材料现代研究方法-透射电子显微镜

合集下载

材料现代研究方法习题加答案-考试实用

材料现代研究方法习题加答案-考试实用

第二部分电子显微分析一、电子光学1、电子波特征,与可见光有何异同?2、电磁透镜的像差(球差;色差;像散;如何产生,如何消除和减少)球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离开透镜主轴较远的电子比主轴附近的电子折射程度过大。

用小孔径成像时可使球差明显减小。

像散是由于电磁透镜的轴向磁场非旋转对称引起。

透镜磁场不对称,可能是由于极靴被污染,或极靴的机械不对称性,或极靴材料各项磁导率差异引起。

象散可由附加磁场的电磁消象散器来校正。

色差是由入射电子的波长或能量的非单一性造成的。

稳定加速电压和透镜电流可减小色差。

3、电磁透镜的分辨率、景深和焦长(与可见光),影响因素电磁透镜的分辨率主要由衍射效应和像差来决定。

(1)已知衍射效应对分辨率的影响(2)像差对分辨的影响。

像差决定的分辨率主要是由球差决定的。

景深:当像平面固定时(像距不变),能维持物像清晰的范围内,允许物平面(样品)沿透镜主轴移动的最大距离。

焦长:固定样品的条件下(物距不变),象平面沿透镜主轴移动时仍能保持物像清晰的距离范围,用D L表示。

二、透射电子显微镜1、透射及扫描电镜成像系统组成及成像过程(关系)扫描电镜成像原理:在扫描电镜中,电子枪发射出来的电子束,一般经过三个电磁透镜聚焦后,形成直径为0.02~20μm的电子束。

末级透镜(也称物镜,但它不起放大作用,仍是一个会聚透镜)上部的扫描线圈能使电子束在试样表面上作光栅状扫描。

通常所用的扫描电镜图象有二次电子象和背散射电子象。

2、光阑(位置、作用)光栏控制透镜成像的分辨率、焦深和景深以及图像的衬度、电子能量损失谱的采集角度、电子衍射图的角分辨率等等。

防止照明系统中其它的辐照以保护样品等3、电子衍射与x衍射有何异同电子衍射与X射线衍射相比的优点:1.电子衍射能在同一试样上将形貌观察与结构分析结合起来。

2.电子波长短,单晶的电子衍射花样婉如晶体的倒易点阵的一个二维截面在底片上放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和有关取向关系,使晶体结构的研究比X射线简单。

透射电镜的应用

透射电镜的应用

透射电镜在材料分析上的应用1概述透射电子显微镜(缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。

散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。

由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。

因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。

在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。

而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。

通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。

2应用特点通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。

我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。

在得到所需图像后,可以利用相机照相的方法把图像记录下来。

现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。

3.应用3 TEM的主要功能对于材料科学的研究而言,TEM已经成为了一种不可或缺的研究工具,以至于在今天,已经很难想象没有TEM的帮助,我们如何深入开展材料科学的研究工作。

下面我简单地列举TEM在材料科学研究中的6个常见用途。

(a)利用质厚衬度(又称吸收衬度)像,对样品进行一般形貌观察;(b)利用电子衍射、微区电子衍射、会聚束电子衍射物等技术对样品进行物相分析,从而确定材料的物相、晶系,甚至空间群;(c)利用高分辨电子显微术可以直接“看”到晶体中原子或原子团在特定方向上的结构投影这一特点,确定晶体结构,大于100nm物体用低压、低分辨电镜即可观察。

材料现代测试分析技术-TEM透射电镜

材料现代测试分析技术-TEM透射电镜

Why?
36
分辨率
球差 色差
像差
像散 电磁透镜也和光学透镜一样,除了衍射 效应对分辨率的影响外,还有像差对分 辨率的影响。由于像差的存在,使得电 磁透镜的分辨率低于理论值。电磁透镜 的像差包括球差、像散和色差。
球差

37
球差是因为电磁透镜的中心区域磁场和边缘区 域磁场对入射电子束的折射能力不同而产生的。 离开透镜主轴较远的电子(远轴电子)比主轴 附近的电子(近轴电子)被折射程度大。
平行电子束形成(TEM-mode)
11
(A)C1会聚,C2欠焦,获得近似平行束; 11 (B)C1会聚,C2聚焦,C3调节获得平行束;
会聚电子束形成(STEM,EDS,NBD,CBD)
12
(A)C1会聚,C2聚焦,获得会聚束; (B)C1会聚,C3调节获得会聚束;
成像系统
13
对电镜: 电子束 聚光镜 物镜 中间镜 投影镜

∆E ∆rC = C c ⋅ α E
像差对分辨率的影响

42

由于球差、像散和色差的影响,物体上的光点在 像平面上均会扩展成散焦斑。 各散焦斑半径折算回物体后可得到由球差、像散 和色差所限定的分辨率。
0.61λ ∆r0 = N sin α
衍射效应造成的散焦斑

1 ∆rS =Csα 3 4
球差效应造成的散焦斑

f ≈K
(IN )2
Ur


式中K是常数,Ur是经相对论校正的电子加速电压,(IN) 是电磁透镜的激磁安匝数。 改变激磁电流可以改变电磁透镜的焦距。而且电磁透镜的焦 距总是正值,这意味着电磁透镜不存在凹透镜,只是凸透镜。
样品倾斜装置及样品台
21

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

期末考试卷:材料现代测试分析方法和答案

期末考试卷:材料现代测试分析方法和答案

期末考试卷:材料现代测试分析方法和答案一、选择题(每题2分,共20分)1. 下列哪一项不是材料现代测试分析方法?A. 扫描电子显微镜(SEM)B. 光学显微镜(OM)C. 质谱仪(MS)D. 能谱仪(EDS)2. 在材料现代测试分析中,哪种技术可以用于测量材料的晶体结构?A. X射线衍射(XRD)B. 原子力显微镜(AFM)C. 扫描隧道显微镜(STM)D. 透射电子显微镜(TEM)3. 下列哪种测试方法主要用于分析材料的表面形貌?A. 扫描电子显微镜(SEM)B. 透射电子显微镜(TEM)C. 原子力显微镜(AFM)D. 光学显微镜(OM)4. 在材料现代测试分析中,哪种技术可以用于测量材料的磁性?A. 振动样品磁强计(VSM)B. 核磁共振(NMR)C. 红外光谱(IR)D. 紫外可见光谱(UV-Vis)5. 下列哪种测试方法可以同时提供材料表面形貌和成分信息?A. 扫描电子显微镜(SEM)B. 原子力显微镜(AFM)C. 能谱仪(EDS)D. 质谱仪(MS)二、填空题(每题2分,共20分)1. 扫描电子显微镜(SEM)是一种利用_____________来扫描样品表面,并通过_____________来获取样品信息的测试方法。

2. 透射电子显微镜(TEM)是一种利用_____________穿过样品,并通过_____________来观察样品内部结构的测试方法。

3. 原子力显微镜(AFM)是一种利用_____________与样品表面相互作用,并通过_____________来获取表面形貌和力学性质的测试方法。

4. 能谱仪(EDS)是一种利用_____________与样品相互作用,并通过_____________来分析样品成分的测试方法。

5. 振动样品磁强计(VSM)是一种利用_____________来测量样品磁性的测试方法。

三、简答题(每题10分,共30分)1. 请简要介绍扫描电子显微镜(SEM)的工作原理及其在材料测试中的应用。

tem晶面间距

tem晶面间距

tem晶面间距
TEM晶面间距
透射电子显微镜(TEM)是现代材料科学研究中极为重要的一种工具。

在TEM中,通常利用电子衍射来确定晶体结构的一些重要参数,其中
晶面间距是一个重要的参数之一。

在TEM中进行电子衍射,通常采用选区电子衍射(SAED)技术。


过SAED技术,我们可以获得样品的衍射斑图,从而得到晶格参数和
晶面间距等信息。

晶面间距是指晶体中两个平行晶面之间的距离,通常用d表示。


TEM中,我们可以通过测量衍射斑图中不同环的直径来计算晶面间距。

具体地,根据布拉格公式,晶面间距d与衍射环半径r的关系式为:
d = λ / (2sinθ) = nλ / 2r
其中,λ表示电子波长,n表示衍射阶次,θ表示衍射角度。

晶面间距的大小直接决定了晶体的晶格常数和结构。

因此,在材料科
学研究中,测量晶面间距是极为重要的。

TEM作为一种高分辨率的工具,在测量晶面间距方面优势明显。

另外,值得注意的是,晶面间距的测量也受到一些因素的影响。

例如,
样品的形变、晶体取向、衍射环的变形等,都可能影响晶面间距的测量精度。

因此,在进行TEM晶面间距测量时,需要进行一系列的校准和优化,以保证结果的准确性和可靠性。

总之,TEM晶面间距是现代材料科学研究中不可或缺的一项技术。

它为我们揭示了材料结构的内部构成和特性,为材料设计和开发提供了重要的依据。

材料现代研究方法:透射电子显微镜工作原理及构造

材料现代研究方法:透射电子显微镜工作原理及构造
可在荧光屏上得到衍射花样。 若使中间镜的物平面与物镜的像平面重合则得到显微像。 透射电镜分辨率的高低主要取决于物镜 。
图9-7 透射电镜成像系统的两种基本操作 (a)将衍射谱投影到荧光屏 (b)将显微像投影到荧光屏
三、选区电子衍射
图8 在物镜像平面上插入选区光栏实现选区衍射的示意图
选区衍射操作步骤
②柱体近似,即在计算样品下表面衍射波强度时,假设将样品分割 为贯穿上下表面的一个个小柱体(直径约2nm),而且相邻柱体中的 电子波互不干扰。
的厚度以控制在约100~200nm为宜。 (2)所制得的样品还必须具有代表性以真实反映所分析材料的某些
特征。因此,样品制备时不可影响这些特征,如已产生影响则必须知 道影响的方式和程度。
一、间接样品(复型)的制备
对复型材料的主要要求: ①复型材料本身必须是“无结构”或非晶态的; ②有足够的强度和刚度,良好的导电、导热和耐电子束轰击性能。 ③复型材料的分子尺寸应尽量小,以利于提高复型的分辨率,更深入
质厚衬度原理
由于质厚衬度来源于入射电子与试样物质发生 相互作用而引起的吸收与散射。由于试样很薄, 吸收很少。衬度主要取决于散射电子(吸收主要 取于厚度,也可归于厚度),当散射角大于物镜 的孔径角α时,它不能参与成像而相应地变暗.这种 电子越多,其像越暗.或者说,散射本领大,透射电子 少的部分所形成的像要暗些,反之则亮些。
成像电子在电磁透镜磁场中沿螺旋线轨迹运动,而可见光是以折线形 式穿过玻璃透镜。因此,电磁透镜成像时有一附加的旋转角度,称为 磁转角。物与像的相对位向对实像为180,对虚像为。
(3)电磁透镜的分辨本领
r0
A3
/
4C
1/ s
4
(3)
式中:A——常数;——照明电子束波长;Cs——透镜球差系数。 r0的典型值约为0.25~0.3nm,高分辨条件下,r0可达约0.15nm。

透射电子显微镜系统用途

透射电子显微镜系统用途

透射电子显微镜系统用途透射电子显微镜(Transmission Electron Microscopy,简称TEM)是现代科学研究中一种重要的工具。

透射电子显微镜利用电子束与材料之间的相互作用过程,可以对材料的微观结构进行研究,具有非常高的空间分辨率和分析能力。

透射电子显微镜系统多用于材料科学、生物学、物理学等领域的研究,在以下几个方面有着广泛的应用。

首先,在材料科学领域,透射电子显微镜可用于研究材料的晶体结构。

材料的微观结构对材料的性能和行为有着重要影响,透射电子显微镜可以通过电子衍射技术获得材料的晶体结构信息,包括晶格常数、晶面取向、位错等。

通过观察材料不同晶面之间的相对位置、原子分布的均匀性以及位错和缺陷的分布情况,可以揭示材料的晶体缺陷机制、相变行为等,为材料设计和优化提供重要的理论依据和指导。

其次,在生物学领域,透射电子显微镜可以用于研究生物样品的细胞结构和超微结构。

由于电子波长比光波短得多,透射电子显微镜可以在非常高的分辨率下观察细胞器、细胞膜、核糖体等细胞结构的细节。

透射电子显微镜还可以通过结合能谱分析技术,对生物样品进行元素分析,获得样品中各元素的分布情况,并进一步研究其与生物活性之间的关联。

此外,透射电子显微镜还可以用于研究纳米材料的结构和性质。

现代纳米材料的研究是材料科学领域的热点之一,透射电子显微镜可以对纳米材料进行直接的成像,并通过纳米尺度的电子衍射获得其晶体结构、晶界、界面等信息。

通过透射电子显微镜对纳米材料进行分析,可以了解纳米尺度下材料的小尺寸效应、表面形貌和晶体结构的变化规律等,为纳米材料的制备和应用提供重要的科学依据。

最后,透射电子显微镜还可以用于研究材料的化学成分和原子分布。

透射电子显微镜可以结合能谱技术,对材料的元素组成进行定量分析。

通过对材料中不同位置的元素分布进行测量和对比分析,可以提供有关材料的化学成分、元素偏析、晶体生长机制等信息。

透射电子显微镜在材料的化学分析领域具有很高的分析能力和探测灵敏度,为材料的研究和开发提供了重要的技术支持。

透射电子显微镜

透射电子显微镜
随着TEM的发展,相应的扫描透射电子显微镜技术被重新研究,而在1970年芝加哥大学的阿尔伯特·克鲁发 明了场发射枪,同时添加了高质量的物镜从而发明了现代的扫描透射电子显微镜。这种设计可以通过环形暗场成 像技术来对原子成像。克鲁和他的同事发明了冷场电子发射源,同时建造了一台能够对很薄的碳衬底之上的重原 子进行观察的扫描透射电子显微镜。
其中,h表示普朗克常数,m0表示电子的静质量,E是加速后电子的能量。电子显微镜中的电子通常通过电子 热发射过程从钨灯丝上射出,或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电 磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。
基本的TEM光学元件布局图。从上至下,TEM包含有一个可能由钨丝制成也可能由六硼化镧制成的电子发射源。 对于钨丝,灯丝的形状可能是别针形也可能是小的钉形。而六硼化镧使用了很小的一块单晶。通过将电子枪与高 达10万伏-30万伏的高电压源相连,在电流足够大的时候,电子枪将会通过热电子发射或者场电子发射机制将电 子发射入真空。该过程通常会使用栅极来加速电子产生。一旦产生电子,TEM上边的透镜要求电子束形成需要的 大小射在需要的位置,以和样品发生作用。
电子能量损失光谱仪通常在光谱模式和图像模式上操作,这样就可以隔离或者排除特定的散射电子束。由于 在许多图像中,非弹性散射电子束包含了许多操作者不关心的信息,从而降低了有用信息的可观测性。这样,电 子能量损失光谱学技术可以通过排除不需要的电子束有效提高亮场观测图像与暗场观测图像的对比度。
晶体结构可以通过高分辨率透射电子显微镜来研究,这种技术也被称为相衬显微技术。当使用场发射电子源 的时候,观测图像通过由电子与样品相互作用导致的电子波相位的差别重构得出。然而由于图像还依赖于射在屏 幕上的电子的数量,对相衬图像的识别更加复杂。然而,这种成像方法的优势在于可以提供有关样品的更多信息。

透射电子显微镜 原理

透射电子显微镜 原理

透射电子显微镜原理透射电子显微镜(Transmission Electron Microscope, 简称TEM)是一种利用电子束传递样品来获得细微结构的高分辨率显微镜。

它的原理是通过在真空中加速电子,将电子束通过光学透镜系统聚焦到样品上,并通过样品的透射情况来形成图像。

TEM的关键组件包括电子源、电子透镜系统、样品台、探测器和成像系统。

电子源产生的电子束经过一系列透镜系统(包括准直透镜、磁场透镜、投影透镜等),被聚焦到样品上。

样品位于一个特殊的样品台上,可以微调样品的位置和角度。

透射电子束通过样品后,部分电子被散射、散射和吸收。

散射电子和透射电子被探测器捕捉,并转化为电信号。

TEM的成像原理基于透射电子束与样品交互作用的差异。

样品内不同的区域对电子束有不同的散射、吸收和透射能力,导致不同的强度对比。

探测器会测量透射电子的能量和强度变化,并将其转换为光学图像。

最终,通过调节透射电子束的聚焦和探测参数,可以得到具有高分辨率的样品图像。

TEM具有极高的分辨率和能够观察样品内部结构的能力。

与光学显微镜相比,TEM利用电子束的波长远小于光的波长,可以克服光学显微镜的衍射极限。

因此,TEM可以观察更小的结构和更高的放大倍数。

此外,TEM还可以通过选定区域电子衍射(Selected Area Electron Diffraction, SAED)技术来研究晶体的晶格结构和材料的晶体学性质。

综上所述,透射电子显微镜通过控制电子束的聚焦和探测参数,利用透射电子与样品相互作用的差异,获得高分辨率的样品图像。

它是研究材料科学和纳米技术的重要工具。

材料研究方法的应用

材料研究方法的应用

材料研究方法的应用介绍材料研究方法的应用是现代科学研究中的重要组成部分。

通过运用各种方法和技术,科学家能够深入了解和认识各种材料的性质和特征。

本文将全面、详细、完整地探讨材料研究方法的应用,深入探寻其在科学研究中的意义和作用。

表征方法1. X射线衍射•X射线衍射是一种常用的材料表征方法。

•它通过测量物质中的晶体衍射图案来分析材料的晶体结构和取向。

•X射线衍射可以揭示材料的晶格常数、晶胞参数等重要信息,从而帮助科学家深入了解材料的结构。

2. 透射电子显微镜•透射电子显微镜(TEM)是一种强大的材料表征工具。

•通过束缚电子的相互作用,TEM能够提供一种高分辨率的材料成像技术。

•科学家可以利用TEM观察材料的晶体结构、缺陷、晶界等微观细节,从而获取关于材料性质的重要信息。

3. 核磁共振•核磁共振(NMR)是一种广泛应用于材料研究的方法。

•NMR通过测量材料中原子核的磁共振信号来获取关于材料结构和动力学行为的信息。

•科学家可以利用NMR技术来研究材料的分子结构、晶体结构、动态行为等,为材料设计和优化提供科学依据。

性能测试方法1. 硬度测试•硬度测试是一种常用的材料性能测试方法。

•它通过测量材料在受力作用下的抗压强度来评估材料的硬度。

•科学家可以利用硬度测试来比较不同材料的硬度,了解材料的耐磨性和耐腐蚀性等性能。

2. 拉伸测试•拉伸测试是一种常见的材料性能测试方法。

•它通过在样本上施加拉力,测量其应力和应变来评估材料的力学性能。

•科学家可以利用拉伸测试来研究材料的弹性模量、屈服强度、断裂韧性等重要性能指标。

3. 热分析•热分析是一种广泛应用于材料研究的方法。

•它通过测量材料在不同温度和环境条件下的热性质来评估材料的热稳定性和热行为。

•科学家可以利用热分析技术来研究材料的热膨胀、热失重、热导率等,为材料选择和应用提供重要依据。

样品制备方法1. 溶液法•溶液法是一种常用的样品制备方法。

•它通过将固体材料溶解于适当的溶剂中来制备样品。

透射电子显微镜实验报告

透射电子显微镜实验报告

透射电子显微镜(TEM)实验报告学院:班级:姓名:学号:2016年6月21日实验报告一、实验目的与任务1.熟悉透射电子显微镜的基本构造2.初步了解透射电镜操作过程。

3.初步掌握样品的制样方法。

4.学会分析典型组织图像。

二、透射电镜的结构与原理透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。

在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。

透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。

提高加速电压,可缩短入射电子的波长。

一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。

就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下:加速电压:80~3000kV分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm最高放大倍数:30~100万倍尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。

此外,还包括一些附加的仪器和部件、软件等。

有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。

以下仅对透射电镜的基本结构作简单介绍。

1.电子光学系统电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。

整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。

通常又把电子光学系统分为照明、成像和观察记录部分。

2.真空系统为保证电镜正常工作,要求电子光学系统应处于真空状态下。

电子显微镜与扫描隧道显微镜的应用

电子显微镜与扫描隧道显微镜的应用

电子显微镜与扫描隧道显微镜的应用当我们想要观察通常无法分辨的微观结构时,电子显微镜和扫描隧道显微镜这两种现代显微技术成为了不可或缺的工具。

它们可以将原本模糊和不清晰的物质信息变成高质量、高分辨率的图像,我们可以通过它们观察到最基本的元素和原子的结构,同时揭示出许多新颖的现象和材料特性。

在本文中,我们将会详细介绍这两种显微技术的原理和应用。

一、电子显微镜电子显微镜是一种基于电子束的显微技术,可以将电子束聚焦到纳米尺度的大小,它的分辨率比光学显微镜高出一个数量级以上。

电子显微镜主要分为两种类型:透射电子显微镜和扫描电子显微镜。

1. 透射电子显微镜透射电子显微镜(TEM)可以穿透样品,从而形成一个类似于投影的电子图像,并且可以将样品的内部细节显示出来。

它利用一个高能电子束透过样品,透射的电子会受到样品中原子的散射、吸收和衍射等过程的影响,最终被收集到一个荧光屏或摄像机上。

TEM的分辨率可以达到0.1纳米,可以用来观察纳米级别的结构和原子排列方式,因此在材料科学、生物医学等领域中有着广泛的应用。

例如,科学家们可以通过TEM观察到米粒、晶粒和原子的结构,以深入研究材料的特性,并利用这些知识开发出更高性能的材料。

在生物医学领域,TEM可以用来观察细胞超微结构,以探索细胞的生命活动。

2. 扫描电子显微镜扫描电子显微镜(SEM)则是一种利用电子束对样品进行扫描成像的技术,可以获得样品表面的三维结构。

SEM通过扫描物质表面形成图像,电子束会与样品表面原子发生相互作用,并在样品表面产生一系列的信号和反应,这些信号通过不同的探测器被检测并转换为图像。

相比于TEM,SEM的分辨率略低,一般在10-50纳米。

不过,它有着更广泛的应用,包括材料科学中的表面形貌研究、纳米技术研究、生物科学中的细胞外形状观测等。

例如,在材料科学中,SEM可以观察到纳米结构表面的缺陷和形貌,对研究材料力学性能有着很大的帮助。

二、扫描隧道显微镜扫描隧道显微镜(STM)是一种基于隧道效应的显微技术,它是以极高的分辨率扫描表面上绝缘或半导体物质表面的电子结构的一种方法。

透射电子显微镜基本知识

透射电子显微镜基本知识

透射电子显微镜基本知识透射电子显微学介绍--人们观察物质微观结构能力的进程俞大鹏电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辩能力从大约0.2 mm拓展至亚原子量级(<1 A),大大增强了人们观察世界的能力。

电子显微学开始于上世纪30年代,经过几十年的不断发展和完善,现在已经成为凝聚态物理、半导体电子技术、材料、化学、生物、地质等多学科的非常重要的研究手段。

尤其是,随着科学技术发展进入纳米科技时代,电子显微镜更是显示出其强大的威力。

可以说,假如没有电子显微镜,现代科学技术是不可想象的,它的发展与其他学科的发展息息相关,密切联系在一块的。

以下是电子显微学发展史上一些重要的进程:§世界上第一台电子显微镜始创于1932年,它由德国科学家Ruska研制,奠定了利用电子束研究物质微观结构基础;§1946年,Boersch在研究电子与原子的相互作用时提出,原子会对电子波进行调制,改变电子的相位。

他认为利用电子的相位变化,有可能观察到单个原子,分析固体中原子的排列方式。

这一理论实际上成为现代实验高分辨电子显微分析方法的理论依据;§1947年,德国科学家Scherzer提出,磁透镜的欠聚焦(即所谓的Scherzer最佳聚焦,而非通常的高斯正焦)能够补偿因透镜缺陷(球差)引起的相位差,从而可显著提高电子显微镜的空间分辨率;§1956年,英国剑桥大学的Peter Hirsch教授等人不仅在如何制备对电子透明的超薄样品,并观察其中的结构缺陷实验方法方面有所突破,更重要的是他们建立和完善了一整套薄晶体中结构缺陷的电子衍射动力学衬度理论。

运用这套动力学衬度理论,他们成功解释了薄晶体中所观察到的结构缺陷的衬度像。

因此50~60年代是电子显微学蓬勃发展的时期,成为电子显微学最重要的里程碑;晶体理论强度、位错的直接观察-50-60年代电子显微学的最大贡献;§1957年,美国Arizona洲立大学物理系的Cowley教授等利用物理光学方法来研究电子与固体的相互作用,并用所谓“多层法”计算相位衬度随样品厚度、欠焦量的变化,从而定量解释所观察到的相位衬度像,即所谓高分辨像。

现代材料分析测试技术

现代材料分析测试技术

现代材料分析测试技术1. 引言现代材料分析测试技术是指利用科学仪器和方法对材料进行测试、分析和评估的一种技术手段。

随着材料科学的不断发展和技术的进步,现代材料分析测试技术在工业、科研和生产领域起着至关重要的作用。

本文将介绍常用的现代材料分析测试技术,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)等。

2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种非常重要的材料分析测试仪器。

它通过扫描材料表面并通过电子束与材料相互作用来获得材料表面微观形貌和成分信息。

SEM广泛应用于材料科学、纳米材料研究、材料工艺等领域。

它可以观察样品的表面形貌、晶体结构、晶粒大小等,并通过能谱分析仪来获得元素组成信息。

3. 透射电子显微镜(TEM)透射电子显微镜(TEM)是一种用于观察材料内部结构的高分辨率显微镜。

TEM通过电子束穿透材料,并通过对透射电子进行束缚和散射来图像化材料的内部结构。

它在材料科学、纳米技术、纤维材料等领域具有重要的应用价值。

TEM能够观察材料的晶体结构、晶格缺陷、晶粒尺寸等,并可获得高分辨率的像像。

4. X射线衍射(XRD)X射线衍射(XRD)是一种常用的材料分析测试技术。

它利用材料对入射X射线的衍射现象来研究材料的晶体结构和晶格参数。

XRD广泛应用于材料科学、矿产勘探、无机化学等领域。

XRD可以确定材料的晶体结构、晶格常数、相对结晶度等,并可通过对射线衍射的精确测定来研究材料的相变行为和配位状态。

5. 红外光谱(FTIR)红外光谱(FTIR)是一种常用的材料分析测试技术,可以用来研究材料的分子结构和化学键的振动情况。

红外光谱可以提供关于材料的化学成分、结构和功能的重要信息。

它广泛应用于材料科学、有机化学、聚合物科学等领域。

红外光谱可以帮助确定材料的分子结构、功能团的存在和分布,以及材料的晶体性质等。

6. 总结现代材料分析测试技术在材料科学和工程领域起着至关重要的作用。

透射电子显微镜成像技术的操作方法与技巧

透射电子显微镜成像技术的操作方法与技巧

透射电子显微镜成像技术的操作方法与技巧透射电子显微镜是一种强大的科学工具,它能够通过电子束的透射来观察物质的微观结构。

在现代科技领域,透射电子显微镜已经成为不可或缺的分析仪器。

在掌握透射电子显微镜成像技术的操作方法和技巧之前,我们首先要了解透射电子显微镜的基本原理。

透射电子显微镜的基本原理是利用电子束对样品进行扫描,通过电子束透射的方式观察样品的内部结构。

首先,我们需要将待观察的样品制备成足够薄的切片,以确保电子束的透射性能。

接下来,将样品放置在透射电子显微镜的样品台上,并调整好加速电压和透射电子显微镜的工作模式。

在操作透射电子显微镜时,我们需要注意一些细节和技巧,以获得清晰准确的图像。

首先,对样品进行金属涂覆是非常重要的,它可以增加电子束与样品的相互作用,提高图像的对比度和分辨率。

其次,在操作透射电子显微镜时,要小心避免空气中的灰尘等杂质进入透射电子显微镜系统。

这些杂质可能会影响电子束的透射,进而影响图像的质量。

在操作过程中,我们还需要控制透射电子显微镜的聚焦和放大倍数。

透射电子显微镜具有可调焦距的电磁透镜系统,可以根据需要进行调整。

聚焦是保证图像清晰度的重要因素,我们可以通过调整目镜和物镜的位置来实现。

此外,放大倍数的选择也会影响图像的观察效果。

适当的放大倍数可以帮助我们更好地观察样品的细节。

除了以上的基本操作方法和技巧外,我们还可以利用透射电子显微镜的特点进行一些进一步的分析。

例如,在透射电子显微镜中,我们可以利用电子的散射来获取样品的晶体结构信息。

通过调整检测器和分析仪器的设置,我们可以获得衍射图样或者能量散射谱,从而确定样品的晶体结构和化学成分。

在实际应用中,透射电子显微镜广泛应用于材料科学、生物学、医学等领域。

例如,在材料科学中,透射电子显微镜可以用于观察材料的纳米结构、缺陷和晶体学细节。

在生物学中,透射电子显微镜可以用于观察细胞和组织的超微结构,揭示生物体内部的奥秘。

总之,透射电子显微镜成像技术是一门复杂而又强大的科学技术。

材料表征技术在材料科学中的最新进展

材料表征技术在材料科学中的最新进展

材料表征技术在材料科学中的最新进展材料表征技术是现代材料学研究中的重要内容之一。

它是指利用各种方法对材料的性质进行表征和分析,以了解材料的结构、组成、性能等方面的信息。

近年来,随着材料表征技术的不断发展和进步,越来越多的新技术被开发出来,为材料科学的研究和发展提供了有力支撑。

本文将简要介绍材料表征技术在材料科学中的最新进展。

一、透射电子显微镜(TEM)透射电子显微镜是一种能够获得材料内部结构的高分辨率仪器,在微观领域被广泛应用。

最近,科学家们利用TEM技术对纳米结构进行了深入的研究,探究了其形貌、分布和晶体结构等信息。

利用TEM技术,科学家们成功研发了一种新型纳米晶体材料,在太阳能电池、光催化和传感等领域有广泛应用。

二、扫描电镜(SEM)扫描电镜是一种用于形态表征的显微镜。

近年来,科学家们通过改良SEM技术,使其能够实现高分辨率成像,进而实现了体积三维重构,即重建图像的空间位置信息。

这项技术的应用使得科学家们更加深入地研究了复杂结构材料、新型合金等材料的内部纳米结构,为材料表征技术提供了更多的信息。

三、X射线晶体衍射X射线晶体衍射是一种很重要的材料研究技术,可以精确测量晶体样品的周期性结构。

近年来,科学家们通过改良晶体衍射技术,开发出了一种新的基于超快光学技术的X射线源(表征孔微/XFEL),使得样品吸收能力更强,分辨率更高。

这项技术的应用使得我们能够观察到物质的分子层次,为材料科学的研究提供了重要的途径。

四、热物性测量热物性测量是一种重要的材料性能表征技术,在电子器件、热障涂层、燃料电池等领域发挥着不可替代的作用。

最近,科学家们通过改良热物性测量技术,开发出了新型的测量仪器,可以精确地测量复杂材料的热传导系数、热扩散系数等热学参数,进一步完善材料性能的评价方法。

五、拉曼光谱拉曼光谱是一种非破坏性、非接触性的材料表征技术,通过测量由材料分子键振动引起的Raman散射光来研究材料的结构和性质。

最近,科学家们通过改良拉曼光谱技术,提高了测量精度和分辨率,并成功利用拉曼光谱对碳材料、纤维材料、氢化物等复杂材料进行研究,拓展了材料表征技术的研究范围。

透射电子显微镜原理

透射电子显微镜原理

透射电子显微镜原理
透射电子显微镜(Transmission Electron Microscope,TEM)
是利用电子束取代光束进行观察和研究物质微观结构的高分辨率显微镜。

透射电子显微镜的原理基于电子的波粒二象性。

电子具有很短的波长,远小于可见光的波长,因此可以获得更高的分辨率。

透射电子显微镜利用聚焦和成像系统将电子束聚焦到样品上,并通过样品传输的电子束进行观察。

首先,电子枪产生高能电子束,经过一系列的透镜系统,使电子束变得较为平行和聚焦。

然后,电子束直接照射在样品上。

样品是非晶态薄片或超薄金属晶片,电子束在样品中透射、发生散射或被吸收。

透射的电子被投射到一个投影和透镜系统中。

透射电子显微镜中的投影和透镜系统主要包括两个关键元素:物镜和目镜。

物镜具有较高的放大倍数,将透射的电子束转换为放大的显微图像。

目镜则进一步放大物镜所得到的显微图像,使其可以被人眼观察。

通过调整投影和透镜系统的电位差,可以控制电子束的聚焦、放大和成像效果。

同时,样品本身的性质也会影响到电子束的透射和散射行为,进而影响到显微图像的质量。

透射电子显微镜可以提供非常高的分辨率,在纳米尺度下观察和研究物质的微观结构。

它广泛应用于材料科学、生物学、纳
米技术等领域,在研究和开发新材料、探索生物分子结构以及研究纳米尺度现象方面发挥着重要作用。

材料的现代研究方法

材料的现代研究方法

材料的现代研究方法
现代材料研究方法包括以下几个方面:
1. 材料表征方法:包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)、原子力显微镜(AFM)等表征手段,用于分析材料的形貌、结构、晶体学等特征。

2. 热分析方法:包括差示扫描量热法(DSC)、热重分析法(TGA)、热导率测量、热膨胀测量等,用于研究材料的热性质和相变过程。

3. 光谱学方法:包括红外光谱(IR)、拉曼光谱、紫外可见光谱(UV-Vis)、核磁共振(NMR)等方法,用于分析材料的化学组成和分子结构。

4. 表面分析方法:包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)、原子力显微镜(AFM)等技术,用于表征材料表面的化学组成和形貌。

5. 电化学方法:包括循环伏安法(CV)、电化学阻抗谱(EIS)等,用于研究材料的电化学性质和电化学反应过程。

6. 计算模拟方法:包括分子动力学模拟(MD)、密度泛函理论(DFT)等计算方法,用于预测材料的性质、模拟材料的结构和动力学过程。

这些现代研究方法互相结合,可以全面了解材料的结构、性质和功能,为材料科学的发展提供重要的支持。

透射电镜组织处理

透射电镜组织处理

透射电镜组织处理
透射电子显微镜(Transmission Electron Microscope,TEM)是一种强大的显微镜技术,可以对材料的内部结构和组织进行高分辨率的观察。

为了进行透射电镜观察,材料通常需要经过一系列处理步骤以准备样品。

下面是一般的透射电镜组织处理步骤:
1.采样和切片:从原始材料中采集要观察的样品,并使用显
微切割机或离心切片机将样品切片成适当的厚度(通常是
几十到几百纳米)。

2.修剪和固定:根据需要,选择感兴趣的样品区域,修剪并
将其固定在载玻片或网状膜上,以便在电镜中进行观察。

3.固定剂处理:为了保持样品的原始结构和形态,通常使用
特定的固定剂处理样品。

例如,常用的固定剂有冷冻醇、
蛋白质交联剂(如缩醛或戊二醛)等。

4.重金属染色:为增加样品的对比度,某些样品可能需要进
行染色处理。

重金属染色剂(如铀酸或铋酸)通常用于染
色,以增强电子束与样品的相互作用。

5.脱水和浸透:为了进一步固化样品并保持其结构,通常使
用乙醇或丙酮等有机溶剂进行脱水处理,并使用一些合适
的浸透剂(如酮树脂或环氧树脂)浸透样品。

6.切片和显影:将浸透好的样品切成适当的薄片(通常是50
至100纳米),并使用硝酸铋等显影剂处理样品,以增强
对比度。

7.观察:将处理好的样品放入透射电镜中,利用电子束穿过
样品观察样品的内部结构和组织。

需要注意的是,透射电镜组织处理的具体步骤和条件可能会根据不同的样品类型和目的而有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七种晶系衍射 斑点排布方式
3.单晶体和多晶体电子衍射花样指数标定
★简单电子衍射花样的指数标定 1.立方系单晶体已知物质的衍射指数标定
⑴指数直接标定法 需要知道仪器常数和晶体的点阵常数。 以衍射晶体铝为例
3.单晶体和多晶体电子衍射花样指数标定
3.单晶体和多晶体电子衍射花样指数标定
d1
L
R1
1.9 9.38
(110),(101),(011),(110),(101), (011), (110) ,(101) ,(011) ,(110),(101) ,(011) 。
可以任选一指数,这样就有12种选法。
单晶电子衍射花样的标定方法
(4)按矢量运算求出C和D的指数:
RC=RA+RB 因为:hC=hA+hB,kC=kA+kB,lC=lA+lB 所以可求得C和D。
0.202μm
L 1.9
d2
R2
0.143μm
13.27
点阵常数 = 0.404nm,所以
h12
k12
l12
a2 d12
(0.404)2 (0.202)2
4
3.单晶体和多晶体电子衍射花样指数标定
同理,对于衍射斑点B
h22
k22
l22
a2 d22
(0.404)2 (0.143)2
8
可以判定,h1k1l1为200,而h2k2l2为220
单晶电子衍射花样的标定方法
1.尝试-校核法
单晶花样指数化方法
由照片的负片描制的花样示意及其 指数化(相机常数K=1.41 mm•nm)
单晶电子衍射花样的标定方法
(1) 选择靠近中心斑点而且不在一条直线上的几个 斑点A、B、C、D。测量R值分别为
RA=7.1 mm,RB=10.0 mm RC=12.3 mm,RD=21.5 mm; R矢量之间夹角的测量值为: RA与RB约90º,RA与RC约55º,RA与RD约71º。
[001]
[011]
[111]
[012]
单晶电子衍射花样的标定方法
在标定衍射花样时,尝试-校核法具有普遍性,它不仅适用 于立方晶系的晶体,而且适用于任何晶系的晶体,但是它的计 算量大,比较繁琐,标准花样对照法就弥补了这一缺点。但是 一般书中只给出少数几个结构类型的、有限的几个低指数晶带 的标准花样,往往不能满足实际研究的需要;而要作出不同结 构类型的不同晶带的标准花样,就需要花费大量的时间。因此, 对于这两种方法存在的问题,借助电子计算机是最好的解决方 法。
R rMiM p

r R MiM p
其中,M
i为中间镜放大倍数;M
为投影镜放大倍数
p
电子显微镜中的电子衍射
所以 其中
Rd L L f1M iM p
rd f1
r R MiM p
即为电子显微镜的有效相机长度,称
L 为电子显微镜的有效相机常数
3.单晶体和多晶体电子衍射花样指数标定
★单晶体衍射花样 其特征是衍射斑点规则排列。在衍射斑
从衍射几何方面的分析可 获得大量的晶体学信息, 本部分重点讨论衍射斑点 的形成原理与其物理意义。
电子衍射与电子衍射仪
★薄晶体的电子衍射特征:
⑴厄瓦尔球半径比倒易矢量大几十 倍 ⑵衍射角很小,衍射线集中在前方
⑶倒易点被拉长为倒易杆,倒易杆 方向垂直于薄膜厚度 ★以上三个原因决定使得电子束相对 晶体任何取向,在倒易原点附近都 会有许多倒易杆与球面接触或交截, 从而可以得到许多衍射线。衍射线 的方向为连接球心和倒易杆与球的 交点,如图所示
单晶电子衍射花样的标定方法
(2)求R2比值,找出最接近的整数比,由此确定各斑点所属的衍射晶面族。
RA2
:
RB2
:
RC2
:
R
2 D
2
:
4:
6
:18
这是体心立方结构的N值。当然也可写成1:2:3:9作为简单立方结构的比值,
这是在指数化过程中经常遇到的情况。
(3) 尝试斑点的指数,最短矢量的A斑点对应的晶面族{110}共有12个晶 面(包括正反符号):
u:v:w = k1 l1 : l1 h1 : h1 k1 k2 l2 l2 h2 h2 k2
单晶电子衍射花样的标定方法
2.标准花样对照法
如果我们预先画出各种晶体点阵主要晶带的倒易平面,以此作 为不同入射条件下的标准花样,则实际观察、记录的衍射花样 可以直接通过与标准花样对照,写出斑点指数和晶带轴方向。 一般书中给出面心立方、体心立方和密排六方晶体的几个主要 低指数的零层倒易平面,但在实际研究中常常出现其他晶带指 数的衍射花样,这时掌握标准花样的作图方法就显得尤为重要。
relative intensity(cps)
220 311 222
400 420
331
422
20
40
60
80
100
2
X射线衍射
多晶电子衍射 单晶电子衍射
电子衍射花样的分析包括两个方面:
1)衍射几何:电子束经晶体散射后所产生的干涉 线或斑点的位置;
2)衍射强度:即电子束经晶体散射后所产生的干 涉线或斑点的强度。
的计算为试样至底片的距离,而应根据后 焦面上衍射斑点被放大的倍数,折算成衍
射仪相机长度,成为有效相机长度L′.
电子显微镜中的电子衍射
令图中O′P′距离为r,则
r f1tg 2 2 f1 sin
再利用布拉格公 式,得到
rd f1
电子显微镜中的电子衍射
r 经过中间镜和投影镜放大后在底片上的距离 R为
Higher angle scattering – lower intensity Trace of the plane
(halfway between the lines)
Excess line – farther from origin Deficit line – closer to origin
Kikuchi line formation
Kikuchi line formation
3.单晶体和 多晶体电子衍射花样指数标定
另外,复杂电子衍射花样还包括二次电子 衍射、孪晶衍射、双晶带衍射等.
电子背反射衍射(EBSD)
电子背反射衍射(EBSD)形成机理
EBSD图像
多晶体内部的晶粒取向分布及晶粒间关系
根据倒易点阵的矢量关系220* 200* 020*
所以C的指数为020,其他依此类推
复杂电子衍射花样:1.高阶劳埃带
3.单晶体和 多晶体电子衍射花样指数标定
2.菊池线
Kikuchi lines
Kikuchi line formation
Kikuchi line formation
More forward scattering – higher intensity
Kikuchi line formation
What is the angle between the diffracting rays and the
trace of the plane?
QB
If the trace of the plane is halfway between the klines, how far apart are the
点花样中最基本的是简单电子衍射花样— 单晶带电子衍射花样,它是通过倒易点阵 原点的一个二维倒易面的放大像
3.单晶体和多晶体电子衍射花样指数标定 其中各衍射斑点对应的倒易点指数如下图
单晶电子衍射花样的标定方法
电子衍射花样的许多几何特征都可借助倒易点阵平 面加以说明,利用其性质可使单晶花样分析工作大为 简化。
相机长度
R tg2 2
L
2d sin 2d
R tg2 L
R
Ld
d L
R
(a)第一幅衍射花样的形成和 选区电子衍射原理
(b)三透镜衍射方式原理图 (不考虑磁转角)
电子显微镜中的电子衍射
★有效相机常数 电镜中的衍射花样是物镜后焦面的衍射斑 点经过几级透镜放大后在底片上成的像,
则相机长度L不能象电子衍射仪那样简单
k-lines?
2QB
Kikuchi line formation
What happens if you rotate the crystal?
•K-lines will move as though rigidly attached to the crystal.
•The scattering distribution will remain stationary.
透射电子显微镜
电子束与物质的相互作用
X 射线 轫致辐射 阴极发光 俄歇电子
电子 探针
入 射 电 子 束
样品
透射电子
二次电子 反射电子 吸收电子
衍射电子
扫描 电镜
俄歇电 子谱仪
透射 电镜
透射电子显微镜的主要功能
成像: 明场像,暗场像 格子像,原子像
衍射
电子衍射
111 200
Bulk materials Coatings 1 Coatings 2
(5)对ቤተ መጻሕፍቲ ባይዱ出的指数继续用N和 校核
NC
hC2
k
2 C
,lC2 与实际R2比值所得N值相比较;并对斑
点指数化是否自洽进行检验。
单晶电子衍射花样的标定方法
(6)求晶带轴[uvw]。 在电子衍射分析中,可用两个不共线的斑点(h1k1l1)和 (h2k2l2)求出晶带轴方向。由晶带定律,用行列式表示:
相关文档
最新文档