闭区间上有界可测函数的逼近定理(用多项式逼近)
闭区间套定理证明单调有界数列收敛定理
闭区间套定理证明单调有界数列收敛定理闭区间套定理,又称为Cantor定理,是数学分析中非常重要的一个定理,它可以用来证明单调有界数列的收敛性。
在本文中,我们将详细讨论闭区间套定理的证明方法和应用。
首先,我们来介绍一下闭区间套定理的概念。
闭区间套定理是基于实数的完备性公理,在这里我们不过多地涉及实数的定义和性质,只需要知道实数满足完备性公理即可。
闭区间套定理的陈述如下:对于一系列的闭区间[a1, b1],[a2,b2],[a3, b3],...,满足以下两个条件:首先,对于任意的正整数n,都有[a(n+1), b(n+1)]是[a(n), b(n)]的子区间;其次,序列{b(n) - a(n)}是一个收敛的数列。
那么,存在唯一的实数x,它同时属于所有的闭区间[a(n), b(n)]。
证明闭区间套定理的关键是构造一个实数x,我们可以通过区间的中点来构造这个实数。
具体的证明步骤如下:首先,由于每个闭区间[a(n+1), b(n+1)]都是[a(n), b(n)]的子区间,所以这些闭区间形成了一个嵌套的闭区间序列。
根据实数的完备性公理,我们知道这个嵌套的闭区间序列一定存在一个实数x,它属于所有的闭区间。
接下来,我们来证明这个实数x是唯一的。
假设存在另一个实数y,它也同时属于所有的闭区间[a(n), b(n)]。
那么,根据实数的性质,我们知道x和y之间一定存在一个有理数q。
由于x和y都同时属于所有的闭区间,所以q同时属于所有的闭区间。
但我们知道每个闭区间的长度都趋近于零,所以q的存在与有理数的稠密性矛盾。
因此,实数x是唯一的。
最后,我们需要证明序列{b(n) - a(n)}是一个收敛的数列。
由于每个闭区间[a(n+1), b(n+1)]都是[a(n), b(n)]的子区间,所以这些闭区间的长度{b(n) - a(n)}一定是递减且非负的。
根据实数的性质,我们知道这个数列一定存在一个下界,即存在一个常数M,使得对于任意的正整数n,都有{b(n) - a(n)} ≥ M。
高等数学1-10闭区间上连续函数的性质
即 f ( ) .
思考题:
下述命题是否正确?
如果 f ( x) 在[a,b]上有定义,在(a, b) 内连续,且 f (a) f (b) 0,那么 f ( x) 在 (a, b)内必有零点.
思考题解答
内至少有
又
故据零点定理, 至少存在一点
使
即
说明:
二分法
则 内必有方程的根 ; 取 的中点
则
内必有方程的根 ; 可用此法求近似根.
机动 目录 上页 下页 返回 结束
证 设 ( x) f ( x) C, y
M
则( x)在[a, b]上连续, B
且 (a) f (a) C
C a
A C,
不正确.
例函数
f
(
x)
e, 2,
0 x1 x0
f ( x)在(0,1)内连续, f (0) (1) 2e 0.
但 f ( x)在(0,1)内无零点.
点,即至少有一点 (a b),使 f () 0.
即方程 f ( x) 0在(a, b)内至少存在一个实根 .
几何解释:
y
ao
bx
连续曲线弧 y f ( x)的两个 端点位于x轴的不同侧, 则曲 线弧与 x轴至少有一个交点.
例1. 证明方程 一个根 . 证: 显然
在区间
o
A
(b) f (b) C B C, m
bx
(a) (b) 0, 由零点定理, (a, b),使 ( ) 0, 即 ( ) f ( ) C 0, f ( ) C.
几何解释: 连续曲线弧 y f ( x)与水平 直线 y C至少有一个交点.
闭区间套定理证明单调有界数列收敛定理
闭区间套定理证明单调有界数列收敛定理闭区间套定理(Nested Interval Theorem)是实数完备性的一个等价表述,可以用来证明单调有界数列的收敛性。
以下是对这个定理的证明:假设有一个单调递增的实数数列{a_n},同时它也被一个实数数列 {b_n} 上界限制。
我们要证明 {a_n} 收敛,并找到它的极限L。
这里的上界约束意味着对于每个n,a_n ≤b_n,其中{b_n} 是一个递减数列。
首先,我们观察到闭区间[a_1, b_1]。
由于{a_n} 单调递增,我们有 a_1 ≤ a_n ≤ b_n ≤ b_1。
这意味着每个闭区间都包含在前一个闭区间中。
接下来,我们构造一个数列{I_n},其中每个元素是之前闭区间的中点。
也就是说,I_n = (a_n + b_n) / 2。
由于 {a_n} 是递增的且 {b_n} 是递减的,我们可以得到 I_1 ≤ I_2 ≤ I_3 ≤ ...。
根据闭区间套定理(Nested Interval Theorem),存在唯一的实数 c,满足 c ∈⋂[a_n, b_n]。
也就是说,c 同时存在于每个闭区间 [a_n, b_n] 中。
我们现在证明 c 是该数列 {a_n} 的极限。
由于 {a_n} 单调递增,对于任何n,a_n ≤c。
另一方面,对于任何k,通过数列{I_n} 的构造方式,我们有 c ≤ I_k ≤ b_k。
而这意味着 c ≤ a_k ≤ b_k,对于所有的 k,得到 c ≤ a_k ≤ b_k ≤ b_1。
因此,c 是{a_n} 的上界。
接下来,我们证明 c 是 {a_n} 的最小上界,也就是它是数列的上确界。
假设存在一个上界 d,满足 d < c。
那么存在一个 n,使得 d < a_n ≤ c,这与 c ∈⋂[a_n, b_n] 矛盾。
因此,c 是 {a_n} 的上确界。
综上所述,我们证明了闭区间套定理可以用来证明单调有界数列的收敛性。
_函数逼近问题的研究
函数逼近论题目学院专业班级学生姓名摘要函数逼近问题是函数论的一个主要组成部分, 它涉及的主要问题是函数的近似表示. 在数学的理论研究中经常遇到以下问题: 在选定的一些函数中寻找到某个函数g,使它是已知函数f在一定意义下的近似表示, 并求出用g近似表示f产生的误差. 这就是函数逼近问题.本课题采用理论和实例相结合的方法进行研究. 首先, 对Weierstrass魏尔斯特拉斯逼近定理及其推广进行介绍; 其次, 介绍了一致逼近定理与证明, 给出一直逼近定理在函数逼近中的应用;最后, 对Lagrange插值、Newton插值、Herimte插值等研究.关键词:函数逼近; 一致逼近; 插值AbstractFunction approximation function theory is a key component of the involved, it is the main problem of function approximation said. In the study of the theory of the mathematics always met in the following problem: some of the function of the selected for to a certain function, make it is known g ƒ function in certain significance of the approximate, and get the use "to approximate the ƒ produce error. This is the f unction approximation problem.This subject adopts the theory and practical method of combining the research. First of all, to Weierstrass Weierstrass las approximation theorem is introduced and its extension; Secondly, this paper introduces uniform approximation theorem are given, and proof has been approximation theorem in the application of the function approximation; Finally, the Lagrange interpolation, Newton interpolation, Herimte interpolation.Key words:The function approximation:Uniform approximation;Interpolation目录摘要 (I)Abstract (II)绪论 (1)第1章Weierstrass逼近定理 (2)1.1 Weierstrass第一定理 (2)1.2 Weierstrass第二定理 (5)1.3 Weierstrass定理的推广 Stone定理 (7)第2章一致逼近的研究 (11)2.1Borel存在定理 (11)2.2 最佳逼近定理 (12)2.3 Kolmogorov最佳逼近定理 (15)第3章多项式插值方法的研究 (17)3.1 Lagrange差值公式 (17)3.2 Newton插值公式 (20)3.2.1 差商的概念与性质 (20)3.2.2 Newton插值公式的导出 (22)3.3Hermite插值公式 (24)结论 (28)参考文献 (29)致谢 (30)绪 论Weierstrass 逼近定理是函数逼近论中的重要定理之一, 定理阐述了闭区间上的连续函数可以用一多项式去逼近. 将该定理进行推广: 即使一个函数是几乎处处连续的,也不一定具有与连续函数相类似的逼近性质, 但是一个处处不连续的函数却有可能具有这样的性质. 证明了定义在闭区间上且与连续函数几乎处处相等的函数具有类似的逼近性质[]1.随着对于数学研究的不断深入, 正交多项式在数学问题中得到了广泛的应用, 尤其在数值计算方面更显示出它的优越性. 研究一直逼近的性质及应用问题,阐述一直逼近的定义、性质及最佳逼近定理的定义与证明. 主要对最佳逼近定理的最佳逼近多项式的性质与特征进行分析研究[]2[]3.在给定f 并且选定了逼近函数类之后, 如何在逼近函数类中确定作为f 的近似表示函数g 的方法是多种多样的. 例如插值就是用以确定逼近函数的一种常见方法. 所谓插值就是要在逼近函数类中找一个()x g , 使它在一些预先指定的点上和()x f 有相同的值, 或者更一般地要求()x g 和()x f 在这些指定点上某阶导数都有相同的值[]4. 利用插值方法来构造逼近多项式的做法在数学中已有相当久的历史. 微积分中著名的泰勒多项式便是一种插值多项式[]5.本文共分三章, 在第一章中我们给出了并给出了Weierstrass 逼近定理的证明与Weierstrass 逼近定理的一个推广应用. 在第二章中, 我们主要介绍了最佳逼近定理的研究. 给出了最佳逼近定理的介绍与证明. 在第三章中我们主要介绍了Lagrange 差值公式, Newton 差值公式以及Hermite 差值公式, 在函数逼近中的应用.第1章 Weierstrass 逼近定理1.1 Weierstrass 第一定理在实变函数的数学分析中, 最重要的函数类实连续函数类[],C a b 与连续的周期函数类2C π.[],C a b 是定义在某一闭区间[],a b 上的一切连续函数所成的集合; 2C π是定义在整个实轴(,)-∞+∞上的以2π为周期的连续函数全体所成的整体.定理1.1 (Weierstrass 第一定理) 设[](),f x C a b ∈, 那么对于任意给定的0ε>, 都存在这样的多项式()p x , 使max ()()a x bp x f x ε≤≤-<关于这个著名的定理, 现在已经有很多种不同的证法, 下面我们将介绍Bernstein 的构造证法.Bernstein 证法:不妨假设函数的定义区间是[][],0,1a b ≡. 事实上, 通过下面的线性代换()t b a x a =-+就能将x 的区间01x ≤≤变换成t 的区间a t b ≤≤. 同时, 可以轻易得出多项式将变成t 的多项式, x 的连续函数将变成t 的连续函数. 因此只须就连续函数类[],C a b 来证明Weierstrass 定理就行了.对于给定的[]()0,1f x C ∈, 作如下多项式(1,2,3,)n =()0()1nn k fknk n k B x f x x k n -=⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑ (1-1)显然()f n B x 是一个n 次多项式. 下面我们证明极限关系式lim ()()f n n B x fx x →∞=换而言之, Weierstrass 定理中提及的()p x , 只要取()f n B x (其中x N ≥)就可以了.为证明上述命题, 只需要用到一个初等恒等式()()20()11nn k kk n nx k x x nx x k -=⎛⎫--=- ⎪⎝⎭∑ (1-2) 这个恒等式是很容易证明. 事实上, 由于()()0111nnn kk k n x x x x k -=⎛⎫-≡+-≡⎡⎤ ⎪⎣⎦⎝⎭∑. 可知左端()()222021nn kk k n n x k nkx x x k -=⎛⎫=+-- ⎪⎝⎭∑()()22200121nnn k n kk k k k n n n x k x x nx x x k k --==⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭∑∑()()()()220011121nnn k n kk k k k n n n x k k x x nx x x k k --==⎛⎫⎛⎫=+--++- ⎪ ⎪⎝⎭⎝⎭∑∑()()()22222211122n n kk k n n x n n xk x k nx nx k --=-⎛⎫=+--++ ⎪-⎝⎭∑()()222112n x n n x n x n x =+-+-=右端对于[]0,1中的每一个固定的x 及任一固定的正整数n , 令()()max n k x f x f n ε⎛⎫=- ⎪⎝⎭, 上式右端代表当k 取所有合乎条件1/41k x n n ⎛⎫-< ⎪⎝⎭, 的正整数式所得的最大差数. 根据()f x 在[]0,1上的一致连续性, 可知比存在一组0n ε>, 使()0n n x εε<↓ ()n →∞记()()()()()()12,,f n n k n k x k k f x B x f x f x f x f n n λλ⎡⎤⎡⎤⎛⎫⎛⎫-=-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦∑∑, 其中1∑,2∑分别代表对满足如下条件的一切k 所取的和3/43/4,k nx n k nx n -<-≥而()(),1n kk n k n x x x k λ-⎛⎫=- ⎪⎝⎭令()max M f x =, 则显然有()()()()123,,,2f n n n k n k n n k f x B x xM x M x ελλελ-<+<+∑∑∑,而且利用恒等式(1-2)可知()()()()23/23,,04nn k n k k n nx k nx x nx x λλ=≤-=≤∑∑.因此()1/22,114n k x n λ⎛⎫≤ ⎪⎝⎭∑()1/212f n n M f x B n ε⎛⎫-<+ ⎪⎝⎭上述的不等式的右端与x 无关, 而且随着x 的无线增大而趋向0, 这就证明了多项式f n B 对于()f x 上的一致连续性.Weierstrass 的第一定理实际上正好解决了如何利用多项式作成的函数项级数来表示连续函数的问题. 因此任意取定一个单调下降于0的列n δ, 则对每个n δ都可以找到一个多项式()n p x 使得:()()n n p x f x δ-<. 于是令()()()()()111,,1n n n Q x p x Q x p x p x n -==->可知级数()1n n Q x ∞=∑的前n 项之和恰好与()n p x 相合, 因而该级数也就一致的收敛于()f x .在Bernstein 的证明中, 不仅证明了近似多项式序列()n p x 的存在性, 而且还给出了构成()n p x 的一个具体方法. 事实上, ()()1,2,3,f n B x n =便构成了连续函数()f x ()01x ≤≤的一个近似多项式序列. 这样的证法通常称之为构造性的证明方法. 他要比一般数学上的纯粹存在性的证明方法更具有价值[]6.1.2 Weierstrass 第二定理周期连续函数(我们设周期为#)的最简单逼近工具具有如下三角多项式()()1cos sin nk k k T x A a kx x kx ==++∑.如果其中的系数,k k a b 不全为0, 则称()T x 为n 阶三角多项式.相应Weierstrass 第一定理, 有如下的定理定理1.2(Weierstrass 第二定理) 设()2f x C π∈, 则对任意给定的0ε>, 都有三角多项式()T x 存在, 使得()()max x f x T x ππε-≤≤-< (1-3)这个定理可以从Weierstrass 第一定理, 通过诱导函数来证明. 此处直接采用Vallee-Poussin 算子[]()()()22!!11;cos 221!!2x n x x V f x f t dt n ππ--=-⎰ 来证明, 其中()()()()()()2!!22242,21!!212331n n n n n n =-⋅-=--⋅作平移, 显然有220cos 2cos 2xx nn n xt xI dt dt --==⎰⎰在做变换#, 可算得上述积分为()()11/2012121xnn I v dt v dv v v -=-=-⎰⎰()()()112221!!2212!!n n n n π⎛⎫⎛⎫ΓΓ+ ⎪ ⎪-⎝⎭⎝⎭==Γ+ 从而()[]()()21;cos 2n n nt x f x V f x f x f t dt I ππ---=-⎡⎤⎣⎦⎰ 因为()f x 2C π∈, 所以()f x 一致连续, 即对任意给定的0ε>存在, 使得当x x δ'''-<时,()()/2.f x f x ε'''-<现在将()[];n f x V f x -分成两部分()[];n f x V f x -()()21cos 2nn t x t xf x f t dt I δ-<-=-⎰()()211cos 1222nn t x t x C f x f t dt I δεε-≥-=-<=⎰12C C =+ (1-4)下面估计12,C C()()211cos 1222nn t x t x C f x f t dt I δεε-≥-≤-<=⎰(1-5) 记()max ,cos12x M f x q ππδ-≤≤==<, 则()()211cos 2nn t x t xC f x f t dt I δ-≥-≤-⎰212c o s 22n n M I δπ≤⋅⋅⋅()()22!!221!!n n M q n =⋅-24nM n q <⋅⋅因此存在自然数N 使得当n N >时2/2C ε< (1-6)综合(1-4)(1-5)和(1-6), 即可知Weierstrsaa 第二定理成立.1.3 Weierstrass 定理的推广-Stone 定理1948年, Stone 拓宽了Weierstrass 定理的推广, 使其和现代函数分析形成了紧密的联系, 因此成为了逼近论与分析数学中的重要定理之一, 在这一节中我们会将Stone 定理来进行重点介绍.下面的定理虽然在叙述形式上就是Weierstrass 定理, 但是其证明方法和证明过程完全不同, 因此我们将在证明之后说明其证明的特点, 然后给出一个一般定理. 因此可以得到多种逼近定理. 这个证明方法是属于Stone 的.定理1.3 任何一个在[],a b 上的连续函数都能再闭区间上被多项式一直逼近. 证明 设()f x 在∈c [],a b , 因此有M =max ()a x bf x <<, min ()a x bm f x <<=在这里我们设M m >, 否则()f x M m ==, 它就一定可以被一个多项式逼近. 在这里我们设1M =, 0m =, 考虑函数(())/()f x m M m --.有 0()1f x ≤≤, [],x a b ∈ (1-7) 取任意的0ε>, 取自然数n , 满足2()nε<, 令[]{},0()/k M x ab f x k n =∈≤≤, 0,1,2,1k n =-[]{},(1)/()1k Q x a b k n f x =∈+≤≤, 0,1,2,1k n =- (1-8)由于[](),f x a b ∈, 我们可以得到,M Q 都是闭集, 显然, 他们互不相交. 0,1,2,1k n =-,并且有,k k M nQ ϕ=1k k M M +⊂, 1k k Q Q +⊃ (1-9)有定理:闭集,Q M [],a b ⊂互不相交, 则有在[],a b 上的连续函数()g x , 他满足()g x =1,0,x Qx M∈⎧⎨∈⎩ 且0≤()g x 1≤, []0,1x ∈, 他在[],a b 上能被多项式一直逼近, 可以得到对于0,1,2,1k n =-在区间[],a b 上都存在连续函数()f x 他满足1,()0,1,,10,kk kx Q f x k n x M ∈⎧==-⎨∈⎩ (1-10)01k f x ≤≤≤, a x b ≤≤ (1-11)在[],a b 上能被多项式一直逼近.令11()()n k x F x f x n -==∑ (1-12)对于人一点x ∈[],a b , 由(4-1)可知, 存在k , 01k n ≤≤-, 可以得到/()(1)/k n f x k n ≤≤+ (1-13)因此由(1-12)(1-13)得到121,,,k k n x M M M ++-∈ (1-14)比较(1-10)(1-11)(1-12)可以得到011()()k k x k F x f x n n∞+=≤∑ (1-15) 比较(1-9)(1-10)(1-11)可以得到01()()k k x kF x f x n n∞=≤∑ (1-16)由(1-11)(1-12)(1-13)得, 对于任意的x ∈[],a b 有1()()2x f x F x n ε-≤< (1-17) 由()k f x , 0,1,2,1k n =-及()F x 的构造可以知道, ()F x 在[],a b 上可以被多项式一致逼近, 即有多项式()p x 使()()2n F x p x ε-<(1-18)比较(1-17)(1-18)就可以得到()()f x p x ε-<定理证毕.如果我们仔细检查这个定理的证明过程, 我们会发现, 在证明过程中只用到了下面的几个事实1. 实现逼近的区间[],a b 可以控成任何一个距离的空间. 我们称一个集合x 为距离空间. 如果对于任意两个元素,x y x ∈, 都对应一个在非负实数(,)D x y , 称为这两个元素,x y 之间的距离, 他满足以下条件[]7(1) (,)D x y 0=, 当且仅当x y =时; (2) (,)D x y =(,)D y x(3) (,)D x z ≤(,)D x y +(,)D y z , ,,x y z x ∈ 这个距离空间中至少包含有两个元素的子集E , 且对此集合成立有限覆盖定理.2.实现逼近的多项式可以换成定义在E 上的某个实函数空间Y 他具有以下性质(1)Y 包含常数1.(2)Y 关于加法及乘法是封闭的, 因此Y 是一个子环.(3)对于E 中任意两个不同的元素1x 与2x , 在子环Y 中必存在函数()p x , 使12()()p x p x ≠这样一来就有了下面的定理.定理1.4 设E 是某个质量空间的任意子集, 它至少包有两个不同的元素, 并且在E 上成立有覆盖定理. 设定义在E 上的实函数{}()p x 组成一个线性空间, 且构成一个环Y , 这0ε>. Y 上存在元素()p x , 使得有()(),f x p x x E ε-<∈利用Stone 定理可以得到很多有用的逼近定理[]8.定理1.5 设F 是K 维空间R 中的有界闭集. 则对于任何一个在F 上的实连续函数1,2()(,,)x x x x →=⎰⎰, 对于任意的0ε>. 将在k 维空间中代数多项式11111110()()()ni n n n k k nk i i p x p n x x ix x →-====∑∑ (1-19)使得()()f x p x ε→→--<, x F →∈证明 显然, 对R 中任意一个有界闭集F 成立Borel 有限覆盖定理. 此外, 如(4.13)()10,1,,0,1,n n ==的全体多项式构成线性空间及环, 又对于任何两个不同点()111,y hx x x→=, ()2221,y h x xx →=, 令()12111(,)x p x x xx ∞=∑它是形如(4-13)的多项式, 且有()2211(,,)0,,y p x x p x x ''=≠因此, 这就满足了Stone 定理的一切条件.定理1.5证毕.第2章 一致逼近的研究2.1 Borel 存在定理定理2.1(Borel 存在定理) 对任何给定的()f x ∈[],a b , 总是存在()p x ∈n p , 使得,()()n p E f ∆=.证明 因为()n E p ∆的下确界, 因此对任何给定的0ε>, 必有()n p x p ε∈, 使得()n n E p E εεε≤∆+.在这里我们取1mε=, 存在()m n p x p ∈, 使 1()n m n E p E m≤∆≤+(2-1) 所以, 如果能证明{}m p 或他的某个子序列一致收敛于某*n p p ∈, 则上式中令m →∞, 即可证明*()()n p E f ∆=.以下集中于从{}()m p x 中选取收敛的子序列. 首先, 按()m p x 的选取方法可知()m p x 有界. 即可得出()()()()()1max ()m m n a x bp x p x f x f x E f x ≤≤≤-+≤++进而可得出0,1,,,()n m m m x m n m p x a a x a x a x =++++中的各系数0,1,,,,,,,m m x m n m a a a a 皆有界, 为此, 在[],a b 中任意取定1n +个互异点01n x x x <<<. 由0,1,02,0,000,1,2,,()#()m m m n m m m m n m n n m n m n a a x a x a x p x a a x a x a x p x ++++=⎧⎨++++=⎩可推出000,01()1()1()1()1n m n nm n i m m j j i n j t s i si nnnp x x p x x a p x Q x x x x x x =>==-∑∏其中j Q 为多项式在确定点上的值, 从而得,i m a 有界.由Weierstrass 定理, 可逐一选出1n +同时收敛得子序列{},,0,,j i m a i n =. 使得,lim ,0,,j i m i j a a i n →∞==做多项式01()n n p x a a x a x =+++ (2-2)显然当j →∞时, 多项式()mj p x 在[],a b 上一致收敛到()p x .证明 ()p ∆=n E =inf np p ∈()p ∆, 由于()n p x p ∈按定义()p ∆>n E 下面只需证明()p ∆n E ≤. 由()mj p x 得取法可知1()m a x()()m nmj mj n p p p f x p x E mj∈∆=-<+ 但()max ()()max ()()max ()()mj mj mj a x ba x ba x bp f x p x f x p x p x p x ≤≤≤≤≤≤∆=-≤-+-1n E j mjε<++ 令j →∞得到, ()p ∆≤n E , 从而()p ∆=n E .证毕.2.2 最佳逼近定理由Borel 存在定理, 对任意给定的()f x ∈[],a b , 均有多项式()p x n p ∈, 使得()mj p ∆=max ()()inf max ()()n n q p a x ba x bp x f x E q x f x ∈≤≤≤≤-==-, 这样的多项式()p x 成为n p 中的最佳逼近多项式. 显然, n E 0=等价于()f x ∈n p , 即出()f x ∈n p 外, n E 均取正值.下面我们来讨论最佳逼近多项式的本质特征:()()()x p x f x ε=-. 由于()x ε∈[],a b , 所以存在[]0,x a b ∈, 使得0()max ()()a x bx x p εε≤≤==∆, 我们称这样的0x 为()p x 关于()f x 的偏离点. 如果0()()x p ε=∆或()p -∆, 则称0x 为()p x 关于()f x 的正或负偏离点10.如果()p x 不是()f x 的最佳逼近多项式, 则()p x 关于()f x 的正, 负偏离点必须同时存在, 但如果()p x 是()f x 的最佳逼近多项式. 则它关于()f x 的正, 负偏离点必然都存在. 事实上, 我们不妨假设最佳逼近多项式()p x 无负偏离点存在, 则可证明()p x 不是()f x 的最佳逼近多项式. 按以上的反证法假定, 必然存在一个足够小的整数h , 使得()(),n n E h p x f x E a x b -+≤-≤≤≤于是在[],a b 上有/2(()/2)()/2n n E h p x h f x E h -+≤--≤-(/2)()p h p ∆-<∆ 矛盾.定理2.2(Poussin 定理——最佳逼近误差下界的估计) 设n p p ∈且()()()x p x f x ε=-于[],a b 中的点列:12N x x x <<<. 取异于0的正负相间值11,,,(1)N N λλλ---,Q 且2N n ≥+, 则对任意()n q x p ∈, 均有1()min(,,)N q λλ∆≥. (2-3)证明 设有某()n q x p ∈, 使1()min(,,)N q λλ∆< (2-4)考虑到:[][]()()()()()()()x p x q x p x f x q x f x η=-=---. 因此有:()1,()max ()()min N a x bq q x f x λλ≤≤∆=-<所以:s i ()s i (()(j j j g n x g n p x f xη=- 即()x η于点列1,2,,N x x x 上交错变号, 由连续函数的介值定理, ()x η于[],a b 内至少有11N n -≥=个零点, 但()n x p η∈所以()x η0=, 即()()p x q x =, 与(2-3)的反证法 矛盾, 定理即得证[]11.定理 2.3(Tchebyshev 定理) ()f x 于n p 中的最佳逼近多项式是存在的, 且()p x 是()f x 于n p 中的最佳逼近多项式, 必须且只须()p x -()f x 在[],a b 上点数不少于2n +的列12N x x x <<<, 2N n ≥+以上正负交错的符号取得()p ∆的值.证明 充分性:假定()p x -()f x 于[],a b 中点列12N x x x <<<, 2N n ≥+上以正负交错的符号取到()p ∆, 由Poussin 定理, 对任意()n q x p ∈, 均有()q ∆≥()p ∆所以()p x 是()f x 于n p 中的最佳逼近多项式.必要性:假定()p x 是正负交错的偏离点数1N n '≤+, 接下来证明()p x 不是()f x 的最佳逼近多项式. 显然:()q x -()f x =()p x -()f x +[]()()q x p x -, 将[],a b 分成N '个子区间[]1,a ξ,, []1,n b ξ-. 使在该区间上的轮流满足下面两个不等式中的一个.()p x -∆≤()p x -()f x ()p a <∆-, ()p x a -∆+<()p x -()f x ()p ≤∆其中a 是某一充分小的整数, 引入n p 中的多项式121()()()()N x x x x ϕξξξ'-=---并作()q x =()p x -()f x ()x ωϕ+, 则()q x -()p x =()p x -()f x ()x ωϕ+取足够小的ω, 并选出正负号, 即可使下列不等式成立.()()n q p E ∆=∆=他们相互的正负交错偏离点组中点数2,2p q N n N n ≥+≥+. 我们设q p N N ≥, 并设()q x 的正负交错偏离点组为12q N βββ<<< (2-5)在这里我们考虑:()x η=()q x -()p x =[][]()()()()q x f x p x f x ---, 并考虑()x η于点(2-4)上的符号, 注意()j B η可能为零, 也可能不为零, 但若()0j B η≠, 则必有()(),()j j j sign B sign q B f B η⎡⎤=⎣⎦ (2-6)若1()0j B η-≠1()0,()0i k ik ηβηβ+++===≠ (2-7) 因为:[]111()(),()i i i sign B sign q B f B η---=, 且[]111()(),()i k i k i k sign B sign q B f B η++++++=, 而()q x -()f x 于12q N βββ<<<上正负交错变号, 即[]1111(1)()(),()i i i i sign B q B f B -----与[]1111(1)()(),()i k i k i k i k sign B q B f B ++++++++-同号, 即11(1)()i i B η---与11(1)()i k i k B η++++-同号. 从而有:1()i B η-与1(1)()k i k B η++-, (2-8)若K 为偶数, 则1()i B η-与1()i k B η++同号, 所以期间必有偶数的跟, 但是(2-6)中已有1k +(偶数)个根, 所以必定还有一个根, 及至少有2k +个根.总之, ()x η于[],a b 中根的个数11q N n ≥-≥+, 从而()0x η=, 与假设矛盾 定理证毕.2.3 Kolmogorov 最佳逼近定理1948年, Kolmogorov 给出了另一种形式的最佳逼近定理下面我们叙述与证明仅在实多项式中该定理的应用.定理2.4(Kolmogorov 定理) ()p x n p ∈是()f x [],c a b ∈在n p 中的最佳逼近多项式, 必须且只须对所有的()q x n p ∈均有[]{}0m a x ()()()0x A f x p x q x ∈-≥ (2-9) []{}0,()()A def x a b f x p x =∈-由(2-8)可得出关系式:[]()()()0f x p x q x -<, 不能对一切0x A ∈都成立. 即()()f x p x -与()q x 不能对一切0x A ∈都相反的符号.证明 假设()p x 是()f x 在n p 中的最佳逼近多项式, 如(2-8)不成立, 则有多项式()q x n p ∈存在, 使得对其某一0ε>, 有[]{}0max ()()()2x A f x p x q x ε∈-=-根据()f x 的连续性, 存在[],a b 的一个开子集G , 0A G ∈, 使对一切的x G ∈均有[]()()()f x p x q x -ε<-对于充分小的0λ>, 构造一个新的多项式1()()()p x p x q x λ=-. 若x G ∈, 则[]221()()()()()f x p x f x p x q x λ-=-+=2()()f x p x -[][]222()()()f x p x q x λλ+-+[]222()2p M λελ<∆-+ 其中max ()a x bM q x ≤≤=, 若取2M λε<, 则21()()f x p x -[]2(),p x G λε<∆-∈ (2-10)我们考虑到G 的余集是闭集[],H a b ⊂, 且()()f x p x -(),p x H <∆∈因此存在0∂>, 使得1()()()()()f x p x f x p x q x λ-≤-+1()2p ≤∆-∂+∂1()2p =∆-∂, x H ∈. (2-10)由(2-9)(2-10)可知, 对充分小的整数λ, 1()p x 比()p x 更好的逼近()f x , 从而(2-8)是必须的.继续证明(2-8)也是充分的, 假设(2-8)对任何()n q x p ∈, 皆成立. 于是对任意制定的1()n p x p ∈, 构造1()()()n q x p x p x p =-∈必存在点00x A ∈, 使得[]000()()()0f x p x q x -≥注意到点O A 的定义可知[][]222010000000()()()()2()()()()f x p x f x p x f x p x q x q x -=-+-+[]200()()f x p x ≥- []2()p =∆ 从而1()p ∆≥()p ∆, 证毕.第3章 多项式插值方法的研究插值法是函数逼近的重要方法之一, 有着广泛的应用, 在生产和实验中, 函()f x 或者其表达式不便于计算或者无表达式而只有函数在给点的函数值(或其导数值), 此时我们希望建立一个简单的便于计算的()x ϕ, 使其近似的代替()f x , 有很多种的差值法, 其中以Lagrange (拉格朗日)插值和Newton (牛顿)插值为代表的多项式插值最有特点. 常用的还有Hermit 差值, 分段差值, 和样条差值. 在本章中我们主要介绍Lagrange 差值, Newton 差值, 与Hermit 差值[]12.3.1 Lagrange 差值公式设y =()f x 是实变量x 的点值函数, 且已知()f x 在给定的1n +各互异点01,,,nx x x 处得值01,,,n y y y 即(),0,,i i y f x i n ==差值的基本问题是, 寻求多项式()p x , 使得(),0,,i i p x y i n == (3-1) 设()p x 是一个m 次多项式()p x =2012m m a a x a x a x ++++, 0m a ≠则差值问题是, 如何确定()p x 中的系数01,,,m a a a , 使得(3-1)式满足, 所以该问题等价于求解下述的线性方程组20102000211121112012mm m m m mm m m na a x a x a x y a a x a x a x y a a x a x a x y ⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩ (3-2)上述的线性方程组的系数矩阵为200021112111m m m nnm x x x x x x A x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦他是一个()()11n m +⨯+的矩阵.当m A >时, A 的列数大于行数, 不难证明矩阵A 的秩数为1n +. 因为A 的前1n +列所组成的行列式为()2000211101211,,,1m mn n m nnmx x x x x x w x x x defx x x -=我们有:()01,,,n n w x x x -()j i j ix x >--∏ (3-3)为了证明(3-3), 我们考虑n 此多项式()01,,,n w x x x -=2002111211121111n nnn n n nx x x x x x x x x xx x ---显然01,,n x x -村委它的零点, 且它的n x 系数恰为()01,,,n w x x x -.()01,,,n w x x x -()()()0101,,n n w x x x x x x --=-- 可以得出下面的递进关系式()01,,,n n w x x x -()()()0101,,n n n n w x x x x x x --=--运用他便可证明(3-3)式.根据(3-3)并注意到诸01,,,n x x x 互异, 从而线性方程组(3-2)的系数矩阵的秩数1n +它表明(3-2)的解是不唯一的, 即差值问题(3-1)的解是不唯一的.当m n <时, 矩阵A 的行数大于列数, 按照(3-3)式, 线性方程组(3-2)的每1m +个程组成的方程组均有唯一一组解. 01,,,m a a a , 但是一般来说, 这样求出的各组01,,,m a a a 不一定相同, 即此时(1-2)可能是矛盾方程组.鉴于上述情况, 看来取m n =是最为适合的, 现在我们从提多项式插值问题:给定1n +个互异点, 01,,,n x x x 对任意组数01,,,n y y y , 是否尊在唯一的()()f x p x ∈, 使之满足下面差值条件.(),0,,i i p x y i n == (3-4)上述问题的答案是肯定的, 现在采用构造性方法把所要求的多项式()p x 求出来, 试想:如果可求出具有下面性质的特殊的差值多项式:(),(0,,)i n l x p i n ∈=0,,0,,()1,i j i i n l x j i ≠=⎧=⎨=⎩ (3-5)则多项式0()()ni i i p x y l x ==∑ (3-6)必满足(3-4)的多项式, 但(3-5)中上面的等式, 之处01,,,n x x x 中出i x 外, 均为()i l x 的零点, 因此()i l x 011()()()()i i n c x x x x x x x x -+=----, 其中c 为常数, 但(3-5)中的等式指出()()()()0111i i i i i i n c x x x x x x x x -+=----所以:()()()()()()()()011011()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+---------记做0()()()n w x x x x x =--, 则()i l x 还可表示更加简单的形式:()i l x ()()()i w x x x w x ='-.总之n 次多项式:()()()()nii i w x p x y x x w x =='-∑ (3-7)满足差值条件(3-4).若()n q x p ∈也满足差值条件(3-4), 则()()()n x q x p x p η=-∆必以01,,,n x x x 为零点.即()0,0,,i x i n η==, 这样一来, n 次多项式()x η依然有1n +个不同的零点, 所以()()q x p x =, 所以有(3-7)表示的n 次多项式是n p 中满足差值条件的唯一多项式, 他被称作为Lagrange 差值多项式, 并记做0()()()()nn ii i w x L x y x x w x =='-∑ (3-8)按上面的推理可得Lagrange 差值多项式()n L x 也可看做是从下面的行列式方程中解出来的220000211112()11011n n nnnnnn nL x x xxy x x x y x x x y x x x = (3-9)由(3-1)所示的条件成为差值条件, 点组01,,,n x x x , 称为差值结点, 上面所得到的结果可以从集合上解释为, 有且仅有一条n 次代数曲线, 通过平面上事先给定的1n +个点(,),0,,i i x y i n =, 其中,()i j x x i j ≠=.Lagrange 差值公式(3-8)具有结构清晰, 紧凑的特点, 因此适合于工作理论分析和应用.3.2 Newton 插值公式3.2.1 差商的概念与性质Newton 插值公式的导数是非常不好记的, 因此有必要另寻方法来确定它们, 为此我们引进差商的概念, 并指出Newton 插值公式中的各导数01(,,,)n f x x x , 1,,i n =,即是()f x 的i 阶差商, 设已知不同的自变量01,,,n x x x 上的函数值()i f x , 1,,i n =, 我们称()()(,)i j i j i jf x f x f x x x x -=-, ()i j ≠为()f x 的一阶差商(或均差), 一阶差商的一阶差商[]13()()(,,)i j j k i j k i kf x x f x x f x x x x x ---=-, ()i k ≠叫做()f x 的二阶差商, 一般来说我们称(1)n -阶差商的一阶差商10120110(,,)(,,)(,,)n n n n n n n f x x x f x x x f x x x x x -----=-为函数()f x 的n 阶差商.差商有以下几个性质1.若()(),F x cf x c =为常数, 则:1010(,,,)(,,,)n n n n F x x x cf x x x --=.2.若()()()F x f x g x =+, 则:101010(,,,)(,,,)(,,,)n n n n n n F x x x f x x x g x x x ---=+.3.若(),m f x x m =为自然数, 则:100,(,,,)1,n n in m f x x x n m x m n n m ->⎧⎪==⎨⎪-<⎩诸的次得齐次函数,4.差商10(,,,)n n f x x x -是01,,,n x x x 的堆成函数, 即当任意调换, 01,,,n x x x 的位置,差商的值均不变.5.差商可以表示成两行列式之商注:规定, 当0n =, 时0()1n i j l l i x x =≠⎧⎫-=⎨⎬⎩⎭∑1010111111101010101111111(,,,)()()()nnn n n n n n n nn n nn n nx x x x x x f x x x x x x x x x f x f x f x x x x ------=∙性质1和性质2由定义可以直接退出, 接下来我们证明性质3m x 的一阶差商可根据定义直接计算出来1210101210(,)m mm m m x x f x x x x x x x ---∂∂-==+++- 上面的式子是10,x x 的1m -次齐次函数.相继作出各阶差商并依照完全归纳法, 可证的下列公式011001(,,,)nn n nf x x x x x x γγγ-=∑ 10n n m n γγγ-+++=-上面的式子求和运算所有可能出现的形式如:11n n nn n nx x x γγγ--的10,,,n n x x x -的m n -次齐次项, 这样性质3的证.接下来证明性质4, 作出想继续的各阶差商之后, 我们不难看出他们是由形如0,()/()ni ijl l if x x x =≠-∏的(1)n +个项的和表示出来的. 由完全归纳法可求出:01(,,,)n f x x x 可由(2-1)式中的右端表出, 使用前面的记号, 01()()()()n w x x x x x x x =---, 也可将它写成010()(,,,)()ni n i i f x f x x x w x =='∑如此便证明了性质4.最后用完全归纳法同样可以证明性质5.由性质4得知Newton 插值公式(2-2)中的系数001(),(,)f x f x x 01(,,,)n f x x x 恰标出.因此当已知(),(0,1,,)i i y f x i n ==, 时利用差商表可以很容易算出()f x 的各阶差商值,而不必去刻意的记忆公式(2-1).因为在(1)n +个不同点01,,,n x x x 上取给定值的次数不超过n 的多项式使唯一的,所以次数相同的Newton 差值多项式与Lagrange 差值多项式使恒等的, 他们的差异仅仅是书写形式不同. 但是这差异却为计算实践带来了很大的方便. 实际上, 对于Newton 差值公式来说, 当需要增加一个差值结点时, 只需在原插值多项式的后面在添加一个新项就可以了.3.2.2 Newton 插值公式的导出Lagrange 插值公式的却是在于, 当差值结点的个数有所变动时, Lagrange 因子()(0,1,,)i l x i n =就要随之发生变化, 从而整个公式的结构也要发生变化, 这在计算实践中是不方便的, 为了克服这个缺点, 在这一节中我们引进了Newton 形势的差值公式.虽然1n +个结点01,,,n x x x 上的n 次Lagrange 差值多项式也可以写成下列形式010011()()()()()n n n p x a a x x a x x x x x x -=+-++--- (3-10)下面我们确定上式的01,,,n a a a . 令1()n p x -表示n 个结点011,,,n x x x -上的(1)n -次Lagrange 差值多项式. 因为:1()(),(0,,1)n i n i i p x p x y i n -===-, 所以:1011()()()()()n n n p x p x c x x x x x x ---=---,c 为常数. 由条件()n n p x y =可以得出1011()()()()n n n n n n n y p x c x x x x x x ---=---又因为:110()()n n n i i n i p x y l x --==∑, 所以有011011()()()()()()()nin n n n i i i i i i n y y c x x x x x x x x x x x x x x --+=+-------∑100,()n ni i j i l l i y x x -==≠⎧⎫=-⎨⎬⎩⎭∑∏引进记号10100,(,,,)()n nn i i l i l l i f x x x c y x x -==≠⎧⎫==-⎨⎬⎩⎭∑∏得()n p x 与1()n p x -之间的关系101011()()(,,)()()()n n n n p x p x f x x x x x x x x x --=+---同理得:12011012()()(,,)()()()n n n n p x p x f x x x x x x x x x ----=+---一直写下去, 最后得到001001011()()(,)()(,,)()()()n n n p x f x f x x x x f x x x x x x x x x -=+-++--- (3-11)公式(3-11)就是Newton 型差值公式, 系数00101(),(,)(,,,)n f x f x x f x x x 由(3-11)式来确定.3.3 Hermite 插值公式为了理论和应用上的需求, 我们在这里介绍一类具有重结点的多项式差值方法, 即Hermite 差值方法, 因为此类差值问题要求点处满足相应的导数条件, 所以也被称为切触差值.设 12s x x x <<< (3-12)()1(0,,,1,,)h k k y h a k s -==为事先指定的实数, 其中1,,s a a 为正整数121,1(1,,)s k a a a n a k s +++=+≥= (3-13)现构造一个n 次多项式()n p x p ∈, 使之满足差值条件()()1()(0,,;1,,)h h k k k p x y h a k s -=== (3-14) 为解决(3-14), 最直接的办法就是采用代定系数法, 或者求解由(3-3)所确定的线性方程组.此处我们采用构造基本多项式的办法来解决Hermite 差值问题(3-3), 构造一批n 次多项式()1,,,0,,1ik i j i L x l s k a ==-使之满足()()0,(;0.1)h ik m m L x m i h a =≠=- (3-15)和()0,()(0,1)1,h ik i k h k L x h a h k≠⎧==-⎨=⎩ (3-16)显然, 只要上述问题解决, 则n 次多项式()10()()sa s h i ih i h p x y L x ===∑∑(3-17)就必满足差值条件(3-14).以下集中来构成()k L x , 由(3-15)和(3-16)可知111111()()()()()()()i i a a a k as ik i i i s ik L x x x x x x x x x x x l x -+-+=--⋅-⋅--其中1i ik a k l p --∈是满足1i k a --次多项式. 若令11()()()s a a s w x x x x x =--则上式了缩写成()()()()ik ik i i kw x L x l x x x a -=- (3-18)为确定()ik L x 还需要利用条件(3.5)和Taylor 展开式可得()ik L x ()1()!()i a k i i i x x a x x k w x δ--'=⋅+-+ (3-19)其中δ和2δ为确定的常数, ()ik L x ∈1i k a p --所以必定是函数()1!()i i x x a k w x -⋅于i x x =处Taylor 展开的前i k a -项和, 若把这i k a -项和记为()ik L x 1()()1!()i k i a i i x x x a k w x --⎧⎫-=⎨⎬⎩⎭ 则(3-18)式, 有()ik L x =1()()()()()()!()i k i a i i i i i x x x k x x a w x x x a k w x --⎧⎫--=⎨⎬-⎩⎭从而有11()22110()()()()()()!()i k i i a a si i k i x x x n x x k w x p x y x x k w x ---==⎡⎤⎧⎫--=⎢⎥⎨⎬-⎢⎥⎩⎭⎣⎦∑∑ (3-20) 若于(3-14)中取()()1(),(0,,),(1,,)h h k k c y fx h a k s -===, 则相应的Hermite差值多项式为11()()210()()()()()()()!()i k i ii a a sk i i ia i k i x x x a x x k w x p x f x x x k w x ---==⎡⎤⎧⎫--=⎢⎥⎨⎬-⎢⎥⎩⎭⎣⎦∑∑ (3-21) 例 3.1 设121a a q ξ====, 则差值问题(3-3)就是通常多项式差值问题, 此时, 按定义有1()()1()()i i ix x x w x w x ⎧⎫-=⎨⎬'⎩⎭其中()()()i s w x x x x x =--相应的Hermite 差值多项式恰为一般Lagrange 差值多项式.1()()()()()si i i i w x p x f x x x w x =='-∑ 例 3.2 设仅有一个a 重的结点x a =, 则()()n w x x a =-, 而相应的Hermite 差值多项式恰为()f x 于x a =点, x a =点附近Taylor 展开式的部分和.1()()()()!k n k k k a p x fa k -=-∑ 例 3.3 设122s a a q ====, 则相应的Hermite 差值问题为求21n s =-次多项式.()p x 使之满足()()i i p x f x = (1,,)i s = ()()i i p x f x ''= (3-22)这个H e r m i t e 差值问题的集合意义在于使得曲线()y p x =不仅通过给定的点(,())(1,,i i x f x s , 而且在,(1,,)i x x x s ==处与曲线()y f x =有相同的切线.为推导相应的Hermite 插值公式, 记1()()()s x x x x x δ=--则[]2()()w x x δ=, 222()()()i x x x x w x x δ⎡⎤--=⎢⎥⎣⎦又因为[][]222()1()()()()i i i i i x x x x x x x x δδδδ''⎡⎤-=--+⎢⎥''⎣⎦[]2()()11()()()2()i i i i x x x x x w x x x δδδ''-=--+'故由(3-21)式, 有21()()()()()(1()()()()()()si i i i i i m i i x x p x f x x x f x x x x x x x δδδδ=⎡⎤'''=⨯--+-⎢⎥''-⎣⎦∑特别的,当2s =, 且12a a =时, 相应插值公式为下面的3次多项式2121212()()(12)()i x x x x p x f x x x x x --=--- 2221112122121()()()()(12)()x x x x x x f x x x f x x x x x x x ---'=-+---- 12221()()()x x f x x x x x -'+-- (3-23) 这是一个非常重要的Hermite 差值多项式, 他所刻画的曲线()y p x =是这样一条曲线其在区间[]12,x x 两个端点处, 不仅通过曲线()y p x =上的点11(,())x f x 与22(,())x f x , 而且与()y p x =有相同的切线.结论本文主要论述了Weierstrass逼近定理,一致逼近定理,以及几种常用的插值的性质、特征和证明. 并总结出其在函数逼近中的应用.Weierstrass逼近定理是函数逼近论中的重要结论之一, Weierstrass逼近定理是关于实变函数逼近定理, 第一章介绍了Weierstrass逼近定理的研究介绍以及推广Stone定理. Weierstrass逼近定理本身包含两个结论:Weierstrass第一逼近定理和Weierstrass第二逼近定理. 他们是互相独立的, 但又有关系的. 这两个定理都是1885年由Weierstrass 所得到的. Weierstrass-Stone是Weierstrass定理在抽象空间的推广[]15.函数逼近论不外乎研究下面三个问题:第一, 给定一个函数)(xf, 能否用更为简单的函数列近似逼近?第二, 如果能近似逼近?精确度又如何?第三. 逼近的结果是否最佳?在第一章中我们队第一、二两个问题给出了回答, 在第二章中我们研究了第三个问题—最佳逼近理论, 给出了最佳逼近的研究与证明, 以及最佳逼近多项式的性质与应用.插值法是函数逼近的重要方法之一, 在函数逼近中有着广泛的应用, 在一般插值问题中, 若选取φ为n次多项式类, 由插值条件可以唯一确定一个n次插值多项式满足上述条件. 从几何上看可以理解为:已知平面上1n个不同点, 要寻找一条n次多项式+曲线通过这些点. 插值多项式一般有两种常见的表达形式, 一个是拉格朗日插值多项式, 另一个是牛顿插值多项式. 在第三章中, 我们主要研究了Lagrange插值多项式, 牛顿插值多项式, 以及Hermite插值[]16.由于所学知识有限, 本文只在粗浅的层面上描述了做出了简单的研究, 矩函数逼近的根源还有待于深入研究, 我会在今后的学习工作中继续关注函数逼近的研究和发展.参考文献[1] 陈传璋, 金福临. 数学分析[M]. 上海: 上海科学技术出版社, 1962[2] 阎庆旭, 陈北斗, 刘慧芳.Weierstrass逼近定理的应用[J].数学实践与认识, 2004.[3] 周民强.实变函数[M].北京:北京大学出版社, 2001.[4] 聂铁军.计算方法[M].国防工业出版社,1982.[5] 张可村,赵英良.数值计算的算法与分析[M].北京:科学出版社2003.[6] 黄志远.随机分析学基础[M], 北京:科学出版社, 2001[7] 龙熙华.数值分析[M].西安:陕西科学技术出版社, 2005[8] 王仁宏.数值逼近[M].北京:高等教育出版社, 1999.[9]陈传璋, 金福临. 数学分析[M]. 上海: 上海科学技术出版社, 1962[10] 文世鹏, 张明.应用数值分析[M].北京:石油工业出版社, 2005.[11] W.Da.hmen, C.A.Micchelli. Recent, eprogress in multivariate splies, interpolat-ingcardinal splines as their degree rends to infinity, IsraelJ.Whrd(des.), AedaeePress, 1983, 27-29.[12] O.Davydov. On almost interpolation, J.Approx, Theory 91 1997,398-412.[13] O.VSeleznjev. Spline approximation of random processes and design problems, J. Statist.Plann Inference 84(2000), 249-252.[14] H.B.Curry, I.J.schoenberg. OnP6lya frequency functins, VI:The fundamental splinefunctions and their limits, J.analysis Math.171966, 71-75.[15] P.Sablonniere. A Family of Bernstein quasi-interpolants on[]1,0, Apprxo.Theory & itsAppl.(8)3(1992), 62-63[16] R.H.Wang. Multivariate spline and algebraic geometry, put.Appl.Math., 121(2000),153-155.。
魏尔施特拉斯逼近定理
魏尔施特拉斯逼近定理魏尔施特拉斯逼近定理(Weierstrass Approximation Theorem)是数学中的一个重要定理,它说明了任意连续函数在闭区间上都可以被多项式函数逼近。
这个定理在数学分析和近似理论中有着广泛的应用和重要意义。
魏尔施特拉斯逼近定理最早由德国数学家卡尔·魏尔施特拉斯(Karl Weierstrass)在19世纪提出,并且在20世纪得到了进一步的推广和完善。
该定理的表述为:对于任意给定的连续函数f(x),以及任意小的正实数ε,存在一个多项式函数P(x),使得在闭区间[a, b]上,对于任意的x∈[a, b],都有|f(x) - P(x)| < ε成立。
换句话说,魏尔施特拉斯逼近定理保证了在闭区间上的任意连续函数都可以用多项式函数来无限逼近。
这个定理的证明相对复杂,需要运用泰勒级数展开和三角函数等工具,但其基本思想可以用直观的方式来理解。
我们可以想象一个闭区间上的连续函数f(x)如同一条连续的曲线。
魏尔施特拉斯逼近定理告诉我们,无论这条曲线有多么复杂,我们总可以找到一条多项式函数P(x),使得它在闭区间上与曲线的误差不超过给定的ε。
换句话说,我们可以用一条平滑的多项式函数来近似表示任意连续函数。
这个定理的直接应用之一就是数值计算中的函数逼近问题。
在实际计算中,我们常常需要用简单的函数来近似复杂的函数,例如在数值积分、数值微分和函数插值等问题中。
魏尔施特拉斯逼近定理保证了我们可以用多项式函数来进行逼近,从而简化计算和分析的复杂度。
除了在数值计算中的应用,魏尔施特拉斯逼近定理还有广泛的数学理论和实际应用价值。
它不仅为函数逼近问题提供了一种有效的方法,也为分析学和拓扑学等领域的研究提供了有力的工具。
在实际应用中,例如信号处理、图像处理和数据拟合等领域,魏尔施特拉斯逼近定理也发挥着重要的作用。
魏尔施特拉斯逼近定理是数学中一个重要而有用的定理,它给出了任意连续函数在闭区间上的多项式逼近解决方案。
Weierstrass
令 x = t − ,得到
2 | 2 f ( x) cos 2 x − T4 ( x +
π
π
2
) |< ε
(**)
对一切 x ∈ (−∞ , ∞ ) 成立。 记 T5 ( x) = [T3 ( x) + T4 ( x + )] ,结合(*)与(**) ,得到
2 1 2
π
| f ( x) − T5 ( x) |< ε
对一切 x ∈ (−∞ , ∞ ) 成立。
4
可知 P (cos x) = T ( x ) 是余弦三角多项式。
3
推论 设 g ( x ) 是以 2π 为周期的连续偶函数,则 Weierstrass 第二 逼近定理成立,且三角多项式是余弦三角多项式。 Weierstrass 第二逼近定理的证明 设 f ( x ) 是以 2π 为周期的连续函数,令
ϕ ( x) = f ( x ) + f ( − x) ,ψ ( x ) = [ f ( x ) − f ( − x )] sin x ,
由上面的推论, 可知对 则 ϕ ( x ) 与ψ ( x ) 都是以 2π 为周期的连续偶函数, 任意给定的 ε > 0 ,存在余弦三角多项式 T1 ( x) 与 T2 ( x ) ,使得
∑
n
Bn ((t − s ) 2 , x) = Bn (t 2 , x) − 2 sBn (t , x) + s 2 Bn (1, x) x − x2 x − x2 − 2 sx + s 2 = + ( x − s)2 . n n 由于 f 在[0, 1]上连续, 所以有界, 即存在 M > 0 , 对于一切 t ∈ [0, 1], = x2 +
魏尔斯特拉斯逼近定理介绍
魏尔斯特拉斯逼近定理介绍魏尔斯特拉斯逼近定理是数学分析中的一项重要定理,它对于近似函数的构造提供了有力的工具。
本文将以人类视角,以富有情感的叙述方式,介绍这一定理。
魏尔斯特拉斯逼近定理告诉我们,对于任意一个在闭区间上连续的函数,我们都可以用多项式函数来无限接近它。
这个定理的意义非凡,它为我们提供了一种逼近函数的方法,使我们能够更好地理解和处理复杂的函数关系。
想象一下,当我们面对一个复杂的函数时,我们往往会感到困惑和无从下手。
但是,魏尔斯特拉斯逼近定理告诉我们,我们可以用多项式函数来逼近这个函数,从而更好地理解它的性质。
这就像是在迷雾中找到了一盏明灯,指引着我们前进。
当我们开始构造逼近函数时,我们会发现,这个过程并不容易。
我们需要选择合适的多项式函数,并通过不断调整它的参数,使它能够更好地逼近目标函数。
这个过程就像是在雕塑一件艺术品,我们需要细致入微地处理每一个细节,以使逼近函数更加贴近目标函数。
在构造逼近函数的过程中,我们会遇到各种挑战和困难。
有时,我们会发现目标函数在某些点上变化很快,而多项式函数在这些点上的逼近效果并不理想。
这就需要我们不断地调整多项式函数的阶数,以使它能够更好地逼近目标函数。
然而,尽管在构造逼近函数的过程中我们会遇到各种困难,但我们不应放弃。
正如魏尔斯特拉斯逼近定理告诉我们的那样,我们可以用多项式函数来无限接近目标函数。
只要我们坚持不懈地努力,相信自己的能力,我们就一定能够找到一个逼近函数,它能够很好地近似目标函数,帮助我们更好地理解和处理问题。
总结一下,魏尔斯特拉斯逼近定理是近似函数构造中的一项重要定理,它为我们提供了一种逼近函数的方法,使我们能够更好地理解和处理复杂的函数关系。
在构造逼近函数的过程中,我们会遇到各种挑战和困难,但只要我们坚持不懈地努力,相信自己的能力,我们就一定能够找到一个逼近函数,它能够很好地近似目标函数,帮助我们更好地理解和处理问题。
让我们一起追寻数学的奥秘,用魏尔斯特拉斯逼近定理揭示函数的真相!。
利用逼近法解决函数近似问题
利用逼近法解决函数近似问题随着科技的不断发展,逼近法在数值计算中的应用也越来越广泛。
逼近法是一种重要的数值计算方法,能够有效地解决函数近似问题,为实际问题的求解提供了很大的帮助。
本文将介绍逼近法及其在函数近似问题中的应用。
一、逼近法的基本原理
逼近法是通过构造逼近函数来近似原函数的方法。
逼近函数可以是多项式、三角函数、指数函数等,构造逼近函数的目的是在给定的点上与原函数的函数值和导数值相等或相近。
其中,多项式逼近法是最为常用的一种方法。
二、多项式逼近法
多项式逼近法是通过在给定的点上构造一个多项式函数来近似原函数。
常用的多项式逼近方法有拉格朗日插值法、牛顿插值法和最小二乘法,其中最小二乘法是最为通用的方法。
最小二乘法是通过最小化误差平方和来确定逼近多项式的系数,具有较好的稳定性和精度。
三、函数近似问题的应用
函数近似问题在实际应用中非常广泛,如在数值积分、微分方程求解、信号处理、图像处理等领域都有广泛的应用。
以信号处理领域为例,通过对原信号进行函数逼近,我们可以更好地分析信号的特性和应用价值。
四、逼近法的优缺点
逼近法具有一定的优缺点。
优点在于能够高效地解决函数近似问题,并且在一定条件下具有良好的精度和稳定性;缺点在于在求解高阶逼
近函数时,计算量较大且计算复杂度较高。
综上所述,逼近法是一种重要的数值计算方法,能够有效地解决函
数近似问题。
多项式逼近法是其中最为常用的一种方法,通过构造多
项式函数来近似原函数。
逼近法在实际应用中有广泛的应用领域,在
处理实际问题时非常有用。
函数逼近的几种算法及其应用
函数逼近的几种算法及其应用目录引言 0第一章函数逼近 (1)§1.1 函数逼近的产生背景及研究意义 (1)§1.2 基础知识 (2)§1.2.1 函数逼近与函数空间 (2)§1.2.2 范数与赋范空间 (3)§1.3 最佳平方逼近 (4)§1.3.1 最佳平方逼近及其计算 (4)§1.3.2 用正交函数组作最佳平方逼近 (5)§1.4 有理逼近 (7)§1.4.1 有理逼近的定义及构造 (7)§1.4.2 有理插值函数的存在性 (8)§1.4.3 有理插值函数的唯一性 (9)§1.4.4 几种常见的有理逼近 (10)§1.5 三角多项式逼近与多项式逼近 (11)§1.5.1 三角多项式逼近 (11)§1.5.2 傅里叶级数的一致收敛性 (11)§1.5.3 以2π为周期的连续函数的三角多项式逼近 (12)§1.5.4 [0,π]上连续函数的三角多项式逼近 (13)§1.5.5 闭区间上连续函数的三角多项式逼近 (13)§1.5.6 闭区间上连续函数的多项式逼近 (14)§1.6 其他函数逼近 (14)§1.6.1 曲线拟合的最小二乘法 (14)§1.6.2 泰勒级数 (15)第二章函数逼近应用 (17)§2.1 有理逼近在数值优化中的应用 (17)§2.1.1 直线搜索方法 (17)§2.1.2 计算方法 (18)§2.1.3 计算实例 (18)§2.2 各种泰勒级数判定迭代法的收敛速度 (19)§2.3 各种函数逼近的计算实例 (20)§2.3.1 最佳平方逼近多项式计算实例 (20)§2.3.2 曲线拟合的最小二乘法计算实例 (21)§2.3.3 帕德逼近的计算实例 (22)参考文献 (24)引言函数逼近是函数论的一个重要组成部分,涉及的基本问题是函数的近似表示问题.在数学的理论研究和实际应用中经常遇到下类问题:在选定的一类函数中寻找某个函数g,使它是已知函数ƒ在一定意义下的近似表示,并求出用g近似表示ƒ而产生的误差.这就是函数逼近问题.在函数逼近问题中,用来逼近已知函数ƒ的函数类可以有不同的选择;即使函数类选定了,在该类函数中用作ƒ的近似表示的函数g 的确定方式仍然是各式各样的;g对ƒ的近似程度(误差)也可以有各种不同的含义.所以函数逼近问题的提法具有多样的形式,其内容十分丰富.给定函数)(xf的函数一般要在某个较简单的函数类中找,这种f,用来逼近)(x函数类叫做逼近函数类.逼近函数类可以有多种选择.第一章 函数逼近§1.1 函数逼近的产生背景及研究意义从18世纪到19世纪初期,在L.欧拉、P.-S.拉普拉斯、J.-B.-J.傅里叶、J.-V .彭赛列等数学家的研究工作中已涉及一些个别的具体函数的最佳逼近问题.这些问题是从诸如绘图学、测地学、机械设计等方面的实际需要中提出的.在当时没有可能形成深刻的概念和统一的方法.切比雪夫提出了最佳逼近概念,研究了逼近函数类是n 次多项式时最佳逼近元的性质,建立了能够据以判断多项式为最佳逼近元的特征定理.他和他的学生们研究了与零的偏差最小的多项式的问题,得到了许多重要结果.1885年德国数学家K .(T.W .)魏尔斯特拉斯在研究用多项式来一致逼近连续函数的问题时证明了一条定理,这条定理在原则上肯定了任何连续函数都可以用多项式以任何预先指定的精确度在函数的定义区间上一致地近似表示.虽然没有指出应该如何选择多项式才能逼近得最好,但仍可以说切比雪夫和魏尔斯特拉斯是逼近论的现代发展的奠基者. 在自然科学与科学技术领域中存在着大量的需要解决的非线性问题.近年来人们在数值与函数逼近问题以及计算机辅助几何设计的研究中取得了一系列深刻的结果.随着高性能、大容量计算机的出现,使得过去难以实现的问题变为可能,所以关于函数逼近的理论研究和应用有着巨大的发展潜力.我们举一个例子,如()x +1ln 有如(1-1)式的分式展开.⋅⋅⋅+++++=+524221211)1(2222x x x x x x In (1-1) 取第n 级渐近分式,即可得到()x +1ln 的有理逼近式()x R n .一般地,()x R n 是()x +1ln 的[n/n]帕徳逼近,它的展开式将含有()x +1ln 的Taylor 展开式前2n 项的和()x T n 2,并且()x R n 与()x T n 2的独立参数个数相同.记R ε与T ε分别表示()x R n 与()x T n2的逼近误差,并取x=1.两种逼近的计算结果与误差对比如表1.n R 2n T 10.667 0.26⨯10-1 0.5 0.19 20.69231 0.84⨯10-3 0.58 0.11 30.693122 0.25⨯10-4 0.617 0.76⨯10-1 40.69314642 0.76⨯10-6 0.634 0.58⨯10--2由表1-1可知,R4(1) 比T8(1)的精确度高几乎105倍.这就说明开展某些函数的有理逼近或一般非线性逼近问题的研究是十分必要的.随着科学技术的不断发展,函数逼近方法已在实际应用中显示出巨大的优势和开发潜力.§1.2 基础知识§1.2.1 函数逼近与函数空间在数值计算中经常要计算函数值,如计算机上计算基本初等函数及其他特殊函数.这些都涉及到用多项式、有理分式或分段多项式等便于在计算机上计算的简单函数逼近已给函数,使它达到精度要求而且计算量尽量小.数值逼近是数值计算中最基本的问题.为了在数学上描述更精确,下面先介绍一些基本概念及预备知识.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间.例如,在“线性代数”中将所有实n 组成的,按向量加法及向量与数的乘法构成实数域上的线性空间记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式加法及数与多项式乘法也构成数域R 上的一个线性空间,用n H 表示,称为多项式空间.又如所有定义在区间],[b a 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线性空间,记作],[b a C 称为函数空间.定义1.1 设集合S 是数域P 上的线性空间,S x x n ∈,...,1,如果存在不全为零的数P a a n ∈,...,1使得0...2211=+++n n x a x a x a (1-2)则称n x x ,,1⋅⋅⋅是线性相关的;否则,若等式(1-2)只对021==⋅⋅⋅==n a a a 成立,则称n x x ,,1⋅⋅⋅是线性无关的.若S 是由n 个线性无关元素 n x x ,,1⋅⋅⋅生成的,即S x ∈∀都n n x a x a x +⋅⋅⋅+=11,则称 n x x ,,1⋅⋅⋅是S 的一组基,记作}{1n x x span S ⋅⋅⋅=,并称S 是n 维的.下面考察次数不超过n 的多项式集合n H ,其元素n n n x a x a a x p ⋅⋅⋅++=10)(是由1+n 个系数(n a a a ⋅⋅⋅10,)唯一确定的,n x x ⋅⋅⋅,1, 线性无关,n H =span {n x x ,,,1⋅⋅⋅},(n a a a ,,,10⋅⋅⋅)是)(x p n 的坐标向量,故n H 是1+n 维的.对连续函数],[)(b a C x f ∈不能用有限个线性无关的函数表示,故],[b a C 是无限维的,但)(x f 可用有限维的多项式空间n H 的元素)(x p 逼近,使误差ε≤-≤≤)()(max x p x f bx a (任何给定的正数),这就是著名的维尔斯特拉斯定理.定理1.1 设],[)(b a C x f ∈,则对∈∃>∀)(,0x p n εn H 使得ε<-)()(x p x f 在],[b a 上一致成立.1912年伯恩斯坦构造了一个多项式0(,)()(1)nn k n k n k k k B f x f C x x n -==-∑ 其中(1)(1)!n k n n n k C k -⋅⋅⋅-+=为二项式展开系数,并证明了lim (,)n x B f x →∞在[0,1]上一致 成立,若()f x 在[0,1]上m 阶可导则还有()()lim (,)()m m n x B f x f x →∞=.这也从理论上给出了定理1.1的证明.§1.2.2 范数与赋范空间为了在线性空间中衡量元素的大小,可将在n R 空间的范数定义推广到一般线性空间S .定义1.2 设S f ∈,若存在唯一实数∙,满足条件1.0≥f 当且仅当0=f 时0≡f ;2.R a f a af ∈=,;3.S g f g f g f ∈∀+≤+,,; 则称∙为线性空间S 上的范数.在线性空间S 上定义了范数∙,称为赋范线性空间,记为X .例如,在n R 上的向量T n x x x )(,1⋅⋅⋅=的三种常用范数为 i n i x x≤≤∞=1max ,称∞-范数或最大范数; ∑==n i i x x 11,称为1-范数; 21122)(∑==n i i x x ,称为2-范数. 类似地对连续函数空间],[b a C 的)(x f 也可以定义以下三种范数:)(max x f f bx a ≤≤∞=,称为∞-范数;dx x f fb a ⎰=)(1,称为1-范数;2122))((dx x f f b a⎰=,称为2-范数.可以验证,这样定义的范数∞∙,1∙,2∙满足定义1.2中的3个条件.定义1.3 设X 为赋范线性空间,其范数为∙,若序列X ⊂∞0n }{ϕ,X f ∈,使0lim =-∞→f n n ϕ则称序列∞0}{n ϕ依范数∙收敛于f ,记作f n n =∞→ϕlim .对],[)(b a C x f ∈及∞∙,上述 收敛定义就是∞0}{n ϕ在区间[b a ,]上一致收敛于)(x f .若范数为2-范数,则称上述收敛定义为平方收敛或均方收敛.§1.3 最佳平方逼近§1.3.1 最佳平方逼近及其计算现在我们研究在区间[]b a ,上一般的最佳平方逼近问题.定义1.4 对[]b a C x f ,)(∈中的一个子集{)}(),...(),(10x x x span n ψψψψ=,求ψ∈)(*x S ,使:⎰-=-=-∈∈ba x S x S dx x S x f x x S x f x S x f 2)(22)(22*)]()()[()()()()(min min ρψψ,称)(*x S 是)(x f 在子集ψ中的最佳平方逼近函数.若令)()()(*x S x f x -=δ,则平方误差为∑=-=--=--=n k k x f x a x f x f x S x f x f x S x f x S x f x 022***22))(),(()( ))(),(())()(( ))()(),()(()(ψδ (1-3)若取[]1,0)(,1)(,)(C x f x x x k k ∈≡=ρψ,在n P 中求n 次最佳平方逼近多项式:n n x a x a a x S **1*0*...)(++=此时 11))(),((1++==⎰+j k dx x x x j k k j ψψ k k k d dx x x f x x f ==⎰10)())(),((ψ若用H 表示),....,1(n n x x G G =对应的矩阵,即:121...2111............21...312111...211+++++n n n n n 称为希尔伯特(Hilbert)矩阵,记T n a a a a ),...,,(10=T n d d d d ),...,,(10=,则: d Ha =的解*kk a a =),...,2,1,0(n k =即为所求. §1.3.2 用正交函数组作最佳平方逼近用},....,1{n x x 做基,求最佳平方逼近多项式,当n 较大时,系数矩阵是高度病态的,因此直接求解法方程是相当困难的,通常是采用正交多项式做基.下面介绍如何用正 交函数组作最佳平方逼近.设[]b a C x f ,)(∈{})(),...(),(10x x x span n ψψψψ=, 若)(),...(),(10x x x n ψψψ是正交函数族,则:0))(),((=x x j i ψψj i ≠.而0))(),((>x x j i ψψ, 故法方程的系数矩阵))(),...(),((10x x x G n n ψψψ=为非奇异对角阵, 且法方程的解为:())(),())(),((*x x x x f a k k k k ψψψ= ),...,2,1,0(n k = (1-4)于是[]b a C x f ,)(∈在ψ中的最佳平方逼近函数为:)()())(),(()(022*x x x x f x S k nk k k ψψψ∑== (1-5)由(1-3)可得均方误差为21202222*2)])())(),(([)(( )()()(∑=-=-=nk k k n n x x x f x f x S x f x ψψδ (1-6)由此可得贝赛尔不等式:22122*)())((x f x ank k k≤∑=ψ若[]b a C x f ,)(∈按正交函数族)}({x k ψ展开,系数*ka ),...,2,1,0(n k =按(1-4)计算,得级数∑∞=0*)(k k k x a ψ,称为)(x f 的广义傅立叶级数,系数*ka 称为广义傅立叶系数. 它是傅立叶级数的直接推广.设{})(),...(),(10x x x n ψψψ是正交多项式,{})(),...(),(10x x x span n ψψψψ=,)(x k ψ,),...,2,1,0(n k =可由n x x ,...,1, 正交化得到,则有下面的收敛定理.定理 1.2 设[]b a C x f ,)(∈,)(*x S 是由(1-5)给出的)(x f 的最佳平方逼近多项式,其中{})(),...(),(10x x x n ψψψ是正交多项式族,则有0)()(lim 2*=-∞→x S x f nn . 下面考虑函数[]1,1)(-∈C x f ,按勒让德多项式{})(),...(),(10x P x P x P n 展开,由(1-4), (1-5)可得)(...)()()(*1*10*0*x P a x P a x P a x S n n n ++= (1-7)其中()()()()()()()()⎰-+==11*212,,dx x P x f k x P x P x P x f ak k k k k(1-8) 根据(1-6),平方误差为: ()()∑⎰=-+-=nk k k a k dx x fx 02*11222121δ 由定理1可得: 0)()(lim 2*=-∞→x S x f nn 如果)(x f 满足光滑性条件还可得到)(*x S n 一致收敛于)(x f 的结论.定理 1.3 设[]1,1)(2-∈C x f f(x)∈C 2[-1,1],)(*x S n 由(1-7)给出,则对任意[]1,1-∈x 任意0>ε当n 充分大时有:()()nx S x f n ε≤-*.对于首项系数为1的勒让德多项式n P 有以下性质:定理1.4 在所有最高次项系数为1的n 次多项式中,勒让德多项式()x P n 在[]1,1-上与零的平方误差最小.§1.4 有理逼近§1.4.1 有理逼近的定义及构造有理逼近作为非线性逼近的一个重要特殊情形,其实就是用一个易于计算的有理函数来有效地近似较复杂的已知函数.下面引进有理逼近方法,先介绍有理函数插值的概念.设已给定m+n+1个不同的点n m x x x +,...,,10和相应地函数值()()()n m x f x f x f +,...,,10,所谓的有理函数插值问题,乃是求有理分式函数1110111,)()()(b x b x b x b a x a x a x a x D x N x R n n n n m m m m n m n m ++⋅⋅⋅++++⋅⋅⋅++==---- 使之满足插值条件如下)()(,j j n m x f x R =,n m j +⋅⋅⋅=,,1,0其中()x N m ,()x D n 分别为x 的m 与n 次多项式,m 与n 是给定的非负整数.有理函数的逼近方法是用有理函数()()()x D x N x R n m n m =,来近似函数()x f .即令()()()x D x N x f n m ≈,()()()x D x f x N n m ≈比较两边的系数,可得∑∞=++=-01)()()(k kk n m n m xr xx D x f x N用()x R n m ,近似()x f 时,其截断误差的主要部分是()x D x r E n n m 10++=(这里设()∑∞==0k k k x c x f ),大量计算例子表明,采用m,n 相等或接近相等时为最佳.对于有理逼近中有理函数的构造存在着许多种构造方法(如多项式、有理分式等).但在通常情况下一般利用连分式来构造有理函数()x R n m ,.首先按递推的方法给出如下式倒差商的定义.⎪⎪⎪⎩⎪⎪⎪⎨⎧+⋅⋅⋅=--=⋅⋅⋅⋅⋅⋅--==----n m k x a x a x x x a x a x a x x x a x f x a k k k k k ,,2,1,)()()()()()()()(1111000010设连分函数如下nm n m a x x x x a x x a x x a x R +++-+-+-+-+=1221100)(一般写成nm n m a x x a x x a x x a x R +++-+⋅⋅⋅+-+-+=121100)( 其中()x a a 00=,()x a a 11=,...,()x a a n m n m ++=为倒差商.将右式整理,即完成了有理函数()x R mn 的构造.例如函数x f +=1,可以利用逐次迭代算法的到如下式形式的连分式展开.因为x f +=1,即为x f =-12.⇒++=11f xf )))1(11(11(1f xx x f ++++++=用)1(1f xf ++=无限迭代下去就可以得到x f +=1的连分式展开如下 ⋅⋅⋅+⋅⋅⋅+++=+22211xx x xm,n 相等或接近相等时为最佳.§1.4.2 有理插值函数的存在性关于有理函数插值的定义在本文第二章中已经详细给出.在其基础上定义两个有理函数如下)()()(111x q x p x r =, )()()(222x q x p x r = 如果存在一个非零常数a ,使得)()()()(1212x aq x q x ap x p ==, (1-9)则称二者恒等,并记为)()(21x r x r ≡.如果满足式(1-10),则称两个有理函数r 1(x)与r 2(x)等价,记为()()x r x r 21~.)()()()(1221x q x p x q x p ≡ (1-10)一般来说,插值问题(1-9)、(1-10)所形成的问题是一个非线性问题.但是当有理分式函数r(x) = p(x)/q(x)是插值问题的解时,当然也有。
有界可测函数
有界可测函数介绍有界可测函数(Bounded Measurable Function)是在测度空间上定义的一类函数。
它是测度论领域中的重要概念,对于研究测度空间的性质和函数的可测性具有重要的作用。
本文将介绍有界可测函数的定义、性质以及在测度空间中的应用。
定义在测度空间(Measure Space)中,设有两个测度空间(X, Σ, μ)和(Y, τ, ν),其中X和Y是非空集合,Σ和τ是X和Y上的σ代数,μ和ν是X和Y上的测度。
一个函数f:X→Y被称为有界可测函数,如果对于任意的可测集E∈Σ,f的限制在E上的函数f|E是可测函数,并且存在一个实数M>0,使得|f(x)|≤M几乎处处成立。
性质1.有界可测函数的加法和乘法:如果f和g是两个有界可测函数,并且α和β是实数,则αf+βg也是有界可测函数。
2.有界可测函数的极限:如果{fn}是一列有界可测函数,并且对于几乎所有的x,{fn(x)}是收敛的,则其极限函数也是有界可测函数。
3.有界可测函数的积分:如果f是有界可测函数,则其可积性等价于其绝对可积性,即f可积当且仅当|f|可积。
应用有界可测函数在测度论中有着广泛的应用。
下面我们将介绍几个常见的应用领域。
测度空间中的积分利用有界可测函数的积分性质,我们可以定义测度空间上的积分操作。
给定一个测度空间(X, Σ, μ),定义一个非负的有界可测函数f,我们可以定义其关于测度μ的积分。
对于一般的有界可测函数,我们可以将其拆分为正负部分来进行积分。
利用积分操作,我们可以推广测度空间上的许多概念和性质。
Lp空间在有界可测函数的基础上,我们可以定义Lp空间。
Lp空间是测度空间中函数的一个重要子空间,其中p是一个实数,0<p<∞。
对于一个有界可测函数f,如果其Lp 范数有限,则f属于Lp空间,记作Lp(X, μ)。
Lp空间在函数分析和概率论中都有广泛的应用。
描述统计学在描述统计学中,我们经常遇到随机变量的分布函数。
函数逼近
3-1
3与预备知识
什么是函数逼近
对于一个给定的复杂函数 f (x), 在某个表达式较简单的函数类 Φ 中寻找一个函数 p(x), 使其在某种 度量下距离 f (x) 最近, 即最佳逼近. 这就是函数逼近. • • • • 函数 f (x) 通常较复杂, 但一般是连续的. 我们这里主要考虑 [a, b] 上的连续函数, 即 f (x) ∈ C [a, b]; 函数类 Φ 通常为多项式函数, 或分段多项式函数, 或有理函数, 或三角多项式函数, 等等; 在不同的度量下, f (x) 的最佳逼近可能不一样; 函数逼近通常采用基函数法.
2
例 3.1 常见的线性空间 • • • • • 3.1.4 Rn : 数域 R 上的 n 为线性空间; Cn : 数域 C 上的 n 为线性空间; C [a, b]: 定义在 [a, b] 上的实系数连续函数全体构成 R 上的线性空间; Hn : 次数不超过 n 的实系数多项式全体构成 R 上的 n + 1 维线性空间; C p [a, b]: 定义在 [a, b] 上的实系数 p 阶连续可导函数全体构成 R 上的线性空间; 范数与赋范线性空间
3.1 基本概念与预备知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.2 什么是函数逼近 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 多项式逼近的理论基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 线性空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 范数与赋范线性空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 内积与内积空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 最佳逼近多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
闭区间上连续函数的有界性定理证明的新方法
闭区间上连续函数的有界性定理证明的新方法闭区间上连续函数的有界性定理证明的新方法一、引言函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。
在数学中,连续是函数的一种属性。
而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。
在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。
在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。
而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。
并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。
但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量t是连续状态的,故f(t)在定义域[0,365]内是一个连续函数。
保险的定价与费率的拟定跟被保农作物受气候灾害的情况有关,而受气候灾害的情况则由f(t)所决定,即f(t)也是的一个连续函数,用spss软件将农作物受灾情况进行聚类分析,将气温划分为4个等级,即为四个在值域上的闭区间根据闭区间连续函数的有界性定理可知都有|t|≤M,则找到了一个f(t)为落在闭区间的最大时间长度,将被保险农作物的生长周期与此时间长度结合进行保险定价与费率的拟定。
四、结论上述用聚点原则证明了闭区间上连续函数的有界性定理,从侧面反映了实数完备性的7个基本定理的相互等价性,并且根据《数学分析》书及文献中所给出的证明,总结出如下规律:(一)闭区间上连续函数的有界性定理的证明一般都是采用反证法。
【毕业设计】区间上连续函数用多项式逼近的性态
【毕业设计】区间上连续函数用多项式逼近的性态区间上连续函数用多项式逼近的性态摘要在实际的应用中,经常遇到这样的问题:为解析式子比较复杂的函数寻找一个多项式来近似代替它,并要求其误差在某种度量下意义下最小.这就是用多项式来逼近函数问题的研究本文主要讨论了区间上连续函数用多项式逼近的性态.首先给出了在闭区间上连续函数用多项式逼近的相关结论——Weierstrass逼近定理,是Weierstrass于1885年提出的,这条定理保证了闭区间上的任何连续函数都能用多项式以任意给定的精度去逼近.通过引用Bernstein多项式和切比雪夫多项式给出了相应的证明.其次列出了Bernstein多项式以及由Bernstein算子推广得到的Kantorovich算子它们的概念、一些具体的性质以及推广和应用.最后,引进推广到无穷区间上的S.Bernstein 多项式,进一步研究了无穷区间上连续函数用多项式逼近的性态,并得到了相关结论.关键词:Weierstrass逼近定理;Bernstein多项式;Kantorovich算子;S.Bernstein 多项式;无穷区间Polynomial approximation of continuousfunctions on the interval propertyAbstract:In practical applications,often encounter this problem: to find a polynomial to approximate the more complex function of the analytical formula,and requested the minimum of the error is some kind of metric significance.This is the polynomial approximation function problems.This article focuses on the behavior of interval polynomial approximation of continuous functions.Firstly,the conclusions continuous function on a closed interval with a polynomial approximation - Weierstrass approximation theorem,is weierstrass 1885,which Article theorem guarantees of any continuous function on the closed interval can use polynomials to approximate any given accuracy.Through quoted the Bernstein multinomial and the Chebyshev multinomial has given the corresponding proof.Next has listed the Bernstein multinomial as well as the Kantorovich operator which obtains by the Bernstein operator promotion their concept,some concrete nature as well as the promotion and the application.Finally,the introduction promotes to the infinite sector in the S.Bernstein multinomial,further has studied in the infinite sector the continuous function the condition which approaches with the multinomial,and obtained the related conclusion.Key words:Weierstrass approximation theorem,Bernstein polynomials; Kantorovich operator; S.Bernstein polynomial; infinite interval目录第1章绪论 (1)1.1区间上连续函数用多项式逼近的性态研究的背景 (1)1.2区间上连续函数用多项式逼近的性态研究的意义 (2)第2章WEIERSTRASS逼近定理的证明及应用 (3)2.1W EIERSTRASS逼近定理的第一种证明 (3)2.1.1 Weierstrass逼近定理的Bernstein证明 (3)2.1.2 闭区间[]b a,上的weierstrass逼近定理 (6)2.2W EIERSTRASS逼近定理的第二种证明 (7)2.3W EIERSTRASS逼近定理的推广 (9)2.3.1 Weierstrass第二定理 (9)2.3.2 Weierstrass-Stone定理 (10)2.3.3 Weierstrass逼近定理的逆定理 (11)第3章BERNSTEIN多项式和KANTOROVICH算子 (13)3.1B ERNSTEIN多项式 (13)3.1.1 Bernstein多项式的定义 (13)3.1.2 Bernstein算子的一些性质 (15)3.2K ANTOROVICH算子 (20)3.2.1 Kantorovich算子的定义 (20)3.2.2 Kantorovich算子的性质 (21)3.2.3 Lebesgue可积函数的Kantorovich算子逼近 (22)3.2.4 加权的Kantorovich算子 (23)第4章S.BERNSTEIN多项式在无穷区间上的推广 (25)4.1无穷区间上S.B ERNSTEIN多项式的定义 (25)4.2无穷区间上S.B ERNSTEIN多项式逼近定理 (26)第5章结论 (34)参考文献 (36)致谢............................................................................................... 错误!未定义书签。
函数的逼近
定理 2:(Weierstrass 第二逼近定理) 设: f ( x ) ∈ C2π (以 2π 为周期的连续函数) 则 ∀ε > 0 ,存在三角多项式 T ( x ) ,使得: f ( x ) − T ( x ) < ε 。
n−k
k k = ∑ k 2 Cn x (1 − x ) k =0 n
n
n−k
k k −2nx ∑ kCn x (1 − x ) k =0
n−k
k k + n 2 x 2 ∑ Cn x (1 − x ) k =0
n
n−k
= nx (1 − x + nx ) − 2nxin + n 2 x 2 = nx (1 − x ) ≤
,m ,
11.4
高等微积分讲义
若令: α k ( x ) =
xk +1 − x x − xk , βk ( x ) = ,则有: α k ( x ) + β k ( x ) = 1 , xk +1 − xk xk +1 − xk ,m ,
从而 Λ ( x ) = f ( xk ) α k ( x ) + f ( xk +1 ) β k ( x ) , x ∈ [ xk , xk +1 ] , k = 0,1,
对于 σ 1 ,有: σ 1 <
k − x <δ n
∑
ε
2
k k Cn x (1 − x )
n−k
≤
ε
2
;
对于 σ 2 ,由于: f ( x ) ≤ M (连续函数有界), 因而:σ 2 ≤ 2 M
第12讲 可测函数的性质与逼近定理
[ E{ x | f ( x ) } E{ x | 0 g ( x ) }]
第12讲 可测函数的性质与逼近定理
E{ x | 0 f ( x ) } E{ x | g ( x ) }] [ E{ x | f ( x )} 0} E{ x | g ( x ) }]
第12讲 可测函数的性质与逼近定理
集后逐点收敛)。显然,如果我们证明 了一个几乎处处收敛的可测函数序列的 极限是可测函数,则上述任何意义下的 极限函数都是可测的。为此,先证明一 个引理。 引理1 假设 { f m ( x )} m 1是上的可测函数序列, 则
(i) h( x ) sup f m ( x ), l ( x ) inf f m ( x )
第12讲 可测函数的性质与逼近定理
问题4:如果h(x)是fn(x)的上极限,情形又 如何? 一个很重要的问题是:可测函数序列 的极限是否是可测函数?到目前为止, 至少有三种意义下的极限概念,其一是 “一致收敛”、其二是“处处收敛” (即在给定的集上逐点收敛),其三是 “几乎处处收敛”(即在给定的集上, 除去一个零测
| f ( x ) | f ( x ) f ( x )
第12讲 可测函数的性质与逼近定理
问题5:f(x) 的可测性 与f+(x)、f-(x)的可测 性是否等价? 问题 6 : |f(x)| 的可测性与 f+(x) 、 f-(x) 的可 测性是否等价? 问题7:f(x) 的可测性与|f(x)|的可测性是 否相同? f ( x) ,f ( x) 由引理1的(i),知 都是
第12讲 可测函数的性质与逼近定理
lim f m ( x ) f ( x ) ,则称在上几乎处处收 m 敛到f,记作 f ( x ) lim f m ( x )a.e.[E]
闭区间上连续函数基本性质——最值定理和有界性定理(老黄学高数第125讲)
. f在[a,+∞)上有界. 又问f在[a,+∞)必有最大值或最小值吗?
若M<A+ε0且m>A-ε0,则M>A-ε0且m<A+ε0, 取εM =M-(A-ε0)=M-A+ε0>0,有正数c,使x>c时,有 |f(x)-A|<εM,即A-(M-A+ε0)<f(x)<A+(M-A+ε0)=M+ε0. 由ε0的任意性可知f(x)≤M,又f在[b,c]上有最大值N, 取xM=max(M,N),则xM为f在[a,+∞)上的最大值;
A+ε0
A
A-ε0
ab
且f在[a,+∞)一定有最大值或最小值。
1、设f在[a,+∞)上连续,且
f(x)存在. 证明:
. f在[a,+∞)上有界. 又问f在[a,+∞)必有最大值或最小值吗?
f在闭区间[a,b]⊂[a,+∞)上连续,
∴f在[a,b]上有最大值M和最小值m.
若M≥A+ε0,则M为f在[a,+∞)上的最大值;
M
A+ε0
a
b
1、设f在[a,+∞)上连续,且
f(x)存在. 证明:
. f在[a,+∞)上有界. 又问f在[a,+∞)必有最大值或最小值吗?
f在闭区间[a,b]⊂[a,+∞)上连续,
∴f在[a,b]上有最大值M和最小值m.
若m≤A-ε0,则m为f在[a,+∞)上的最小值;
A
A-ε0
m
a
b
1、设f在[a,+∞)上连续,且
证:定义函数F(x)=
闭区间上连续函数有界性定理证明新方法计划
闭区间上连续函数的有界性定理证明的新方法一、前言函数是描述客观世界变化规律的重要数学模型,连续函数又是数学解析中特别重要的一类函数。
在数学中,连续是函数的一种属性。
而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着必定联系的,而闭区间上连续函数的性质也显得特别重要。
在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。
在极限绪论中,我们知道闭区间上连续函数拥有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。
而闭区间上连续函数的有界性定理的证明,在好多数学教材中,所采纳的方法大体同样,一般都是用致密性定理和有限覆盖定理来加以证明的。
而且在文件中作者也分别利用闭区间套定理、确界定理、单一有界定理和柯西收敛准则证了然此定理。
但是我们知道,解析数学上所列举的实数齐备性的7个基本定理是互相等价的,因此从原则上讲,任何一个都可以证明该定理,只但是是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文件中已经用其余6个基本定理证了然闭区间连续函数第1 页的有界性定理,下边本文用实数齐备性定理中的聚点原则和构造数列的方法给出了该定理的新证明方法。
二、一种新的证明方法(一)预备知识(二)有界性定理的新证法下边将给出实数齐备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。
三、有界性定理在数学建模中的应用本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实质问题。
在2019年“深圳杯”数学建模夏令营D题中,依据题意所述:农业灾祸保险是政府为保障国家农业生产的发展,基于商业保险的原理并恩赐政策扶助的一类保险产品。
农业灾祸保险也是针对自然灾祸,保障农业生产的重要措施之一,是现代农业金融服务的重要构成部分。
连续函数的有界性
连续函数的有界性2019-01-25摘要:函数是描述客观世界变化规律的重要数学模型.连续函数⼜是我们关注的⼀类函数,函数极限的存在性、可微性,以及有界性等问题都与函数的连续性有着⼀定的联系.⽂章讨论连续函数的有界性.关键词:函数连续有界闭区间上连续函数的有界性定理,即:定理:若函数f(x)在闭区间[a,b]上连续,则函数f(x)在闭区间[a,b]上⼀定有界.证明:设函数f(x)在闭区间[a,b]上连续.根据连续函数的局部有界性定理,对于任意x∈[a,b],存在正数M及正数δ,当x∈(x-δ,x+δ)∩[a,b]时,有|f(x)|≤M.作开区间集J={(x-δ,x+δ)||f(x)|≤M,x∈[a,b],x∈(x-δ,x+δ)∩[a,b]},显然J覆盖了闭区间[a,b].由有限覆盖定理,存在J中的有限个开区间(x-δ,x+δ),(x-δ,x+δ),…,(x-δ,x+δ),它们也覆盖了闭区间[a,b].取M=max{M,M,…,M},于是对于任意的x∈[a,b],存在i,1≤i≤n,使得x∈(x-δ,x+δ),有:|f(x)|≤M≤M.即函数f(x)在闭区间[a,b]有界.但是,如果上述定理的条件中闭区间[a,b]改为开区间(半开半闭区间、⽆穷区间)时,函数不⼀定是有界函数,例如:函数f(x)=在开区间(0,1)连续,函数f(x)=在开区间(0,1)是⽆界函数.⼜如函数f(x)=x在任何有限区间都是有界函数,但(-∞,+∞)在上是⽆界函数.⽂章讨论在⼀定条件下,可保证连续函数是有界函数.结论1:若函数f(x)在[a,b)连续,且f(x)存在,则函数f(x)在[a,b)有界.证明:设f(x)=A,从⽽埚ε=1,?埚δ>0,?坌x∶x∈(b-δ,b)?奂[a,b),有|f(x)|≤1+|A|.因为函数f(x)在闭区间[a,b-δ]连续,从⽽函数f(x)在闭区间[a,b-δ]上有界.即?埚M>0,当X∈[a,b-δ],使得|f(x)|≤M.取M=max(1+|A|,M),于是?坌x∈[a,b),有|f(x)|≤M,即函数f(x)在[a,b)有界.结论1′:若函数f(x)在(a,b]连续,且极限f(x)存在,则函数f(x)在(a,b]有界.证明:设f(x)=A,与结论1的证明类似.结论2:若函数f(x)在(a,b)上连续,且极限f(x)与f(x)都存在,则函数f(x)在(a,b)有界.证明:设f(x)=A,f(x)=B设F(x)=A ( x=a)f(x)( a<x<b)B (x=b),由于F(x)=f(x)=AF(x)=f(x)=B及函数f(x)在(a,b)上连续,所以函数F(x)在闭区间[a,b]上连续,根据闭区间上连续函数的有界性定理,函数F(x)在闭区间[a,b]上有界,因为在(a,b)内f(x)=F(x),从⽽函数f(x)在(a,b)有界.结论3:若函数f(x)在[a,+∞)上连续,且极限f(x)存在,则函数f(x)在[a,+∞)有界.证明:设f(x)=A,即:埚ε=1,?埚B>0,(B>a) ?坌x∶x>B,有|f(x)-A|<1,从⽽当x∈(B,+∞)时,|f(x)|<1+|A|由于函数f(x)在[a,+∞)连续,当然在[a,B]?奂[a,+∞)上连续,故由闭区间上连续函数的有界性,?埚M>0,?坌x∈[a,B],有|f(x)|<M,取M=max(1+|A|,M),于是?埚M>0,?坌x∈[a,+∞),有|f(x)|≤M,即函数f(x)在[a,+∞)上有界.结论3′:若函数f(x)在(-∞,b]上连续,且极限f(x)存在,则函数f(x)在(-∞,b]有界.结论4:若函数f(x)在(-∞,+∞)上连续,且极限f(x)存在,则函数在(-∞,+∞)有界.证明:设f(x)=A,即?埚ε=1,?埚B>0, ?坌x∶|x|>B,有|f(x)-A|<1,从⽽|f(x)|<1+|A|,所以函数f(x)在(-∞,-B)∪(B,+∞)上有界.已知函数在(-∞,+∞)上连续,当然在[-B,B]?奂(-∞,+∞)上连续,由闭区间上连续函数的有界性,?埚M′>0, ?坌x∈[-B,B],|f(x)|≤M′,取M=max(1+|A|,M′).于是?埚M>0, ?坌x∈(-∞,+∞),有|f(x)|≤M,即函数f(x)在(-∞,+∞)有界.参考⽂献:[1]华东师范⼤学数学系.数学分析[M].北京:⾼等教育出版社,2001.[2]吴良森,⽑⽻辉,韩⼠安,吴畏.数学分析学习指导[M].北京:⾼等教育出版社,2004.[3]刘⽟琏,傅沛仁.数学分析讲义[M].北京:⾼等教育出版社,2003.[4]裴礼⽂.数学分析中的典型问题与⽅法[M].北京:⾼等教育出版社,1993.[5]桂祖华.微积分新探[M].上海:上海交通⼤学出版社,2004.本⽂为全⽂原貌未安装PDF浏览器⽤户请先下载安装原版全⽂注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。
有界最值定理
有界最值定理有界最值定理是实分析中的一个重要定理,它在数学分析、微积分、实变函数等领域都有广泛的应用。
该定理主要讨论了一个函数在闭区间上的最值问题,即函数在闭区间上是否存在最大值和最小值。
有界最值定理是实分析中的基本定理之一,它为我们研究函数的性质提供了重要的数学工具。
首先,我们来看一下有界最值定理的数学表述:设函数f(x)在闭区间[a, b]上连续,则f(x)在闭区间[a, b]上必定有最大值和最小值。
也就是说,对于任意一个闭区间上的连续函数,它总是存在一个最大值和一个最小值。
这个定理非常直观,因为闭区间上的连续函数在有限的区间内必然能够取到最大值和最小值。
有界最值定理的证明可以通过反证法来进行。
假设函数f(x)在闭区间[a, b]上没有最大值或最小值,即对于任意x∈[a, b],都有f(x)>M或f(x)<m,其中M和m分别是一个实数。
那么我们可以构造两个数列{xn}和{yn},其中xn和yn分别是[a, b]上的无穷多个点,满足f(xn)>M和f(yn)<m。
由于[a, b]是一个有界闭区间,所以根据有界性原理,{xn}和{yn}必定存在收敛子列{xnk}和{ynk},且它们的极限分别为x0和y0。
由于f(x)在闭区间[a, b]上连续,所以根据连续函数的性质,我们知道f(x0)和f(y0)分别是f(x)在闭区间[a, b]上的极限点。
但是根据我们的假设,f(x0)>M且f(y0)<m,与极限点的定义相矛盾。
因此,我们得出结论:函数f(x)在闭区间[a, b]上必定有最大值和最小值。
有界最值定理的一个重要应用是求解一些实际问题中的最优解。
例如,在经济学中,我们经常需要求解某种商品的最大利润或最小成本;在物理学中,我们需要求解某种物理量的最大值或最小值。
有界最值定理为我们提供了一种有效的方法来解决这些问题。
除了有界最值定理,还有一些相关的定理也在实分析中起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闭区间上有界可测函数的逼近定理(用多项式逼近)
微积分中,特殊函数曲线是研究各种问题的重要内容,常有这样的需求:给定一个闭区间上有界可测函数 f(x),需要找出它的逼近函数 g(x),使得g(x)的误差最小。
通过把这个问题化形,我们就会得到一个多项式逼近定理。
多项式逼近定理是实变函数逼近法的重要一环,其核心思想是用多项式 Pn(x) 最佳逼近在 [a,b] 上一连续函数 f(x),即|f(x)-Pn(x)| < ε,则称 Pn(x) 为多项式逼近
f(x),ε 为误差限。
多项式逼近定理的具体内容可以用下面的公式来表示:
Pn(x) = a0 + a1x + a2x^2 + ... + anx^n
其中x ∈ [a,b], ai 是经验系数,确定 ai 的方法有很多,此处以高斯–拉普拉斯求积法为例:
ai = (1/bi)*[f(x) + ∑ (λj-1 * Pj(x))]
其中 bi 为常数, Pj(x) 为 j 阶多项式,公式中最右边的积分项由如下公式求得:∫(a,b) {f(x)*Pj(x)dx}
公式中的 aj 积分数值可以用下面的矩阵方式表示:
{ P0(x) P1(x) P2(x) P3(x)... Pn(x)}
B(x) = {... ... ... ... ... ...}
其中 B(x) 为系数矩阵,f(x) 为被逼近函数, ai 为一维向量。
多项式逼近定理主要用来估计闭区间上有界可测函数的值,其误差与精度直接相关系数矩阵 B(x) 的范畴,因此针对不同的问题,需要根据情况有不同的求解方案。
此外,多项式逼近定理还具有可行性,能够得到快速准确的解,因此被广泛应用于技术计算中。