点F,作直径DE,连接AE、CE,CE与AB 交于点N,求证:∠AFB=2∠AEN;(3)如图3,在(2)的条件下,过点M作MQ⊥AF于点Q,若MQ:QC=3:2,NE=2,求QF的长.46.如图1,△ABC内接于圆O,点D为弧BC上一点,连接AD交BC于点E,∠ACD﹣∠B=2∠BAD.(1)求证:AE=AC;(2)如图2,连接CO并延长交圆O于点F,连接AF,∠DAF=2∠BCD,求证:AF=AE;(3)如图3,在(2)条件下,过点F作FH∥BC交AB于点H,连接CH,过点A作AK∥BF交CH于点K,当AK=EC,AB=3时,求线段AD的长度.47.如图1,⊙O中,AB为直径,弧BC=弧AC,点P在⊙O上,连接PC交AB于点E,过C作PC的垂线交⊙O于点Q(1)求证:弧AP=弧BQ;(2)如图2,点F在弧AC上,∠FEA=∠QEB=30°,连接PF,求证:PF=AO;(3)在(2)的条件下,如图3,过E作EG⊥FP于点G,若EG=6,求OE 的长.48.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC 相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO =,KG=2,求QH.49.如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O 切AC于点E,交BC于点F,连接DF,OP⊥AB交⊙O于点P,连接ED、EP,过点A作DQ⊥PE于点Q,(1)求证:DF=2CE;(2)求证:∠A=2∠P;(3)在(2)的条件下:若BC=6,sin B=,连接OQ,求线段OQ的长.50.已知:AD、DE是⊙O的弦,DB平分∠ADE交⊙O于B,(1)求证:=;(2)连接AB、AE、DB,若DE是⊙O的直径,AE、BD交于C,CD=2AB,求∠E的度数;(3)在(2)的条件下,K是弧AE上一点,连接OK,交AE于点G,F是AD上一点,连接AK、KE,FG,若∠AFG=4∠KAE,FG=5,DE=6,求KG长.。

2022年中考数学真题分类汇编:圆类几何证明题(含答案)

2022年中考数学真题分类汇编:圆类几何证明题(含答案)

2022年中考数学真题汇编圆类几何证明题1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.2.(1)求证:直线PE是⊙O的切线;3.(2)若⊙O的半径为6,∠P=30°,求CE的长.4.(2022·广西壮族自治区贵港市)如图,在△ABC中,∠ACB=90°,点D是AB边的中∠BDC.点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=125.(1)求证:AF是⊙O的切线;6.(2)若BC=6,sinB=4,求⊙O的半径及OD的长.57.(2022·山东省烟台市)如图,⊙O是△ABC的外接圆,∠ABC=45°.8.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);9.(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.10.(2022·山东省聊城市)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.11.(1)连接AF,求证:AF是⊙O的切线;12.(2)若FC=10,AC=6,求FD的长.13.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.14.(1)求证:∠D=∠EBC;15.(2)若CD=2BC,AE=3,求⊙O的半径.16.(2022·湖南省张家界市)如图,四边形ABCD内接于圆O,AB是直径,点C是BD⏜的中点,延长AD交BC的延长线于点E.17.(1)求证:CE=CD;18.(2)若AB=3,BC=√3,求AD的长.19.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.20.(1)求证:CE与⊙O相切;21.(2)若AD=4,∠D=60°,求线段AB,BC的长.22.(2022·贵州省铜仁市)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.23.(1)求证:AB=CB;24.(2)若AB=18,sinA=1,求EF的长.325.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.26.(1)求证:BF与⊙O相切;27.(2)若AP=OP,cosA=4,AP=4,求BF的长.528.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.29.(1)求证:CD是⊙O的切线.30.(2)若tan∠BED=2,AC=9,求⊙O的半径.331.32.(2022·内蒙古自治区呼和浩特市)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.33.(1)求证:BD=CD;34.(2)若tanC=1,BD=4,求AE.235.(2022·北京市)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.36.(1)求证:∠BOD=2∠A;37.(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.38.(2022·广西壮族自治区百色市)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.39.(1)求证:MC是⊙O的切线;40.(2)若AB=BM=4,求tan∠MAC的值.41.(2022·山东省临沂市)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.42.(1)求证:∠D=∠E;43.(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.44.(2022·辽宁省)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.45.(1)求证:BC与⊙O相切;46.(2)若sin∠BAC=3,CE=6,求OF的长.547.(2022·湖北省恩施土家族苗族自治州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.48.(1)求证:∠ADE=∠PAE.49.(2)若∠ADE=30°,求证:AE=PE.50.(3)若PE=4,CD=6,求CE的长.51.(2022·内蒙古自治区赤峰市)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.52.(1)求证:AD是⊙O的切线;53.(2)若CD=6,OF=4,求cos∠DAC的值.54.(2022·湖北省潜江市)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.55.(1)求证:FB2=FE⋅FG;56.(2)若AB=6,求FB和EG的长.57.(2022·贵州省毕节市)如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.58.(1)求证:BF=BD;59.(2)若CF=1,tan∠EDB=2,求⊙O的直径.60.(2022·贵州省黔东南苗族侗族自治州)(1)请在图1中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);61.(2)如图2,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE⏜的中点,过点B的切线与AC的延长线交于点D.62.①求证:BD⊥AD;63.②若AC=6,tan∠ABC=3,求⊙O的半径.464.65.(2022·山东省威海市)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.66.(1)若AB=AC,求证:∠ADB=∠ADE;67.(2)若BC=3,⊙O的半径为2,求sin∠BAC.68.(2022·江苏省无锡市)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.69.(1)求证:△CED∽△BAD;70.(2)当DC=2AD时,求CE的长.71.(2022·陕西省)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.72.(1)求证:∠CAB=∠APB;73.(2)若⊙O的半径r=5,AC=8,求线段PD的长.74.(2022·新建生产建设兵团)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC=CD,连接AD,延长DB交过点C的切线于点E.75.(1)求证:∠ABC=∠CAD;76.(2)求证:BE⊥CE;77.(3)若AC=4,BC=3,求DB的长.78.(2022·江苏省扬州市)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.79.(1)试判断直线BC与⊙O的位置关系,并说明理由;80.(2)若sinA=√5,OA=8,求CB的长.5参考答案1.(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,BC=6,在Rt△CDE中,即得CE的长是3.可得BD=CD=12本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(1)作OH⊥FA,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD=CD,再通过导角得出AC是∠FAB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sinB=4,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,5利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.本题主要考查了圆的切线的性质和判定,直角三角形的性质,三角函数,相似三角形的判定与性质,勾股定理等知识,熟练掌握切线的判定与性质是解题的关键.3.(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.本题考查作图−复杂作图,三角形的外接圆,切线的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(1)根据SAS证△AOF≌△EOF,得出∠OAF=∠OEF=90°,即可得出结论;(2)根据勾股定理求出AF,证△OEC∽△FAC,设圆O的半径为r,根据线段比例关系列方程求出r,利用勾股定理求出OF,最后根据FD=OF−OD求出即可.本题主要考查切线的判定和性质,熟练掌握切线的判定和性质是解题的关键.5.(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.6.(1)连接AC,通过证明△ACE≌△ACB,利用全等三角形的性质分析推理;(2)通过证明△EDC∽△EBA,利用相似三角形的性质分析计算.本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.7.(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,∠D=60°,即得AB=√3BD=2√3,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=√2AB=√6,又△AOC是等腰直角三角形,OA=OC=2,得AC=2√2,故CF=2√AC2−AF2=√2,从而BC=BF+CF=√6+√2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.8.(1)连接OD,则OD⊥DE,利用BC⊥DE,可得OD//BC,通过证明得出∠A=∠C,结论得证;(2)连接BD,在Rt△ABD中,利用sinA=1求得线段BD的长;在Rt△BDF中,利用3sin∠A=sin∠FDB,解直角三角形可得结论.本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.9.(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,AD,然后利用等腰三角形的进而利用直角三角形三角形斜边上的中线可得BF=EF=12性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.10.(1)连接OD,由圆周角定理得出∠ADB=90°,证出OD⊥CD,由切线的判定可得出结论;(2)证明△BDC∽△DAC,由相似三角形的性质得出CDAC =BCCD=BDDA=23,由比例线段求出CD和BC的长,可求出AB的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(1)连接AD,利用直径所对的圆周角是直角可得∠ADB=90°,然后利用等腰三角形的三线合一性质即可解答;(2)利用(1)的结论可得BD=DC=4,BC=8,然后在Rt△ADC中,利用锐角三角函数的定义求出AD的长,从而利用勾股定理求出AC的长,最后证明△CDA∽△CEB,利用相似三角形的性质求出CE的长,进行计算即可解答.本题考查了圆周角定理,相似三角形的判定与性质,解直角三角形,等腰三角形的性质,熟练掌握圆周角定理,以及解直角三角形是解题的关键.12.(1)连接AD,首先利用垂径定理得BC⏜=BD⏜,知∠CAB=∠BAD,再利用同弧所对的圆心角等于圆周角的一半可得结论;(2)连接OC,首先由点F为AC的中点,可得AD=CD,则∠ADF=∠CDF,再利用圆的性质,可说明∠CDF=∠OCF,∠CAB=∠CDE,从而得出∠OCD+∠DCE=90°,从而证明结论.本题主要考查了圆周角定理,垂径定理,圆的切线的判定等知识,熟练掌握圆周角定理是解题的关键.13.(1)根据垂直定义可得∠D=90°,然后利用等腰三角形和角平分线的性质可证OC//DA,从而利用平行线的性质可得∠OCM=90°,即可解答;(2)先在Rt△OCM中,利用勾股定理求出MC的长,然后证明A字模型相似三角形△MCO ∽△MDA,从而利用相似三角形的性质可求出AD,CD的长,进而在Rt△ACD中,利用锐角三角函数的定义求出tan∠DAC的值,即可解答.本题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,熟练掌握切线的判定与性质,以及相似三角形的判定与性质是解题的关键.14.(1)连接OB,由切线的性质得出∠E+∠BOE=90°,由圆周角定理得出∠D+∠DCB= 90°,证出∠BOE=∠OCB,则可得出结论;(2)求出∠BOG=60°,由三角形面积公式及扇形的面积公式可得出答案.本题考查了切线的性质,直角三角形的性质,等腰三角形的性质,平行线的性质,圆周角定理,扇形的面积公式,熟练掌握切线的性质是解题的关键.15.(1)连接OE,利用平行四边形的性质和圆的性质可得四边形AOEF是平行四边形,则OE//AC,从而得出∠OEB=90°,从而证明结论;(2)过点F作FH⊥OA于点H,根据sin∠CFE=sin∠CAB=35,可得EF的长,由OA=OE,得▱AOEF是菱形,则AF=AO=EF=10,从而得出FH和AH的长,进而求出OF的长.本题主要考查了圆的切线的判定,平行四边形的判定与性质,三角函数的定义,勾股定理等知识,熟练运用相等角的三角函数值相等是解题的关键.16.(1)连接OA,利用切线的性质定理,圆周角定理,同圆的半径相等,等腰三角形的性质和等角的余角相等解答即可;(2)利用(1)的结论,直径所对的圆周角为直角,三角形的外角的性质和等腰三角形的判定定理解答即可;(3)CE=x,则DE=CD+CE=6+x,OA=OE=6+x2,OC=OE−CE=6−x2,OP=OE+PE=14+x2,利用相似三角形的判定与性质得出比例式即可求得结论.本题主要考查了圆的切线的性质,切线长定理,等腰三角形的判定与性质,圆周角定理,垂径定理,相似三角形的判定与性质,连接OA是解决此类问题常添加的辅助线.17.(1)利用等腰三角形的三线合一,平行线的判定与性质和圆的切线的判定定理解答即可;(2)利用全等三角形的判定与性质得到CF=CD=6,利用相似三角形的判定与性质求得线段AC,再利用直角三角形的边角关系定理在Rt△AOC中,求得cos∠OCA,则结论可得.本题主要考查了圆的切线的判定,等腰三角形的性质,平行线的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,相似三角形的判定与性质,勾股定理,直角三角形的边角关系定理,灵活应用等量代换是解题的关键.18.(1)利用相似三角形的判定与性质解答即可;(2)连接OE,利用平行线分线段成比例定理求得FB;利用相交弦定理求EG即可.本题主要考查了正方形的性质,圆周角定理,垂径定理及其推论,相似三角形的判定与性质,平行线的性质,勾股定理,相交弦定理,灵活运用上述定理及性质是解题的关键.19.(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.本题主要考查了圆的切线的性质定理,平行线的判定与性质,等腰三角形的判定与性质.相似三角形的判定与性质,直角三角形的边角关系定理,连接经过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.20.(1)利用尺规作图分别作出AB、AC的垂直平分线交于点O,以O为圆心、OA为半径作圆即可;(2)①连接OB,根据切线的性质得到OB⊥CD,证明OB//AD,根据平行线的性质证明结论;②连接EC,根据圆周角定理得到∠AEC=∠ABC,根据正切的定义求出EC,根据勾股定理求出AE,得到答案.本题考查的是切线的性质、圆周角定理、解直角三角形,掌握圆的切线垂直于经过切点的半径是解题的关键.21.(1)根据圆内接四边形的性质以及等腰三角形的性质即可求证;(2)连接CO并延长交⊙O于点F,连接BF,根据圆周角定理得出∠FBC=90°,∠F=∠BAC,解直角三角形即可得解.此题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质、圆周角定理是解题的关键.22.(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得ECDE =ABAD=62=3,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=√3x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(√3x)2+ (5x)2=42,解方程求出x的值,即可求出EC的长度.本题考查了圆周角定理,等边三角形的性质,相似三角形的判定与性质,熟练掌握圆周角定理,相似三角形的判定与性质,等边三角形的性质,勾股定理,解一元二次方程等知识是解决问题的关键.23.(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.24.(1)利用等腰三角形的性质可得∠CAD=∠ADC,再利用同弧所对的圆周角相等可得∠ABC=∠ADC,即可解答;(2)利用切线的性质可得∠OCE=90°,利用圆内接四边形对角互补以及平角定义可得∠CAD=∠CBE,再利用(1)的结论可得∠OCB=∠CBE,然后可证OC//BE,最后利用平行线的性质可得∠E=90°,即可解答;(3)根据直径所对的圆周角是直角可得∠ACB=90°,从而在Rt△ABC中,利用勾股定理求出BA的长,再根据同弧所对的圆周角相等可得∠CAB=∠CDB,进而可证△ACB∽△DEC,然后利用相似三角形的性质可求出DE的长,最后再利用(2)的结论可证△ACB∽△CEB,利用相似三角形的性质可求出BE的长,进行计算即可解答.本题考查了切线的性质,等腰三角形的性质,相似三角形的判定与性质,三角形的外接圆与外心,圆周角定理,熟练掌握相似三角形的判定与性质,以及圆周角定理是解题的关键.25.(1)连接OB,由等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,结合对顶角的性质得出∠APO=∠CBP,由垂直的性质得出∠A+∠APO=90°,进而得出∠OBA+∠CBP=90°,即可得出直线BC与⊙O相切;(2)由sinA=√5,设OP=√5x,则AP=5x,由勾股定理得出方程(√5x)2+82=(5x)2,5=4,再利用勾股定理得出BC2+82=解方程求出x的值,进而得出OP=√5×4√55(BC+4)2,即可求出CB的长.本题考查了切线的判定,勾股定理,锐角三角函数的定义,熟练掌握等腰三角形的性质,切线的判定与性质,勾股定理,锐角三角函数的定义,一元二次方程的解法是解决问题的关键.。

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(一)1.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于⊙O的密切点.已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(﹣2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O 的密切点,直接写出t的取值范围.2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB 边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O 上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T 与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.3.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tanB=,tanC=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.4.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.5.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.6.如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时,设AD=x.(1)则△FMN的形状是,△ADM的形状是;(2)△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出的取值范围;(3)若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.7.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A 的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.8.如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON =OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.9.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.10.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC 于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案1.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标xM,xN是方程5x2﹣4x﹣10=0的两根,解得xM=,xN=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.2.解:(1)如图1,∵P1(1,0),A(0,﹣5),B(4,3),∴AB==4,P1A==,P1B==3,∴P1不在以AB为直径的圆弧上,故∠AP1B不是AB关于⊙O的内直角,∵P2(0,3),A(0,﹣5),B(4,3),∴P2A=8,AB=4,P2B=4,∴P2A2+P2B2=AB2,∴∠AP2B=90°,∴∠AP2B是AB关于⊙O的内直角,同理可得,P3B2+P3A2=AB2,∴∠AP3B是AB关于⊙O的内直角,故答案为:∠AP2B,∠AP3B;(2)∵∠APB是AB关于⊙O的内直角,∴∠APB=90°,且点P在⊙O的内部,∴满足条件的点P形成的图形为如图2中的半圆H(点A,B均不能取到),过点B作BD⊥y轴于点D,∵A(0,﹣5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x﹣5,∴当直线y=2x+b过直径AB时,b=﹣5,连接OB,作直线OH交半圆于点E,过点E作直线EF∥AB,交y 轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴,∴OH=AH=EH,∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF∥AB,直线AB的解析式为y=2x﹣5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是﹣5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE 关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT =90°,∴点H在以DT为直径的圆上,如图3,当⊙G与MN相切时,GH⊥MN,∵OM=1,ON=2,∴MN==,∵∠GMH=∠OMN,∠GHM=∠NOM,ON=GH=2,∴△GHM≌△NOM(ASA),∴MN=GM=,∴OG=﹣1,∴OT=+1,当T与M重合时,t=1,∴此时t的取值范围是﹣﹣1≤t<1,②若点H与点M重合时,临界位置有两个,一个是当点T与M重合时,t=1,另一个是当TM=4时,t=5,∴此时t的取值范围是1≤t<5,综合以上可得,t的取值范围是﹣﹣1≤t<5.3.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a2=﹣2(舍去),∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,解得a1=2,(舍去)∴BD=3+a=3+2=5.∴或5.(3)①如答图4,连接AD,BD,∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.4.(1)证明:∵C是的中点,∴=,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC==6,∵C是的中点,∴OC⊥AD,∴OA2﹣OF2=AF2=AC2﹣CF2,∴52﹣OF2=62﹣(5﹣OF)2,∴OF=1.4,又∵O是AB的中点,∴BD=2OF=2.8.5.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.6.解:(1)如图1,∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,即△FMN是直角三角形,∵∠FDE=60°,∴∠AMD=∠FDE﹣∠A=30°,∴∠AMD=∠A,∴DM=DA,∴△ADM是等腰三角形;故答案为:直角三角形,等腰三角形;(2)如图2,△ADM是等腰三角形,∴DM=AD=x,FM=4﹣x,又∵∠FED=60°,∠A=30°,∴∠FNM=90°,∴MN=MF•sinF=(4﹣x),FN=,∴y==,=.当0<x≤2时,∴y=S四边形DENM=S△FDE﹣S△FMN=4,当2≤x<4时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴,=.(3)如图3,点M作MG⊥AC于点G,由(2)得DM=x,∵∠MDG=60°,∴MG=,MNF=90°∴MN⊥FC要使以点M为圆心,MN长为半径的圆与边AC、EF相切,则有MG=MN,∴,解得:x=2,∴圆的半径MN=.7.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.8.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴ON﹣OM=OC.9.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.10.解:(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,∴AC=AB•tanB=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,∴S△EAF=AE•EF=AE×AE=AE2,当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,∴AE=AB•sinB=2sin60°=2×=,S△EAF=AE2=×3=,∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.。

2024年中考数学常见几何模型(全国通用)圆中的重要模型之定角定高模型、米勒最大角模型(原卷版)

2024年中考数学常见几何模型(全国通用)圆中的重要模型之定角定高模型、米勒最大角模型(原卷版)

专题35圆中的重要模型之定角定高模型、米勒最大角模型圆在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就圆形中的重要模型(米勒最大视角(张角)模型、定角定高(探照灯)模型)进行梳理及对应试题分析,方便掌握。

近几年一些中考几何问题涉及了“最大视角”与“定角定高”模型,问题往往以动点为背景,与最值相结合,综合性较强,解析难度较大,学生难以找到问题的切入点,不能合理构造辅助圆来求解。

实际上,这样的问题中隐含了几何的“最大视角”与“定角定高”模型,需要对其中的动点轨迹加以剖析,借助圆的特性来探究最值情形。

而轨迹问题是近些年中考压轴题的热点和难点,既可以与最值结合考查,也可以与轨迹长结合考查,综合性较强、难度较大。

模型1.米勒最大张角(视角)模型【模型解读】已知点A ,B 是∠MON 的边ON 上的两个定点,点C 是边OM 上的动点,则当C 在何处时,∠ACB 最大?对米勒问题在初中最值的考察过程中,也成为最大张角或最大视角问题。

米勒定理:已知点AB 是∠MON 的边ON 上的两个定点,点C 是边OM 上的一动点,则当且仅当三角形ABC 的外圆与边OM 相切于点C 时,∠ACB 最大。

【模型证明】如图1,设C’是边OM 上不同于点C 的任意一点,连结A ,B ,因为∠AC ’B 是圆外角,∠ACB 是圆周角,易证∠AC ’B 小于∠ACB ,故∠ACB 最大。

在三角形AC’D 中,’’=+ADB AC D DAC’ADB AC D 又=ACB ADB ∵’ACB AC D【解题关键】常常以解析几何、平面几何和实际应用为背景进行考查。

若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。

否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。

A. 2,0B.例3.(2023·江苏南京·九年级统考期中)如图,在矩形是BC上一个动点,若∠DPM(1)如图,O 的半径为1,①已知点(1,1)A ,直接写出点已知直线2y ,直接写出直线2y 关于O 的“视角”;合条件的B 点坐标;(2)C 的半径为1,①点C 的坐标为若直线关于C 的“视角”为60 ,求k 的值;②圆心C 在模型2.定角定高模型(探照灯模型)定角定高模型:如图,直线BC外一点A,A到直线BC距离为定值(定高),∠BAC为定角,则AD有最小值,即△ABC的面积有最小值。

中考数学几何模型专题09阿氏圆问题(学生版) 知识点+例题

中考数学几何模型专题09阿氏圆问题(学生版)    知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题09阿氏圆问题A 、B ,则所有符合=k (k >0且k ≠1)的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.模型解读:如图1所示,⊙O 的半径为 r ,点 A 、B 都在⊙O 外,P 为⊙O 上的动点, 已知 r =k ·OB .连接 P A 、PB ,则当“P A +k ·PB ”的值最小时,P 点的位置如何确定?1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP 、OB ; 2:计算连接线段OP 、OB 长度;3:计算两线段长度的比值OP OB =k ;4:在OB 上截取一点C ,使得OC OP =OP OB 构建母子型相似:5:连接AC ,与圆0交点为P ,即AC 线段长为P A +KPB 的最小值.本题的关键在于如何确定“k ·PB ”的大小,(如图 2)在线段 OB 上截取 OC 使 OC =k ·r ,则可说明⊙BPO 与⊙PCO 相似,即 k ·PB =PC .⊙本题求“P A +k ·PB ”的最小值转化为求“P A +PC ”的最小值,即 A 、P 、C 三点共线时最小(如图 3),时AC 线段长即所求最小值.1,在RT ⊙ABC 中,⊙ACB =90°,CB =4,CA =6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP ,求:BP,⊙AP+12⊙2AP+BP,AP+BP,⊙13⊙AP+3BP的最小值.【例2】(2022·广东惠州·一模)如图1,抛物线y=ax2+bx−4与x轴交于A、B两点,与y.轴交于点C,其中点A的坐标为(−1,0),抛物线的对称轴是直线x=32(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点QBQ+FQ的最小值.为⊙C上的一个动点,求√24【例3】(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【例4】如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E也在格点上.(I)的值为;(Ⅱ)是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+E'B 的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明).一.填空题(共13小题)1.(2022•南召县开学)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.2.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则P A+PB 的最小值为.3.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E 分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+ PB的最小值为.。

中考数学《圆(一)》专题练习含答案解析

中考数学《圆(一)》专题练习含答案解析

圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。

2020届中考数学 几何专题:与圆有关的性质(含答案)

2020届中考数学 几何专题:与圆有关的性质(含答案)

2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

中考数学真题分类——圆 试题及答案详解

中考数学真题分类——圆   试题及答案详解

中考数学真题分类——圆一.垂径定理(共1小题)1.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2√6B.2√10C.2√11D.4√3二.垂径定理的应用(共2小题)2.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.3.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.三.圆周角定理(共7小题)4.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D̂=CD̂,若∠AOB=40°,则圆周角∠BPC的度数5.如图,AD是⊙O的直径,AB是()A.40°B.50°C.60°D.70°6.如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°7.如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°9.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.10.如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.四.三角形的外接圆与外心(共1小题)11.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;̂的长(结果保留π).(2)若∠AEB=125°,求BD五.切线的性质(共7小题)12.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°13.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.814.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC 相切于点D,BD平分∠ABC,AD=√3OD,AB=12,CD的长是()A.2√3B.2 C.3√3D.4√315.如图,等边△ABC的边长为2,⊙A的半径为1,D是BC上的动点,DE与⊙A 相切于E,DE的最小值是()A.1 B.√2C.√3D.216.如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC 于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.17.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.18.如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.六.切线的判定与性质(共3小题)19.如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E ̂的中点,EF∥BC,交OC的延长线于点F.是BD(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.20.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.七.切线长定理(共1小题)22.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.八.正多边形和圆(共4小题)23.如图,在正六边形ABCDEF中,AC=2√3,则它的边长是()A.1 B.√2C.√3D.224.如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.25.在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.26.如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2=.九.扇形面积的计算(共4小题)27.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.π+√3B.π−√3C.2π−√3D.2π−2√328.如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.29.如图,把腰长为8的等腰直角三角板OAB的一直角边OA放在直线l上,按顺时针方向在l上转动两次,使得它的斜边转到l上,则直角边OA两次转动所扫过的面积为.30.如图,在Rt △ABC 中,∠ACB =90°,AB =4,BC =2,将△ABC 绕点B 顺时针方向旋转到△A ′BC ′的位置,此时点A ′恰好在CB 的延长线上,则图中阴影部分的面积为 (结果保留π).十.圆锥的计算(共3小题)31.已知圆锥的底面半径是1,高是√15,则该圆锥的侧面展开图的圆心角是 度.32.如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为 2√3,若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 .33.如图,圆锥侧面展开得到扇形,此扇形半径CA =6,圆心角∠ACB =120°,则此圆锥高OC 的长度是 .十一.圆的综合题(共4小题)34.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB =45°,点O 为斜边AB 的中点,连接CD 交AB 于点E .(1)求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上;(2)求证:CD 平分∠ACB ;(3)过点D 作DF ∥BC 交AB 于点F ,求证:BO 2+OF 2=EF •BF .35.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=12,求AEAP的值.36.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC;(3)求tan∠ACD的值.37.如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且AĈ=CF̂,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.参考答案与试题解析一.垂径定理(共1小题)1.【解答】解:过点O 作OF ⊥CD 于点F ,OG ⊥AB 于G ,连接OB 、OD 、OE ,如图所示:则DF =CF ,AG =BG =12AB =3,∴EG =AG ﹣AE =2,在Rt △BOG 中,OG =√OB 2−BG 2=√13−9=2,∴EG =OG ,∴△EOG 是等腰直角三角形,∴∠OEG =45°,OE =√2OG =2√2,∵∠DEB =75°,∴∠OEF =30°,∴OF =12OE =√2,在Rt △ODF 中,DF =√OD 2−OF 2=√13−2=√11,∴CD =2DF =2√11; 故选:C .二.垂径定理的应用(共2小题)2.【解答】解:设⊙O 的半径为r .在Rt △ADO 中,AD =5寸,OD =r ﹣1,OA =r ,则有r 2=52+(r ﹣1)2,解得r =13寸,∴⊙O 的直径为26寸,故答案为:26.3.【解答】解:如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD =12AB ,由图知,AB =16﹣4=12cm ,CD =2cm ,∴BD =6,设圆的半径为r ,则OD =r ﹣2,OB =r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r =10cm ,故答案为10.三.圆周角定理(共7小题)4.【解答】解:∵∠A 与∠D 都是BC ̂所对的圆周角,∴∠D =∠A .故选:D .5.【解答】解:∵AB̂=CD ̂,∠AOB =40°, ∴∠COD =∠AOB =40°,∵∠AOB +∠BOC +∠COD =180°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°,故选:B .6.【解答】解:如图,连接OC ,∵OA ⊥BC ,∴AĈ=BC ̂, ∴∠AOC =∠AOB =50°,∴∠ADC =12∠AOC =25°,故选:B . 7.【解答】解:∵∠B 与∠C 所对的弧都是AD̂,∴∠C =∠B =24°,故选:D . 8.【解答】解:∵∠A =66°,∴∠COB =132°,∵CO =BO ,∴∠OCB =∠OBC =12(180°﹣132°)=24°,故选:A .9.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.10.【解答】解:∵OA =√2,OB =√2,AB =2,∴OA 2+OB 2=AB 2,OA =OB ,∴△AOB 是等腰直角三角形,∠AOB =90°,∴∠OBA =45°, ∵∠BAD =18°,∴∠BOD =36°,∴∠ACO =∠OBA +∠BOD =45°+36°=81°,故答案为:81.四.三角形的外接圆与外心(共1小题)11.【解答】(1)证明:∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∵∠CAD =∠CBD ,∴∠BAD =∠CBD ;(2)解:连接OD ,∵∠AEB =125°,∴∠AEC =55°,∵AB 为⊙O 直径,∴∠ACE =90°,∴∠CAE =35°,∴∠DAB =∠CAE =35°,∴∠BOD =2∠BAD =70°,∴BD̂的长=70⋅π×3180=76π.五.切线的性质(共7小题)12.【解答】解:∵AC 与⊙O 相切于点A , ∴AC ⊥OA ,∴∠OAC =90°, ∵OA =OB ,∴∠OAB =∠OBA . ∵∠O =130°, ∴∠OAB =180°−∠O2=25°,∴∠BAC =∠OAC ﹣∠OAB =90°﹣25°=65°.故选:B . 13.【解答】解:如图,设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP ﹣OF , ∵AC =4,BC =3,∴AB =5 ∵∠OPB =90°, ∴OP ∥AC∵点O 是AB 的三等分点,∴OB =23×5=103,OP AC=OB AB=23,∴OP =83, ∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴OD ∥BC ,∴OD BC=OA AB=13,∴OD =1,∴MN 最小值为OP ﹣OF =83−1=53,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值=103+1=133,∴MN 长的最大值与最小值的和是6. 故选:B . 14.【解答】解:∵⊙O 与AC 相切于点D , ∴AC ⊥OD ,∴∠ADO =90°, ∵AD =√3OD ,∴tan A =OD AD=√33, ∴∠A =30°,∵BD 平分∠ABC ,∴∠OBD =∠CBD , ∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODB =∠CBD ,∴OD ∥BC ,∴∠C =∠ADO =90°,∴∠ABC =60°,BC =12AB =6,AC =√3BC =6√3, ∴∠CBD =30°, ∴CD =√33BC =√33×6=2√3;故选:A .15.【解答】解:如图,连接AE ,AD ,作AH ⊥BC 于H ,∵DE 与⊙A 相切于E ,∴AE ⊥DE ,∵⊙A 的半径为1,∴DE =√AD 2−AE 2=√AD 2−1, 当D 与H 重合时,AD 最小, ∵等边△ABC 的边长为2,∴BH =CH =1,∴AH =√22−12=√3,∴DE 的最小值为:√(√3)2−12=√2.故选:B . 16.【解答】(1)证明:连接AE ,如图所示: ∵AB 为⊙O 的直径,∴∠ADB =∠AEB =90°, ∴AE ⊥BC ,BD ⊥AC ,∵AB =AC ,∴BE =CE =3,∵EF 是⊙O 的切线,∴OE ⊥EF ,∵OA =OB ,∴OE 是△ABC 的中位线, ∴OE ∥AC ,∴OE ⊥BD ,∴BD ∥EF ,∵BE =CE ,∴CF =DF ,∴EF 是△CDB 的中位线; (2)解:∵∠AEB =90°,∴AE =√AB 2−BE 2=√52−32=4,∵△ABC 的面积=12AC ×BD =12BC ×AE , ∴BD =BC×AE AC=6×45=245,∵EF 是△CDB 的中位线,∴EF =12BD =125.17.【解答】(1)证明:∵AE =DC ,∴AÊ=DC ̂, ∴∠ADE =∠DBC ,在△ADE 和△DBC 中,{∠ADE =∠DBC∠E =∠BCDAE =DC,∴△ADE ≌△DBC (AAS ), ∴DE =BC ;(2)解:连接CO 并延长交AB 于G ,作OH ⊥AB 于H ,如图所示: 则∠OHG =∠OHB =90°, ∵CF 与⊙O 相切于点C , ∴∠FCG =90°,∵∠F =45°,∴△CFG 、△OGH 是等腰直角三角形, ∴CF =CG ,OG =√2OH ,∵AB =BD =DA ,∴△ABD 是等边三角形,∴∠ABD =60°,∴∠OBH =30°,∴OH =12OB =1,∴OG =√2,∴CF =CG =OC +OG =2+√2. 18.【解答】解:(1)∵AF 与⊙O 相切于点A ,∴AF ⊥OA , ∵∠F =30°, ∴∠AOF =60°,∵OA =OD ,∠AOF =∠ADB +∠OAF ,∴∠ADB =∠OAF =30°. (2)∵∠ACB =∠ADB =30°,∠BAC =120°, ∴∠ABC =180°﹣120°﹣30°=30°, ∴∠ABC =∠ACB , ∴AB =AC , ∴AB̂=AC ̂,∴OA ⊥BC , ∴BE =CE =12BC =4,∵∠AOB =60°,OA =OB ,∴△AOB 是等边三角形, ∴AB =OB ,∵∠OBE =30°,∴OE =12OB ,BE =√3OE =4, ∴OE =4√33,∴AC =AB =OB =2OE =8√33.六.切线的判定与性质(共3小题) 19.【解答】证明:(1)连接OE ,交BD 于H ,∵点E 是BD̂的中点,OE 是半径, ∴OE ⊥BD ,BH =DH , ∵EF ∥BC , ∴OE ⊥EF ,又∵OE 是半径,∴EF 是⊙O 的切线;(2)∵AB 是⊙O 的直径,AB =6,OC ⊥AB , ∴OB =3,∴BC =√OB 2+OC 2=√9+25=√34, ∵S △OBC =12×OB ×OC =12×BC ×OH ,∴OH =√34=15√3434,∵cos ∠OBC =OBBC=BH OB,∴√34=BH 3,∴BH =9√3434,∴BD =2BH =9√3417, ∵CG ∥OD ,∴OD CG=BD BC,∴3CG=9√3417√34,∴CG =173.20.【解答】(1)证明:连接OF ,如图1所示:∴∠DBC +∠C =90°, ∵OB =OF ,∴∠DBC =∠OFB ,∵EF =EC ,∴∠C =∠EFC , ∴∠OFB +∠EFC =90°,∴∠OFE =180°﹣90°=90°, ∴OF ⊥EF ,∵OF 为⊙O 的半径,∴EF 是⊙O 的切线; (2)解:连接AF ,如图2所示: ∵AB 是⊙O 的直径, ∴∠AFB =90°, ∵D 是OA 的中点,∴OD =DA =12OA =14AB =14×4=1,∴BD =3OD =3,∵CD ⊥AB ,CD =AB =4,∴∠CDB =90°,由勾股定理得:BC =√BD 2+CD 2=√32+42=5, ∵∠AFB =∠CDB =90°,∠FBA =∠DBC ,∴△FBA ∽△DBC ,∴BF BD =ABBC, ∴BF =AB⋅BD BC=4×35=125,∴CF =BC ﹣BF =5−125=135.21.【解答】(1)证明:∵在矩形ABCD 中,∠ABO =∠OCE =90°, ∵OE ⊥OA ,∴∠AOE =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°, ∴∠BAO =∠COE ,∴△ABO ∽△OCE ,∴AB OC =AOOE, ∵OB =OC ,∴ABOB=AO OE,∵∠ABO =∠AOE =90°,∴△ABO ∽△AOE ,∴∠BAO =∠OAE ,过O 作OF ⊥AE 于F ,∴∠ABO =∠AFO =90°,在△ABO 与△AFO 中,{∠BAO =∠FAO∠ABO =∠AFO AO =AO ,∴△ABO ≌△AFO (AAS ), ∴OF =OB ,∴AE 是半圆O 的切线;(2)解:连接PB ,∵以BC 边为直径作半圆O ,∴AB 2=AP •AC =2×6=12,∴AB =2√3, ∴BC =√AC 2−AB 2=2√6,∴BO =OC =√6,∴AO =√AB 2+OB 2=3√2, ∵∠AOE =∠ABO =∠ECO =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°,∴∠BAO =∠COE , ∴△AOB ∽△OEC , ∴AO OE=AB OC,∴3√2OE=√3√6,∴OE =3, ∴AE =√AO 2+EO 2=3√3.七.切线长定理(共1小题) 22.【解答】解:∵PA ,PB 是⊙O 的切线, ∴PA =PB ,PA ⊥OA ,∴∠PAB =∠PBA ,∠OAP =90°,∴∠PBA =∠PAB =90°﹣∠OAB =90°﹣38°=52°, ∴∠P =180°﹣52°﹣52°=76°; 故答案为:76.八.正多边形和圆(共4小题) 23.【解答】解:如图,过点B 作BG ⊥AC 于点G .正六边形ABCDEF 中,每个内角为(6﹣2)×180°÷6=120°, ∴∠ABC =120°,∠BAC =∠BCA =30°,∴AG =12AC =√3,∴GB =1,AB =2,即边长为2.故选:D .24.【解答】解:∵在边长为3的正六边形ABCDEF 中,∠DAC =30°,∠B =∠BCD =120°,AB =BC ,∴∠BAC =∠BCA =30°, ∴∠ACD =90°,∵CD =3,∴AD =2CD =6,∴图中阴影部分的面积=S 四边形ADEF +S 扇形DAD ′﹣S 四边形AF ′E ′D ′, ∵将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,∴S 四边形ADEF =S 四边形AD ′E ′F ′∴图中阴影部分的面积=S 扇形DAD ′=30⋅π×62360=3π,故答案为:3π.25.【解】解:如图所示,连接OB 、OC ,过O 作OE ⊥BC ,设此正方形的边长为a , ∵OE ⊥BC ,∴OE =BE =a2,即a =5√2.故答案为:5√2.26.【解答】解:过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B , ∵六边形ABCDEF 是正六边形, ∴∠A =(6−2)×180°6=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°﹣120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(6+4√3)=3+2√3,FM =BM =√3AM =3√3+6,∴BF =3√3+6+3√3+6=12+6√3, 设△AFB 的内切圆的半径为r ,∵S △AFB =S △AO 1F +S △AO 1B +S △BFO 1,∴12×(12+6√3)×(3+2√3)=12×(6+4√3)×r +12×(6+4√3)×r +12×(12+6√3)×r , 解得:r =3,即O 1M =r =3,∴O 1O 2=2×3+6+4√3=12+4√3, 故答案为:12+4√3.九.扇形面积的计算(共4小题) 27.【解答】解:过A 作AD ⊥BC 于D , ∵△ABC 是等边三角形,∴AB =AC =BC =2,∠BAC =∠ABC =∠ACB =60°, ∵AD ⊥BC ,∴BD =CD =1,AD =√3BD =√3,∴△ABC 的面积为12×BC ×AD =12×2×√3=√3,S 扇形BAC =60π×22360=23π,∴莱洛三角形的面积S =3×23π﹣2×√3=2π﹣2√3,故选:D . 28.【解答】解:∵∠ADO =85°,∠CAB =20°, ∴∠C =∠ADO ﹣∠CAB =65°, ∵OA =OC ,∴∠OAC =∠C =65°, ∴∠AOC =50°,∴阴影部分的扇形OAC 面积=50⋅π×1360=5π36,故答案为:5π36.29.【解答】解:∵△OAB 为腰长为8的等腰直角三角形, ∴OA =OB =8,AB =8√2,∴直角边OA 两次转动所扫过的面积=14π•OA 2+90+45360π(AB 2﹣OB 2)=16π+24π=40π.故答案为:40π. 30.【解答】解:∵△ABC 中,∠ACB =90°,AB =4,BC =2, ∴∠BAC =30°,∠ABC =60°,AC =2√3.∵将△ABC 绕点B 顺时针方向旋转到△A ′BC ′的位置,此时点A ′恰好在CB 的延长线上,∴△ABC ≌△A ′BC ′,∴∠ABA ′=120°=∠CBC ′,∴S 阴影=S 扇形ABA ′+S △ABC ﹣S 扇形CBC ′﹣S △A ′BC ′ =S 扇形ABA ′﹣S 扇形CBC ′ =120π×42360−120π×22360=16π3−4π3=4π.故答案为4π.十.圆锥的计算(共3小题) 31.【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4, 设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=nπ×4180,解得n =90, 即圆锥的侧面展开图的圆心角度数为90°. 故答案为:90. 32.【解答】解:连接AB ,过O 作OM ⊥AB 于M , ∵∠AOB =120°,OA =OB , ∴∠BAO =30°,AM =√3,∴OA =2,∵240π×2180=2πr ,∴r =43,故答案是:4333.【解答】解:设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴l AB̂=120π×6180=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC=√AC2−OA2=4√2,故答案为:4√2.十一.圆的综合题(共4小题)34.【解答】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O 是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴AD̂=BD̂,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴DFBF =EFDF,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.35.【解答】解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE =∠ACE ,∴∠DAC +∠DAE =90°,即∠CAE =90°, ∴AP 是⊙O 的切线; (2)连接DB ,如图1, ∵PA 和PB 都是切线,∴PA =PB ,∠OPA =∠OPB ,PO ⊥AB , ∵PD =PD ,∴△DPA ≌△DPB (SAS ),∴AD =BD , ∴∠ABD =∠BAD , ∵∠ACD =∠ABD , 又∠DAE =∠ACE , ∴∠DAF =∠DAE ,∵AC 是直径,∴∠ADE =∠ADC =90°, ∴∠ADE =∠AFD =90°, ∴△FAD ∽△DAE ;(3)∵∠AFO =∠OAP =90°,∠AOF =∠POA ,∴△AOF ∽△POA ,∴OF OA=AF PA,∴OA PA=OF AF=tan ∠OAF =12, ∴PA =2AO =AC ,∵∠AFD =∠CAE =90°,∠DAF =∠ABD =∠ACE ,∴△AFD ∽△CAE ,∴FD AE=AF CA ,∴FD AF =AE CA =AEAP, ∵tan ∠OAF =OF AF=12,不妨设OF =x ,则AF =2x , ∴OD =OA =√5x ,∴FD =OD −OF =(√5−1)x , ∴FD AF=(√5−1)x 2x=√5−12,∴AE AP=√5−12. 36.【解答】证明:(1)∵BM 是以AB 为直径的⊙O 的切线, ∴∠ABM =90°,∵BC 平分∠ABM ,∴∠ABC =12∠ABM =45° ∵AB 是直径∴∠ACB =90°,∴∠CAB =∠CBA =45°∴AC =BC ∴△ACB 是等腰直角三角形; (2)如图,连接OD ,OC ∵DE =EO ,DO =CO∴∠EDO =∠EOD ,∠EDO =∠OCD ∴∠EDO =∠EDO ,∠EOD =∠OCD ∴△EDO ∽△ODC ∴OD DC=DE DO∴OD 2=DE •DC∴OA 2=DE •DC =EO •DC(3)如图,连接BD ,AD ,DO ,作∠BAF =∠DBA ,交BD 于点F ,∵DO =BO∴∠ODB =∠OBD ,∴∠AOD =2∠ODB =∠EDO ,∵∠CAB =∠CDB =45°=∠EDO +∠ODB =3∠ODB , ∴∠ODB =15°=∠OBD ∵∠BAF =∠DBA =15° ∴AF =BF ,∠AFD =30° ∵AB 是直径 ∴∠ADB =90°∴AF =2AD ,DF =√3AD ∴BD =DF +BF =√3AD +2AD∴tan ∠ACD =tan ∠ABD =AD BD=2+√3=2−√337.【解答】解:(1)如图1,连接BC ,AC ,AD , ∵CD ⊥AB ,AB 是直径 ∴AĈ=AD ̂,CE =DE =12CD =3 ∴∠ACD =∠ABC ,且∠AEC =∠CEB ∴△ACE ∽△CEB ∴AE CE=CE BE∴13=3BE∴BE =9 ∴AB =AE +BE =10 ∴⊙O 的半径为5(2)∵AĈ=AD ̂=CF ̂ ∴∠ACD =∠ADC =∠CDF ,且DE =DE ,∠AED =∠NED =90° ∴△ADE ≌△NDE (ASA ) ∴∠DAN =∠DNA ,AE =EN∵∠DAB =∠DFB ,∠AND =∠FNB∴∠FNB =∠DFB ∴BN =BF , ∴△BNF 是等腰三角形 (3)如图2,连接AC ,CE ,CO ,DO , ∵MD 是切线, ∴MD ⊥DO ,∴∠MDO=∠DEO=90°,∠DOE=∠DOE ∴△MDO∽△DEO∴OEOD =ODOM∴OD2=OE•OM∵AE=EN,CD⊥AO∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵AĈ=CF̂∴∠AOC=∠ABF∵CO∥BF∴∠PCO=∠PFB∵四边形ACFB是圆内接四边形∴∠PAC=∠PFB∴∠PAC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE ∴△CNO∽△PCO∴NOCO =COPO∴CO2=PO•NO,∴ON•OP=OE•OM.。

专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题23圆的有关性质(共38题)一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC 的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.414.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.515.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD 为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD 为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE 的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC 为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。

九年级中考数学考点训练——几何专题:《圆的综合》试卷(五)(Word版含答案)

九年级中考数学考点训练——几何专题:《圆的综合》试卷(五)(Word版含答案)

九年级中考数学考点训练——几何专题:《圆的综合》(五)1.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请说明理由;(3)如图②,若点E在上,连接DE,CE,已知BC=5,BE=1,求DE及CE的长.2.如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.(1)如图2,若点P与点M重合,则∠PAB=,线段PA与PB的比值为;(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB.3.如图,已知⊙O是△ABC的外接圆,直径AD与BC垂直,垂足为点E.(1)求证:∠ABC=∠ACB;(2)连接OB,CD,若OB=,CD=5,求CE的长.4.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF 的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.5.如图,在⊙O中的内接四边形ABCD中,AB=AD,E为弧AD上一点.(1)若∠C=110°,求∠BAD和∠E的度数;(2)若∠E=∠C,求证:△ABD为等边三角形.6.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP =AC.(1)求证:PA是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.7.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;(2)如图2,若∠DBC=15°,求证:AD:AC=:;(3)如图3,若AC、BD交于点E,连接OE,且OE=2,若BD=3CD,求AD的长.8.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?9.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.10.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)参考答案1.解:(1)由圆周角定理得,∠ADF=∠ABE,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,在△ADF和△ABE中,,∴△ADF≌△ABE(SAS);(2)∵△ADF≌△ABE,∴AE=AF,∠EAB=∠FAD,∵∠BAD=90°,∴∠EAF=90°,∴△AEF为等腰直角三角形,∴EF=AE,∴DE﹣BE=AE;(3)如图,过点B作BH⊥CE于点H,∵四边形ABCD为正方形,故∠BEC=45°,∠DEC=45°,在△BEC中,BE=1,BC=5,∠EBC=45°,则BH=BE sin∠EBC=1•sin45°==EH,在Rt△BCH中,CH===,EC=EH+CH=4;在△EDC中,∠DEC=45°,CE=4,CD=BC=5,过点C作CH⊥ED于点H,在Rt△ECH中,EC=4,∠DEC=45°,则CH=EH=EC=4,在Rt△CDH中,CH=4,CD=5,则HD=3,∴DE=EH+CH=7.2.解:(1)若点P与点M重合,如下图所示,∵点B、B关于CM对称,则PB=PB′,B′C=BC,而PC=PC,∴△PB′C≌△PBC(SSS),故∠B=∠PB′C=90°,在Rt△AB′C中,B′C=BC=AC,∴∠PAB=30°,在Rt△PAB中,∵∠A=30°,∴PB=PA,故答案为30°,2;(2)①∵B、C、D、P在圆上∴∠PBC=∠B′DC,又∵B关于直线CM的对称点为B′,∴△PB′C≌△PBC(AAS),∴∠P B′C=∠PBC,∴∠P B′C=∠B′DC,∴CB′=CD;②同理∠DCA=∠APB且∠A=∠A,∴△ACD∽△APB,∴,∵AC:CB=2:1,又BC=CB′=CD,∴,∴,即AP=2PB.3.(1)证明:∵AD⊥BC,∴=,∴∠ABC=∠ACB;(2)解:连接OC,如图,设OE=x,则DE=OD﹣OE=﹣﹣x,在Rt△OEC中,CE2=OC2﹣OE2=()2﹣x2,在Rt△CDE中,CE2=CD2﹣DE2=52﹣(﹣x)2,∴()2﹣x2=52﹣(﹣x)2,解得x=,∴CE==.4.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF 、DE 、DF ; (2)连接OP ,如图2所示: ∵AB 是半圆O 的直径,=2,∴∠APB =90°,∠AOP =×180°=60°, ∴∠ABP =30°,同(1)得:四边形PECF 是正方形, ∴PF =CF ,在Rt △APB 中,PB =AB •cos ∠ABP =8×cos30°=8×=4,在Rt △CFB 中,BF ====CF ,∵PB =PF +BF , ∴PB =CF +BF , 即:4=CF +CF ,解得:CF =6﹣2;(3)①∵AB 为⊙O 的直径, ∴∠ACB =∠ADB =90°, ∵CA =CB , ∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF , ∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°, ∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ), 在Rt △ACB 中,AC =BC =AB =×70=35,∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225; ②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S=A′B•PF=PB•A′P,△A′PB∴×50×PF=×40×30,解得:PF=24,∴S=PF2=242=576(m2),四边形PEDF∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.5.解:(1)∵四边形ABCD内接于⊙O,∴∠BAD+∠C=180°,∵∠C=110°,∴∠BAD=70°,∵AB=AD,∴∠ABD=∠ADB=55°,∵四边形ABDE内接于⊙O,∴∠ABD+∠E=180°,∴∠E=125°.(2)∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵四边形ABDE是⊙O的内接四边形,∴∠ABD+∠E=180°,又∵∠E=∠C,∴∠BAD=∠ABD,∴AD=BD,∵AB=AD,∴AD=BD=AD,∴△ABD为等边三角形.6.(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,∴AP=AC=3.在Rt△PAO中,OA=OP=3,∴⊙O的半径为3.7.解:(1)∵△ABC为等边三角形,则∠ABC=∠ACB=∠BAC=60°,∵∠BDC=∠BAC=60°,∠ADC=∠ACB=60°=∠BDC,∴BD平分∠ADC;(2)过点A作AH⊥BD于点H,在Rt△AHD中,∠ADH=60°,设AD=2a,则AH=a,HD=a,∵∠ABC=60°,∠DBC=15°,∴∠ABH=60°﹣15°=45°,∴△为等腰直角三角形,则AB=AH=a=AC,∴AD:AC=:;(3)设CD=m,在DB上截取DF=CD,连接CF,∵∠BDC=60°,故△CDF为等边三角形,则CD=DF=CF=m,∠DFC=60°,则BD=3CD=3m,则BF=2m,∵∠BFC=180°﹣∠DFC=120°=∠ADC,∵FC=CD,∠FBC=∠CAD,∴△BFC≌△ADC(AAS),∴AD=BF=2m,∵∠DFC=∠ADB=60°,∴FC∥AD,∴△AED∽△CEF,故=2,设EC=2t,则AE=4t,AC=6t,SG=CG=3t,故GE=t,连接AO,过点O作OG⊥AC于点G,∵△ABC为等边三角形,则∠OAG=30°,在Rt△AOG中,OG=AG tan∠OAG=3t×=t,在Rt△OGE中,OG=t,GE=t,OE=2,由勾股定理得:(t)2+t2=(2)2,解得t=,则AC=6;过点A作CD的垂线交CD的延长线于点K,在Rt△ADK中,∠ADK=180°﹣∠ADC=60°,AD=2m,则DK=m,AK=m,在Rt△AKC中,AK=m,KC=KD+CD=m+m=2m,AC=6,由勾股定理得:(m)2+(2m)2=(6)2,解得m=6,则AD=2m=12.8.解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°。

2023年中考数学 几何专题:圆(含答案)

2023年中考数学 几何专题:圆(含答案)

2023中考数学 几何专题:圆(含答案)1.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是________.2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,F 是CG 的中点,延长AF 交⊙O 于E ,CF =2,AF =3,则EF 的长为________.3.如图,AB ,CD 是⊙O 的两条弦,它们相交于点P .连接AD ,BD ,已知AD =BD =4,PC =6,那么CD 的长为________.4.如图,圆内接四边形ABCD 中的两条对角线相交于点P ,已知AB =BC ,CD =12BD =1.设AD =x ,用x 的代数式表示P A 与PC 的积:P A ·PC =__________.5.如图,ADBC 是⊙O 的内接四边形,AB 为直径,BC =8,AC =6,CD 平分∠ACB ,则AD =( )A .50B .32C .5 2D .4 2第4题图 第5题图 第6题图6.如图,在△ABC 中,AD 是高,△ABC 的外接圆直径AE 交BC 边于点G ,有下列四个结论:①AD 2=BD ·CD ;②BE 2=EG ·AE ;③AE ·AD =AB ·AC ;④AG ·EG =BG ·CG .其中正确结论的个数是( )A .1个B .2个C .3个D .4个7.如图,正△ABC 内接于⊙O ,P 是劣弧BC 上任意一点,P A 与BC 交于点E ,有如下结论:①P A =PB +PC ;②111AP PB PC=+;③P A ·PE =PB ·PC .其中正确结论的个数是( ) A .3个 B .2个 C .1个 D .0个8. 如图,四边形ABCD 内接于⊙O ,延长AD ,BC 交于点M ,延长AB ,DC 交于点N ,∠M =20°,∠N =40°,则∠A 的大小为( )第3题图第2题图第1题图AACDABAA .35°B .60°C .65°D .70°第7题图 第8题图 第9题图9. 如图,已知⊙O 的内接四边形ABCD 中,AD =CD ,AC 交BD 于点E .求证:(1)AD DEBD AD; (2) AD ·CD -AE ·EC =DE 2;10. 如图,已知四边形ABCD 外接圆⊙O 的半径为5,对角线AC 与BD 交于点E ,且AB 2=AE •AC ,BD =8,求△ABD 的面积.11. 如图,已知⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC 于D ,AD =3. 设⊙O 的半径为y ,AB 的长为x .(1) 求y 与x 之间的函数关系式;(2) 当AB 的长等于多少时,⊙O 的面积最大?并求出⊙O 的最大面积.ACBBC12. 如图,已知半圆⊙O 的直径AB =4,将一个三角板的直角顶点固定在圆心O 上.当三角板绕着O 点转动时,三角板的两条直角边与半圆周分别交于C ,D 两点,连接AD ,BC 交于点E .(1) 求证:△ACE ∽△BDE ; (2) 求证:BD =DE ; (3) 设BD =x ,求△AEC 的面积y 与x 的函数关系式,并写出自变量x 的取值范围.(广东省中考试题)13.如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中,∠DCE 是直角,点D 在线段AC 上. (1) 证明:B ,C ,E 三点共线;(2) 若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3) 将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(如图2).若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.14.如图所示,ABCD 为⊙O 的内接四边形,E 是BD 上的一点,∠BAE =∠DAC .求证:(1)△ABE ∽△ACD ;(2) AB ·DC +AD ·BC =AC ·BD .E DABCCOO E DM 1E 1D 1A BN MABC N 1图1图215.如图1,已知⊙M 与x 轴交于点A ,D ,与y 轴正半轴交于点B ,C 是⊙M 上一点,且A (-2,0),B (0,4),AB =BC .(1) 求圆心M 的坐标;(2) 求四边形ABCD 的面积;(3) 如图2,过C 点作弦CF 交BD 于点E ,当BC =BE 时,求CF 的长.16.如图,AB ,AC ,AD 是⊙O 中的三条弦,点E 在AD 上,且AB =AC =AE .求证:(1) ∠CAD =2∠DBE ;(2) AD 2-AB 2=BD ·DC .17. 如图,已知以直角梯形ABCD 中,以AB 为直径的圆与CD 相切,求证:以CD 为直径的圆与AB 相切.18. 已知:如图,在ABC ∆中,AB AC =,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE AC ⊥,垂足为点E .求证:(1)ABC ∆是等边三角形;(2)13AE CE =.19. 如图,点P 在O 的直径BA 的延长线上,2AB PA =,PC 切O 于点C ,连结BC .(1)求P ∠的正弦值;(2)若O 的半径2cm r =,求BC 的长度.20. 如图,O 的半径10cm OC =,直线l CO ⊥,垂足为H ,交⊙O 于A B ,两点,16cm AB =,直线l 平移多少厘米时能与⊙O 相切?参考答案PCC1.30°≤x≤90°2.43.84.-14x 2+x 5.C 6.B 7.B 提示:其中①③正确.9.提示:(1)连结BM ,证明Rt △CEN ≌Rt △BMN .(2)连结BD 、BE 、AC ,证明△BED ∽△FEB .(3)结论仍成立.10.连结AM ,过M 作MD ⊥AC ,交直线AC 于点D ,则Rt △AMH ≌Rt △AMD ,Rt △MHB ≌Rt △MDC .11.(1)连结OA ,OC ,则Rt △OFC ≌RtOGC ≌Rt △OGA .∴123OFC OAC ABC OFCG S S S S ∆∆∆===四边形. (2)连结OA ,OB ,OC ,由△AOC ≌△COB ≌△BOA ,得∠OCB =∠OAC ,∵∠AOC =∠AOE +∠EOC =120°,∠DOE =∠COF +∠COE =120°,∴∠AOE =∠COF ,∵∠OAC =∠OCB ,OA =OC ,∠AOE =∠COF ,∴△OAG ≌△OCF ,故13AOC ABC OFCG S S S ∆∆==四边形.12.如图,过点O 作直线OP ⊥BC ,分别交BC ,KL ,AD 于点P ,H ,N ,则ON ⊥AD ,OH ⊥KL ,连结DO ,LO ,在Rt △NDO 中,ON 4==,OP =PN -ON =2,设HL =x ,则PH =KL =2x ,OH =OP +PH =2+2x . 在Rt △HOL 中,x 2+ (2x +2)2=52,解8、B13 ⑴略.⑵如图,连结ON ,AE ,BD ,并延长BD 交AE 于点F ,可证明△BCD ≌△ACE ,BF ⊥AE ,∴ON ∥= 12BD ,OM ∥= 12AE ,∴OM =ON ,OM ⊥ON ,故MN =2OM. ⑶结论成立,证明略.14 提示:由△ABE ∽△ACD ,△ADE ∽△ACB 分别得AB·DC =AC·BE ,AD·BC =AC·DE ,两式作加法得AB·DC +AD·BC =AC·BD.15⑴连结BM ,OA =2,OB =4,在Rt △BOM 中,(r -2)2+42=r 2,∴r =5,即AM =5,OM =3,∴M(3,0). ⑵连结AC 交BM 于G ,则BM ⊥AC 且AG =CG ,可证△AMG ≌△BMO.∴AG =OB =4,AC =8,OM =MG =3,BG =BM -GM =2,AD =10,CD =6.∴S四边形ABCD =S △ACD +S △ABC =12 A C·CD +12 A C·BG =12 8886+128882=32. ⑶∵BC =BE ,∴∠BCE =∠BEC.又∠BCE =∠BCA +∠ACF ,∠BEC =∠BDC +∠DCF ,且∠BCA =∠BDC ,∴∠ACF =∠DCF =12∠ACD =45°,∴△ADF 为等腰直角三角形.AF =DF =5 2.作DT ⊥CF于T ,CT =DT =32,TF =DF 2-DT 2=42,∴CF =CT +TF =7 2.16. ⑴连结BC ,∵AB =AC ,∴∠2=∠5,∵AB =AE ,∴∠ABE =∠AEB ,即∠2+∠3=∠4+∠5,∴∠3=∠4,∴∠DAC =∠DBC =∠4+∠3=2∠4,即∠DAC =2∠DBE.⑵延长DA 至点G ,使AG =AE =AC ,则∠DAC =2∠G ,而由⑴知∠DAC =2∠DBE.∴∠DBE =∠G.又∠BDE =∠GDC ,∴△BDE ∽△GDC ,得BD DG =DEDC,即DG·DE =BD·DC.∴(AD +AG)(AD -AE)=BD·DC.∵AB =AE =AG ,∴(AD +AB)(AD -AB)=BD·DC ,故AD 2-AB 2=BD·DC.17. 【答案】如图,设'O 切CD 于O ,由切线的性质及平行线等分线段定理可知O 为CD 中点,过O 作OE AB ⊥于E ,由弦切角定理可知12∠=∠,同时在Rt AOB ∆中,OE AB ⊥,易证得23∠=∠ ∴13∠=∠于是可证得AOD AOE ∆∆≌, ∴OE OD =,∴以CD 为直径的圆与AB 相切.18. 【答案】(1)连结OD 得OD AC ∥ ∴BDO A ∠=∠又由OB OD =得OBD ODB ∠=∠∴OBD A ∠=∠ ∴BC AC =又∵AB AC = ∴ABC ∆是等边三角形 (2)连结CD ,则CD AB ⊥ ∴D 是AB 中点∵1124AE AD AB == ∴3EC AE = ∴13AE CE =19. 【答案】(1)连结OC ,因为PC 切O 于点C ,∴PC OC ⊥又直径2AB AP =∴12OC AO AP PO ===,∴30P ∠=︒,∴1sin 2P ∠=(或:在1sin 22OC OC Rt POC P PO PO ∆∠===,)(2)连结AC ,由AB 是直径.∴90ACB ∠=︒,∵903060COA ∠=︒-︒=︒ 又OC OA =,∴CAO △是正三角形∴2CA r ==,∴CB ==20.【答案】解法1:如图,连结OA ,延长CO 交⊙O 于D ,∵l OC ⊥∴OC 平分AB .∴8AH =.在Rt △AHO 中,6OH = ∴416CH cm DH cm ==,答:直线AB 向左移4cm ,或向右平移16cm 时与圆相切. 解法2:设直线AB 平移时能与圆相切,()22210810x -+=解得12164x x ==, ∴4cm 16cm CH DH ==,.cm x。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

中考数学几何综合圆的综合大题压轴题

中考数学几何综合圆的综合大题压轴题

圆的综合大题1.如图;⊙O是△ABC的外接圆;FH是⊙O的切线;切点为F;FH∥BC;连接AF交BC于E;∠ABC的平分线BD交AF于D;连接BF.1证明:AF平分∠BAC;2证明:BF=FD;3若EF=4;DE=3;求AD的长.2.如图;AB是⊙O的直径;过点B作⊙O的切线BM;点P在右半圆上移动点P与点A;B不重合;过点P作PC⊥AB;垂足为C;点Q在射线BM上移动点M在点B的右边;且在移动过程中保持OQ∥AP.1若PC;QO的延长线相交于点E;判断是否存在点P;使得点E恰好在⊙O上若存在;求出∠APC的大小;若不存在;请说明理由;2连接AQ交PC于点F;设;试问:k的值是否随点P的移动而变化证明你的结论.3.已知:如图1;把矩形纸片ABCD折叠;使得顶点A与边DC上的动点P重合P 不与点D;C重合;MN为折痕;点M;N分别在边BC;AD上;连接AP;MP;AM;AP 与MN相交于点F.⊙O过点M;C;P.1请你在图1中作出⊙O不写作法;保留作图痕迹;2与是否相等请你说明理由;3随着点P的运动;若⊙O与AM相切于点M时;⊙O又与AD相切于点H.设AB为4;请你通过计算;画出这时的图形.图2;3供参考4.在⊙O中;弦AB与弦CD相交于点G;OA⊥CD于点E;过点B作⊙O的切线BF交CD的延长线于点F.I如图①;若∠F=50°;求∠BGF的大小;II如图②;连接BD;AC;若∠F=36°;AC∥BF;求∠BDG的大小.5.如图;在⊙O中;半径OD⊥直径AB;CD与⊙O相切于点D;连接AC交⊙O于点E;交OD于点G;连接CB并延长交⊙于点F;连接AD;EF.1求证:∠ACD=∠F;2若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE;当⊙O的半径为3时;求DE的长.6.如图;⊙O的直径AB为10cm;弦BC为6cm;D、E分别是∠ACB的平分线与⊙O;AB的交点;P为AB延长线上一点;且PC=PE.1求AC、AD的长;2试判断直线PC与⊙O的位置关系;并说明理由.7.如图;点A是⊙O上一点;OA⊥AB;且OA=1;AB=;OB交⊙O于点D;作AC ⊥OB;垂足为M;并交⊙O于点C;连接BC.1求证:BC是⊙O的切线;2过点B作BP⊥OB;交OA的延长线于点P;连接PD;求sin∠BPD的值.8.如图;在△ABC中;∠ABC=90°;以AB的中点O为圆心;OA为半径的圆交AC 于点D;E是BC的中点;连接DE;OE.1判断DE与⊙O的位置关系;并说明理由;2求证:BC2=2CD•OE;3若cos∠BAD=;BE=;求OE的长.9.已知:如图;⊙O是△ABC的外接圆;且AB=AC=13;BC=24;P A是⊙O的切线;A 为切点;割线PBD过圆心;交⊙O于另一点D;连接CD.1求证:P A∥BC;2求⊙O的半径及CD的长.10.如图;已知△ABC内接于⊙O;AD平分∠BAC;交⊙O于点D;过D作⊙O的切线与AC的延长线交于点E.1求证:BC∥DE;2若AB=3;BD=2;求CE的长;3在题设条件下;为使BDEC是平行四边形;△ABC应满足怎样的条件不要求证明.11.如图;AB、BC、CD分别与⊙O相切于E、F、G;且AB∥CD;BO=6;CO=8.1判断△OBC的形状;并证明你的结论;2求BC的长;3求⊙O的半径OF的长.12.已知:以Rt△ABC的直角边AB为直径作⊙O;与斜边AC交于点D;过点D 作⊙O的切线交BC边于点E.1如图;求证:EB=EC=ED;2试问在线段DC上是否存在点F;满足BC2=4DF•DC若存在;作出点F;并予以证明;若不存在;请说明理由.13.如图;Rt△ABC中;∠ACB=90°;以AC为直径的⊙O与AB边交于点D;过点D作⊙O的切线;交BC于点E;1求证:BE=CE;2若以O、D、E、C为顶点的四边形是正方形;⊙O的半径为r;求△ABC的面积;3若EC=4;BD=;求⊙O的半径OC的长.14.已知:如图;P A、PB是⊙O的切线;A、B是切点;连接OA、OB、OP;1若∠AOP=60°;求∠OPB的度数;2过O作OC、OD分别交AP、BP于C、D两点;①若∠COP=∠DOP;求证:AC=BD;②连接CD;设△PCD的周长为l;若l=2AP;判断直线CD与⊙O的位置关系;并说明理由.15.如图1;已知正方形ABCD的边长为;点M是AD的中点;P是线段MD上的一动点P不与M;D重合;以AB为直径作⊙O;过点P作⊙O的切线交BC于点F;切点为E.1除正方形ABCD的四边和⊙O中的半径外;图中还有哪些相等的线段不能添加字母和辅助线;2求四边形CDPF的周长;3延长CD;FP相交于点G;如图2所示.是否存在点P;使BF•FG=CF•OF如果存在;试求此时AP的长;如果不存在;请说明理由.16.如图;从⊙O外一点A作⊙O的切线AB、AC;切点分别为B、C;且⊙O直径BD=6;连接CD、AO.1求证:CD∥AO;2设CD=x;AO=y;求y与x之间的函数关系式;并写出自变量x的取值范围;3若AO+CD=11;求AB的长.17.如图1;A为⊙O的弦EF上的一点;OB是和这条弦垂直的半径;垂足为H;BA 的延长线交⊙O于点C;过点C作⊙O的切线与EF的延长线相交于点D.1求证:DA=DC;2当DF:EF=1:8;且DF=时;求AB•AC的值;3将图1中的EF所在直线往上平行移动到⊙O外;如图2的位置;使EF与OB;延长线垂直;垂足为H;A为EF上异于H的一点;且AH小于⊙O的半径;AB的延长线交⊙O于C;过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立并证明你的结论.18.如图;圆O是以AB为直径的△ABC的外接圆;D是劣弧的中点;连AD并延长与过C点的切线交于点P;OD与BC相交于E;1求证:OE=AC;2求证:;3当AC=6;AB=10时;求切线PC的长.19.如图;已知AB是⊙O的直径;PC切⊙O于C;AD⊥PD;CM⊥AB;垂足分别为D;M.1求证:CB平分∠PCM;2若∠CBA=60°;求证:△ADM为等边三角形;3若PO=5;PC=a;⊙O的半径为r;且a;r是关于x的方程x2﹣2m+1x+4m=0的两根;求m的值.20.已知:在Rt△ABC中;∠ABC=90°;D是AC的中点;⊙O经过A、D、B三点;CB的延长线交⊙O于点E如图1.在满足上述条件的情况下;当∠CAB的大小变化时;图形也随着改变如图2;在这个变化过程中;有些线段总保持着相等的关系.1观察上述图形;连接图2中已标明字母的某两点;得到一条新线段与线段CE 相等;请说明理由;2在图2中;过点E作⊙O的切线;交AC的延长线于点F.①若CF=CD;求sin∠CAB的值;②若=nn>0;试用含n的代数式表示sin∠CAB直接写出结果.21.如图;OA和OB是⊙O的半径;并且OA⊥OB.P是OA上的任意一点;BP的延长线交⊙O于点Q;点R在OA的延长线上;且RP=RQ.1求证:RQ是⊙O的切线;2求证:OB2=PB•PQ+OP2;3当RA≤OA时;试确定∠B的取值范围.22.如图;AB为⊙O的直径;C为⊙O上一点;连接CB;过C作CD⊥AB于点D;过C作∠BCE;使∠BCE=∠BCD;其中CE交AB的延长线于点E.1求证:CE是⊙O的切线;2如图2;点F在⊙O上;且满足∠FCE=2∠ABC;连接AF并延长交EC的延长线于点G.ⅰ试探究线段CF与CD之间满足的数量关系;ⅱ若CD=4;tan∠BCE=;求线段FG的长.23.如图1;等腰△ABC中;AC=BC;点O在AB边上;以O为圆心的圆经过点C;交AB边于点D;EF为⊙O的直径;EF⊥BC于点G;且D是的中点.1求证:AC是⊙O的切线;2如图2;延长CB交⊙O于点H;连接HD交OE于点P;连接CF;求证:CF=DO+OP;3在2的条件下;连接CD;若tan∠HDC=;CG=4;求OP的长.24.如图;CD为⊙O的直径;直线AB与⊙O相切于点D;过C作CA⊥CB;分别交直线AB于点A和B;CA交⊙O于点E;连接DE;且AE=CD.1如图1;求证:△AED≌△CDB;2如图2;连接BE分别交CD和⊙O于点F;G;连接CG;DG.i试探究线段DG与BF之间满足的等量关系;并说明理由.ii若DG=;求⊙O的周长结果保留π25.在矩形ABCD中;点P在AD上;AB=2;AP=1;将三角板的直角顶点放在点P 处;三角板的两直角边分别能与AB、BC边相交于点E、F;连接EF.1如图;当点E与点B重合时;点F恰好与点C重合;求此时PC的长;2将三角板从1中的位置开始;绕点P顺时针旋转;当点E与点A重合时停止;在这个过程中;请你观察、探究并解答:①∠PEF的大小是否发生变化请说明理由;②求从开始到停止;线段EF的中点所经过的路线长.26.如图;△ABC内接于⊙O;AB是⊙O的直径;点D是劣弧AC上的一点;连结AD 并延长与BC的延长线交于点E;AC、BD相交于点M.1求证:BC•CE=AC•MC;2若点D是劣弧AC的中点;tan∠ACD=;MD•BD=10;求⊙O的半径.3若CD∥AB;过点A作AF∥BC;交CD的延长线于点F;求﹣的值.27.如图;⊙O是△ABC的外接圆;AB为直径;过点O作OM∥BC;交AC于点M.1求∠AMO;2延长OM交⊙O于点E;过E作⊙O的切线;交BC延长线于点F;连接FM;并延长FM交AB于点G.①试判断四边形CFEM的形状;并说明理由;②若AG=2;CM=3;求四边形CFEM的面积.28.如图1;△ABC内接于⊙O;且AB为⊙O的直径.∠ACB的平分线交⊙O于点D;过点D作DP∥BA交CA的延长线于点P;1求证:PD是⊙O的切线;2如图2;过点A作AE⊥CD于点E;过点B作BF⊥CD于点F;试猜想线段AE;EF;BF之间有何数量关系;并加以证明;3在2的条件下;如图2;若AC=6;tan∠CAB=;求线段PC的长.29.如图;P A为⊙O的切线;A为切点;直线PO交⊙O与点E;F过点A作PO的垂线AB垂足为D;交⊙O与点B;延长BO与⊙O交与点C;连接AC;BF.1求证:PB与⊙O相切;2试探究线段EF;OD;OP之间的数量关系;并加以证明;3若AC=12;tan∠F=;求cos∠ACB的值.30.如图;在平面直角坐标系中;点A10;0;以OA为直径在第一象限内作半圆C;点B是该半圆周上一动点;连接OB、AB;并延长AB至点D;使DB=AB;过点D作x轴垂线;分别交x轴、直线OB于点E、F;点E为垂足;连接CF.1当∠AOB=30°时;求弧AB的长度;2当DE=8时;求线段EF的长;3在点B运动过程中;是否存在以点E、C、F为顶点的三角形与△AOB相似若存在;请求出此时点E的坐标;若不存在;请说明理由.31.如图;AB是⊙O的直径;AB=4;点E为线段OB上一点不与O;B重合;作CE ⊥OB;交⊙O于点C;垂足为点E;作直径CD;过点C的切线交DB的延长线于点P;AF⊥PC于点F;连接CB.1求证:CB是∠ECP的平分线;2求证:CF=CE;3当=时;求劣弧的长度结果保留π32.如图;⊙O是△ABC的外接圆;BC是⊙O的直径;∠ABC=30°;过点B作⊙O 的切线BD;与CA的延长线交于点D;与半径AO的延长线交于点E;过点A作⊙O的切线AF;与直径BC的延长线交于点F.1求证:△ACF∽△DAE;2若S△AOC=;求DE的长;3连接EF;求证:EF是⊙O的切线.33.⊙O是△ABC的外接圆;AB是直径;过的中点P作⊙O的直径PG交弦BC 于点D;连接AG、CP、PB.1如图1;若D是线段OP的中点;求∠BAC的度数;2如图2;在DG上取一点K;使DK=DP;连接CK;求证:四边形AGKC是平行四边形;3如图3;取CP的中点E;连接ED并延长ED交AB于点H;连接PH;求证:PH ⊥AB.34.如图1;点O和矩形CDEF的边CD都在直线l上;以点O为圆心;以24为半径作半圆;分别交直线l于A;B两点.已知:CD=18;CF=24;矩形自右向左在直线l上平移;当点D到达点A时;矩形停止运动.在平移过程中;设矩形对角线DF与半圆的交点为P点P为半圆上远离点B的交点.1如图2;若FD与半圆相切;求OD的值;2如图3;当DF与半圆有两个交点时;求线段PD的取值范围;3若线段PD的长为20;直接写出此时OD的值.35.图1和图2中;优弧纸片所在⊙O的半径为2;AB=2;点P为优弧上一点点P不与A;B重合;将图形沿BP折叠;得到点A的对称点A′.发现:1点O到弦AB的距离是;当BP经过点O时;∠ABA′=;2当BA′与⊙O相切时;如图2;求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁;得到半圆形纸片;点P不与点M;N 重合为半圆上一点;将圆形沿NP折叠;分别得到点M;O的对称点A′;O′;设∠MNP=α.1当α=15°时;过点A′作A′C∥MN;如图3;判断A′C与半圆O的位置关系;并说明理由;2如图4;当α=°时;NA′与半圆O相切;当α=°时;点O′落在上.3当线段NO′与半圆O只有一个公共点N时;直接写出α的取值范围.36.如图;AB是⊙O的直径;DO⊥AB于点O;连接DA交⊙O于点C;过点C作⊙O 的切线交DO于点E;连接BC交DO于点F.1求证:CE=EF;2连接AF并延长;交⊙O于点G.填空:①当∠D的度数为时;四边形ECFG为菱形;②当∠D的度数为时;四边形ECOG为正方形.37.如图;点B;C为⊙O上两定点;点A为⊙O上一动点;过点B作BE∥AC;交⊙O 于点E;点D为射线BC上一动点;且AC平分∠BAD;连接CE.1求证:AD∥EC;2连接EA;若BC=CD;试判断四边形EBCA的形状;并说明理由.38.1特例探究.如图1;在等边三角形ABC中;BD是∠ABC的平分线;AE是BC边上的高线;BD 和AE相交于点F.请你探究=是否成立;请说明理由;请你探究=是否成立;并说明理由.2归纳证明.如图2;若△ABC为任意三角形;BD是三角形的一条内角平分线;请问=一定成立吗并证明你的判断.3拓展应用.如图3;BC是△ABC外接圆⊙O的直径;BD是∠ABC的平分线;交⊙O于点E;过点E作AB的垂线;交BA的延长线于点F;连接OF;交BD于点G;连接CG;其中cos∠ACB=;请直接写出的值;若△BGF的面积为S;请求出△COG 的面积用含S的代数式表示.39.已知:AB是⊙O直径;C是⊙O外一点;连接BC交⊙O于点D;BD=CD;连接AD、AC.1如图1;求证:∠BAD=∠CAD;2如图2;过点C作CF⊥AB于点F;交⊙O于点E;延长CF交⊙O于点G.过点作EH⊥AG于点H;交AB于点K;求证AK=2OF;3如图3;在2的条件下;EH交AD于点L;若OK=1;AC=CG;求线段AL的长.40.如图;以△ABC的AB边为直径作⊙O交BC于点D;过点D作⊙O切线交AC 于点E;AB=AC.1如图1;求证:DE⊥AC;2如图2;设CA的延长线交⊙O于点F;点G在上;=;连接BG;求证:AF =BG;3在2的条件下;如图3;点M为BG中点;MD的延长线交CE于点N;连接DF 交AB于点H;若AH:BH=3:8;AN=7;求DE长.41.已知AB;CD都是⊙O的直径;连接DB;过点C的切线交DB的延长线于点E.1如图1;求证:∠AOD+2∠E=180°;2如图2;过点A作AF⊥EC交EC的延长线于点F;过点D作DG⊥AB;垂足为点G;求证:DG=CF;3如图3;在2的条件下;当=时;在⊙O外取一点H;连接CH、DH分别交⊙O于点M、N;且∠HDE=∠HCE;点P在HD的延长线上;连接PO并延长交CM于点Q;若PD=11;DN=14;MQ=OB;求线段HM的长.42.已知△ABC内接于⊙O;AD平分∠BAC.1如图1;求证:=;2如图2;当BC为直径时;作BE⊥AD于点E;CF⊥AD于点F;求证:DE=AF;3如图3;在2的条件下;延长BE交⊙O于点G;连接OE;若EF=2EG;AC=2;求OE的长.43.已知:如图;AB为⊙O的直径;C是BA延长线上一点;CP切⊙O于P;弦PD ⊥AB于E;过点B作BQ⊥CP于Q;交⊙O于H;1如图1;求证:PQ=PE;2如图2;G是圆上一点;∠GAB=30°;连接AG交PD于F;连接BF;若tan∠BFE =3;求∠C的度数;3如图3;在2的条件下;PD=6;连接QC交BC于点M;求QM的长.44.已知:⊙O是△ABC的外接圆;点D在上;连接AD;BD;AD的延长线交BC 的延长线于点E;点F在BD上;连接EF;∠ACB=2∠DEF.1如图1;求证:∠DEF=∠DFE;2如图2;延长EF交AB于点G;若AE=BF;求证:AG=BG;3如图3;在2的条件下;连接OG;若cos∠AGE=;S△BEF=60;AD=BD;求线段OG的长.45.已知AB为⊙O的直径;CD为⊙O的弦;CD∥AB;过点B的切线与射线AD交于点M;连接AC、BD.1如图l;求证:AC=BD;2如图2;延长AC、BD交于点F;作直径DE;连接AE、CE;CE与AB交于点N;求证:∠AFB=2∠AEN;3如图3;在2的条件下;过点M作MQ⊥AF于点Q;若MQ:QC=3:2;NE=2;求QF的长.46.如图1;△ABC内接于圆O;点D为弧BC上一点;连接AD交BC于点E;∠ACD ﹣∠B=2∠BAD.1求证:AE=AC;2如图2;连接CO并延长交圆O于点F;连接AF;∠DAF=2∠BCD;求证:AF=AE;3如图3;在2条件下;过点F作FH∥BC交AB于点H;连接CH;过点A作AK ∥BF交CH于点K;当AK=EC;AB=3时;求线段AD的长度.47.如图1;⊙O中;AB为直径;弧BC=弧AC;点P在⊙O上;连接PC交AB于点E;过C作PC的垂线交⊙O于点Q1求证:弧AP=弧BQ;2如图2;点F在弧AC上;∠FEA=∠QEB=30°;连接PF;求证:PF=AO;3在2的条件下;如图3;过E作EG⊥FP于点G;若EG=6;求OE的长.48.如图1;等腰△ABC中;AC=BC;点O在AB边上;以O为圆心的圆与AC相切于点C;交AB边于点D;EF为⊙O的直径;EF⊥BC于点G.1求证:D是弧EC的中点;2如图2;延长CB交⊙O于点H;连接HD交OE于点K;连接CF;求证:CF=OK+DO;3如图3;在2的条件下;延长DB交⊙O于点Q;连接QH;若DO=;KG=2;求QH.49.如图;在Rt△ACB中;∠C=90°;D是AB上一点;以BD为直径的⊙O切AC 于点E;交BC于点F;连接DF;OP⊥AB交⊙O于点P;连接ED、EP;过点A作DQ⊥PE于点Q;1求证:DF=2CE;2求证:∠A=2∠P;3在2的条件下:若BC=6;sin B=;连接OQ;求线段OQ的长.50.已知:AD、DE是⊙O的弦;DB平分∠ADE交⊙O于B;1求证:=;2连接AB、AE、DB;若DE是⊙O的直径;AE、BD交于C;CD=2AB;求∠E的度数;3在2的条件下;K是弧AE上一点;连接OK;交AE于点G;F是AD上一点;连接AK、KE;FG;若∠AFG=4∠KAE;FG=5;DE=6;求KG长.。

中考数学几何圆专题训练

中考数学几何圆专题训练

专题八圆图2ED CB AoABC第5ABC 第6OD E2.圆柱与圆锥的侧面展开图:〔1〕圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)〔2〕圆锥的侧面积:S 圆锥侧 =LR 21=πrR. 〔L=2πr ,R 是圆锥母线长;r 是底面半径〕四 常识:1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的心 ⇔ 两角平分线的交点 ⇔ 三角形的切圆的圆心.4. 直线与圆的位置关系:〔其中d 表示圆心到直线的距离;其中r 表示圆的半径〕直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:〔其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r 〕两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆切 ⇔ d=R-r ; 两圆含 ⇔ d <R-r.6.证直线与圆相切,常利用:"交点连半径证垂直〞和"不知交点作垂直证半径〞 的方法加辅助线.圆中考专题练习一:选择题。

1. 〔2010红河自治州〕如图2,BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,假设∠AOD=60°,则∠DBC 的度数为〔 〕A.30°B.40°C.50°D.60°2、〔11〕.如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是〔 〕.〔A 〕22 〔B 〕32 〔C 〕5〔D 〕533、〔2011省〕9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有〔 〕A 1个B 2个C 3个D 4个 4、〔2011〕,〕如下图,在圆O 有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为〔 〕A .19B .16C .18D .205、〔11·〕如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,假设把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于〔 〕A .6πB .9πC .12πD .15π 6、〔2010·〕.如图,⊙O 的直径AB ⊥弦CD 于点E .以下结论中一定..正确的选项是〔 〕第9题图 A BCA .AE =OEB .CE =DEC .OE =12CE D .∠AOC =60°7、〔〕圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,假设圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是〔 〕 A.相交或相切 B.相切或相离 C.相交或含 D.相切或含8. 〔莱芜〕圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为〔 〕A .2.5B .5C .10D .159、〔10·〕.如图,等腰梯形ABCD 接于半圆D ,且AB = 1,BC = 2,则OA =〔 〕.A .231+ B .2 C .323+ D .251+ 10、〔2010〕如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以 AB 、AC 为直径作半圆,则图中阴影局部的面积是〔 〕A .64127π-B .1632π-C .16247π-D .16127π-11、〔10年〕9. 现有一个圆心角为90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面〔接缝忽略不计〕.该圆锥底面圆的半径为A . cm 4B .cm 3C .cm 2D .cm 1二:填空 1、〔11)如图6,直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC=______.2、〔10年〕如图,△ABC 接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点, 则∠D =______3、(2011市)如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是,阴影局部面积为(结果保存π).4、〔10株洲市〕15.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是.5、〔10〕如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_______度.6、(2011中考题18).如图,A 、B 两点的坐标分别为()230,、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为. 7、〔2010年〕.假设一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________.C B AODABDOE〔第15题〕三:解答题 1、〔10〕如图,△ABC 接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; 〔2〕假设cos ∠PCB=55,求PA 的长. 2、〔10市〕.如图,△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连结OE ,CD=3,∠ACB=30°.〔1〕求证:DE 是⊙O 的切线;〔2〕分别求AB ,OE 的长;3、〔2010市〕如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,假设DE =23,∠DPA =45°.〔1〕求⊙O 的半径;〔2〕求图中阴影局部的面积.4、〔2011〕25.〔此题总分值10分〕如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF . 〔1〕证明:AF 平分∠BAC ;〔2〕证明:BF =FD ;〔3〕假设EF =4,DE =3,求AD 的长.5、〔10年〕26.〔此题总分值10分〕如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.〔1〕求证:PC 是⊙O 的切线;〔2〕求证:BC=21AB ;〔3〕点M 是弧AB 的中点,CM 交AB 于点N ,假设AB=4,求MN ·MC 的值. 6、〔11〕如图,△ABC 接于⊙O ,且∠B = 60︒.过点C 作圆的切线l 与直径AD 的延长线交于点E ,AF ⊥l ,垂足为F ,CG ⊥AD ,垂足为G .〔1〕求证:△ACF ≌△ACG ;〔2〕假设AF = 43,求图中阴影局部的面积.7、(11、27).(此题总分值9分)如图,在等腰梯形ABCD 中,AD ∥BC .O 是CD 边的中点,以O 为圆心,OC 长为半径作圆,交BC 边于点E .过E 作EH ⊥AB ,垂足为H .⊙O 与AB 边相切,切点为F (1)求证:OE ∥AB ;(2)求证:EH=12AB ;(3)假设14BH BE =,求BHCE的值.近年中考题A BCDEO BD FAO G ECl20.〔本小题总分值10分〕如图10,在O ⊙中,60ACB BDC ∠=∠=°,23cm AC =.〔1〕求BAC ∠的度数; 〔2〕求O ⊙的周长.23、〔2008〕〔12分〕如图9,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且BC DE = 〔1〕求证:AC=AE〔2〕利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F 〔保存作图痕迹,不写作法〕求证:EF 平分∠CEN 24.〔2010,24,14分〕如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB 上任一点〔与端点A 、B 不重合〕,DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B作⊙D 的切线,两条切线相交于点C . 〔1〕求弦AB 的长;〔2〕判断∠ACB 是否为定值,假设是,求出∠ACB 的大小;否则,请说明理由;〔3〕记△ABC 的面积为S ,假设2SDE =3△ABC 的周长.25. 〔2011市,25,14分〕如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上.〔1〕证明:B 、C 、E 三点共线;〔2〕假设M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ;〔3〕将△DCE 绕点C 逆时针旋转α〔0°<α<90°〕后,记为△D 1CE 1〔图8〕,假设M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?假设是,请证明;假设不是,说明理由.CP DOBAEAOCB图10 图9局部答案:一:选择题1、A2、B3、D4、 D5、D6、B7、A8、C9、A 10、D 11、C二:填空1、25 2、40 3、相切、-6π 4、外切 5、100 6、)13,13(++ 7、 3 三:解答题: 1、解:〔1〕当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC ∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA ∴PA=PD 即△PAD 是以AD 为底边的等腰三角形 〔2〕由〔1〕可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =21AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB=55=PA AE ∴PA=5 2、〔1〕∵AB 是直径,∴∠ADB=90°∴OD ⊥DE ,∴DE 是⊙O 的切线. 〔2〕在 30,3,=∠=∆ACB CD CBD Rt 中,5、解:〔1〕∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ∵AB 是⊙O 的直径 ∴∠ACO+∠OCB=90°∴∠PCB+∠OCB=90°,即OC ⊥CP∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线〔2〕∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB∴∠CBO=∠COB ∴BC=OC ∴BC=21AB(3)连接MA,MB ∵点M 是弧AB 的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN ∽△MCB∴BM MNMC BM =∴BM 2=MC ·MN ∵AB 是⊙O 的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM ∵AB=4 ∴BM=22∴MC ·MN=BM 2=86:〔1〕如图,连结CD ,OC ,则∠ADC =∠B = 60︒.∵AC ⊥CD ,CG ⊥AD ,∴∠ACG =∠ADC = 60︒. 由于 ∠ODC = 60︒,OC = OD ,∴△OCD 为正三角形,得 ∠DCO = 60︒.由OC ⊥l ,得 ∠ECD = 30︒,∴∠A B CD 1E 1M 1ON 1图8A BCDEMN O图7ECG = 30︒ + 30︒ = 60︒.进而 ∠ACF = 180︒-2×60︒ = 60︒,∴△ACF ≌△ACG .〔2〕在Rt △ACF 中,∠ACF = 60︒,AF = 43,得 CF = 4. 在Rt △OCG 中,∠COG = 60︒,CG = CF = 4,得 OC =38.在Rt △CEO 中,OE =316. 于是 S 阴影 = S △CEO -S 扇形COD =36060212OC CG OE ⋅-⋅π=9)33(32π-.25、【答案】〔1〕∵AB 为⊙O 直径∴∠ACB=90°∵△DCE 为等腰直角三角形 ∴∠ACE=90°∴∠BCE=90°+90°=180°∴B 、C 、E 三点共线. 〔2〕连接BD ,AE ,ON .∵∠ACB=90°,∠ABC =45°∴AB=AC ∵DC=DE∠ACB=∠ACE=90°∴△BCD ≌△ACE ∴AE=BD ,∠DBE=∠EAC ∴∠DBE+∠BEA=90° ∴BD ⊥AE ∵O ,N 为中点∴ON ∥BD ,ON=12BD同理OM ∥AE ,OM=12AE ∴OM ⊥ON ,OM=ON ∴MN=2OM〔3〕成立证明:同〔2〕旋转后∠BCD 1=∠BCE 1=90°-∠ACD 1所以仍有△BCD 1≌△ACE 1,所以△ACE 1是由△BCD 1绕点C 顺时针旋转90°而得到的,故BD 1⊥AE 1 其余证明过程与〔2〕完全一样.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八圆8.正多边形的有关计算:(1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;(2)有关计算在RtΔAOC中进行. 公式举例:(1) n =n360︒;(2)n1802n︒=αABC 第5ABC 第6 O DE2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21=πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心两内角平分线的交点 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ;两圆内切 d=R-r ; 两圆内含 d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.圆中考专题练习一:选择题。

1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为( )° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )533、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( )A 1个B 2个C 3个D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .205、(11·浙江湖州)如图,已知在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于( )A .6πB .9πC .12πD .15π 6、(2010·浙江湖州).如图,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一.定.正确的是( )第9题图A .AE =OEB .CE =DEC .OE =12CE D .∠AOC =60°7、(上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( ) A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含8. (莱芜)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .B .5C .10D .159、(10·绵阳).如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,则OA =( ).A .B .C .D .10、(2010昆明)如图,在△ABC 中,AB = AC ,AB = 8AB 、AC 为直径作半圆,则图中阴影部分的面积是( A .64π- B .1632π- C .16π-D .16π-11、(10年兰州)9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为A .B .C .D .二:填空 1、(11怀化)如图6,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC=______. 2、(10年安徽)如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点,则∠D =______ 3、(2011台州市)如图,正方形ABCD 边长为4,以BC 为直径的半圆O交对角线BD于E .则直线CD 与⊙O 的位置关系是 ,阴影部分面积为(结果保留π) .4、(10株洲市)15.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是 .5、(10成都)如图,在ABC ∆中,AB 为O e 的直径,60,70B C ∠=∠=oo,则BOD ∠的度数是_______度.6、(苏州2011中考题18).如图,已知A 、B 两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为 .A B C D O E(第15题)7、(2010年成都).若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________.三:解答题1、(10珠海)如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA、PB、PC、PD.(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形并证明;(2)若cos∠PCB=,求PA的长.2、(10镇江市).如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=3,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;3、(2010宁波市)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.4、(桂林2011)25.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.H5、(10年兰州)26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.6、(11绵阳)如图,△ABC内接于⊙O,且∠B = 60.过点C作圆的切线l与直径AD的延长线交于点E,AF ⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF = 4,求图中阴影部分的面积.7、(苏州11、27).(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F(1)求证:OE∥AB;(2)求证:EH=12AB;(3)若14BHBE,求BHCE的值.BDFAO GECl近年广州中考题 20.(本小题满分10分) 如图10,在中,,.(1)求的度数; (2)求的周长.23、(2008广州)(12分)如图9,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且»»BCDE (1)求证:AC=AE(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留作图痕迹,不写作法)求证:EF 平分∠CEN图1024.(2010广东广州,24,14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是¼APB 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2SDE =ABC 的周长.C P DO BAE图925. (2011广东广州市,25,14分)如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上.(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ;(3)将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(图8),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立若是,请证明;若不是,说明理由.1图8图7部分答案:一:选择题1、A2、B3、D4、 D5、D6、B7、A8、C9、A 10、D 11、C二:填空1、25 2、40 3、相切、-6π 4、外切 5、100 6、)13,13(++ 7、 3 三:解答题: 1、解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC ∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA ∴PA=PD 即△PAD 是以AD 为底边的等腰三角形 (2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB= ∴PA= 2、(1)∵AB 是直径,∴∠ADB=90°,)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴=ΘΘΘ分又又 ∴OD ⊥DE ,∴DE 是⊙O 的切线. (2)在ο30,3,=∠=∆ACB CD CBD Rt 中,.2,223330cos =∴===∴AB CDBC ο)6(.27)23(1,)5(.2332121,30,3,2222分中在分中在=+=+=∆=⨯==∴=∠=∆OE OD OE ODE Rt CD DE ACB CD CDE Rt ο5、解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB∵AB 是⊙O 的直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC ⊥CP∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB∴∠CBO=∠COB ∴BC=OC ∴BC=AB(3)连接MA,MB ∵点M 是弧AB 的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN∽△MCB∴∴BM2=MC·MN ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM∵AB=4 ∴BM= ∴MC·MN=BM2=86:(1)如图,连结CD,OC,则∠ADC =∠B = 60.∵AC⊥CD,CG⊥AD,∴∠ACG =∠ADC = 60.由于∠ODC = 60,OC = OD,∴△OCD为正三角形,得∠DCO = 60.由OC⊥l,得∠ECD = 30,∴∠ECG = 30 + 30 = 60.进而∠ACF = 180-2×60 = 60,∴△ACF≌△ACG.(2)在Rt△ACF中,∠ACF = 60,AF = 4,得CF = 4.在Rt△OCG中,∠COG = 60,CG = CF = 4,得OC =.在Rt△CEO中,OE =.于是S阴影= S△CEO-S扇形COD==.25、【答案】(1)∵AB为⊙O直径∴∠ACB=90°∵△DCE为等腰直角三角形∴∠ACE=90°∴∠BCE=90°+90°=180°∴B、C、E三点共线.(2)连接BD,AE,ON.∵∠ACB=90°,∠ABC=45°∴AB=AC∵DC=DE∠ACB=∠ACE=90°∴△BCD≌△ACE∴AE=BD,∠DBE=∠EAC∴∠DBE+∠BEA=90°∴BD⊥AE∵O,N为中点∴ON∥BD,ON=1 2 BD同理OM∥AE,OM=12AE ∴OM⊥ON,OM=ON ∴MN=2OM(3)成立证明:同(2)旋转后∠BCD1=∠BCE1=90°-∠ACD1所以仍有△BCD1≌△ACE1,所以△ACE1是由△BCD1绕点C顺时针旋转90°而得到的,故BD1⊥AE1其余证明过程与(2)完全相同.BDFAO G EC l。

相关文档
最新文档