高等数学全微分方程精品PPT课件
合集下载
《高数全微分》课件
全微分的概念
全微分是多变量函 数的变化率,通过 定义、计算方法和 与偏微分的区别, 理解全微分的概念。
练习题选讲
1
练习题1
通过一个实际的计算例子来帮助学生巩固微分和导数的应用。
2
练习题2
挑选一道复杂且具有挑战性的练习题,让学生运用所学知识解决问题。
3
练习题3
提供一道综合性的练习题,结合了微分、导数和全微分的内容,以检验学生的综 合能力。
讲解内容
什么是微分
微分是基础概念, 具有多种定义方式。 通过物理解释和常 见定义使学生理解 微分的概念和意义。
导数的定义
导数是描述函数变 化率的工具,包括 导数的概念、计算 方法以及其在函数 极值中的应用。
微分的定义
微分作为导数的无 穷小变化量,给出 了函数在某一点上 的局部变化情况和 计算方法。
总结回顾
1 本节知识点回顾 2 知识点扩展
概述了微分、导数和 全微分的概念和定义, 强调了它们在数学中 的重要性。
引导学生进一步学习 微分和导数的应用领 域,如物理学和经济 学等。
3 下节课预告
展示下节课将会涉及 的主题和学习目标, 激发学生的兴趣和期 待。
《高数全微分》PPT课件
高数全微分 PPT课件
知识点概述
什么是微分
微分是一个数学概念,用于描述函数值的 变化率。它是微积分的基础。
微分的定义
微分是函数值的无穷小变化。它描述了函 数在某一点上的局部变化。
导数的定义
导数是函数在某一点上的变化率,可以解 释为函数在该点的切线斜率。
全微分的概念
全微分是多变量函数在某一点上的变化率, 它包括所有变量的微分。
高等数学 全微分PPT课件
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
由微分定义 : lim z lim ( A x B y ) o ( ) 0
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
lim 0 , lim 0 x 0 x 0 y 0 y 0
z f x ( x, y ) x f y ( x, y ) y x y
lim 0 , lim 0 x 0 x 0 y 0 y 0
2. 重要关系: 函数连续 函数可微 函数可导
偏导数连续
机动 目录 上页 下页 返回 结束
思考与练习 1. P72 题 1 (总习题八)
2. 选择题 函数 z f ( x, y ) 在 ( x0 , y0 ) 可微的充分条件是( D )
将 x , z 看成常数: u x w , w y z .
u y
( 2 , 2 ,1)
yz yz x ln x z y z 1 ( 2, 2,1) ( x ) ( 2, 2,1) y 4 ln 2
将 x , y 看成常数:u x w , w y z .
u y
第三节
2. 可微的条件
全微分
1. 全微分的定义
3. 连续、可导与可微的关系
4. 小结、作业
一元函数 y = f (x) 的微分
y Ax o( x)
d y f ( x)x
应用
近似计算 估计误差
机动
目录
上页
下页
返回
结束
一、全微分的定义
由微分定义 : lim z lim ( A x B y ) o ( ) 0
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
lim 0 , lim 0 x 0 x 0 y 0 y 0
z f x ( x, y ) x f y ( x, y ) y x y
lim 0 , lim 0 x 0 x 0 y 0 y 0
2. 重要关系: 函数连续 函数可微 函数可导
偏导数连续
机动 目录 上页 下页 返回 结束
思考与练习 1. P72 题 1 (总习题八)
2. 选择题 函数 z f ( x, y ) 在 ( x0 , y0 ) 可微的充分条件是( D )
将 x , z 看成常数: u x w , w y z .
u y
( 2 , 2 ,1)
yz yz x ln x z y z 1 ( 2, 2,1) ( x ) ( 2, 2,1) y 4 ln 2
将 x , y 看成常数:u x w , w y z .
u y
第三节
2. 可微的条件
全微分
1. 全微分的定义
3. 连续、可导与可微的关系
4. 小结、作业
一元函数 y = f (x) 的微分
y Ax o( x)
d y f ( x)x
应用
近似计算 估计误差
机动
目录
上页
下页
返回
结束
一、全微分的定义
高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
高等数学上册第七章课件.ppt
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
大一高数下全微分课件
乘积法则
总结词
乘积法则用于计算两个函数的乘积的 全微分。
详细描述
乘积法则是全微分的另一个重要法则, 它指出如果z是两个函数u和v的乘积, 那么dz=u*du+v*dv。具体来说,如果 z=u*v,那么全微分 dz=d(u*v)/du*du+d(u*v)/dv*dv=u*d u+v*dv。
商的法则
大一高数下全微分课件
• 全微分的定义 • 全微分的基本公式和法则 • 全微分的应用 • 常见函数的微分 • 微分中值定理与导数的应用 • 习题与解答
01
全微分的定义
全微分的概念
全微分是指在函数定义域内 某一点处,将函数在该点的 值与自变量在该点的值分别 进行微小变化,函数值变化
量的线性部分。
全微分是函数在一点处对所 有自变量偏导数的加权和, 权因子是偏导数与自变量变
答案2
dz = cos(x + y) * (cos/sin)(π/4) * (cos/sin)(π/6) = -√3/3
解析2
函数z = sin(x + y)在点(π/4, π/6)的 全微分为dz = cos(x + y) * cos(π/4) * cos(π/6) = -√3/3。
答案3
dz = e^(x + y) * (e^1) * (e^0) = e^(1+0) = e
高阶导数与高阶全微分
高阶导数可以用于计算高阶全微分, 高阶全微分可以用于研究函数的更高 阶的几何特性。
02
全微分的基本公式和法则
链式法则
总结词
链式法则描述了复合函数的全微分计算方法。
详细描述
链式法则是全微分的重要法则之一,它指出如果z是由y和x通过复合函数f(g(y)) 得到的,那么全微分dz=d(f(g(y)))/dz * dy。具体来说,如果u=g(y)且z=f(u) ,那么dz=d(f(u))/du * du=d(f(u))/du * d(g(y))/dy * dy。
大学课件高等数学微分方程
rx
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
高中数学(人教版)全微分课件
f y ( x, y) z f x ( x, y) δx δy z f ( x, y) f ( x, y)
z f x ( x , y ) x f y ( x, y ) y
z
注 (1) 当 (2) 当 时 时
f y ( x, y ) f x ( x, y ) x z f ( x, y ) f ( x, y )
z f x ( x , y ) x f y ( x , y ) y f x ( x, y) x f y ( x, y) y f x ( x, y) x f y ( x, y ) y
δ z f x ( x , y ) δx f y ( x , y ) δ y
z A x B y o( ) , 其中A,B不依赖于x, y 而仅与x, y
而 Ax By称为函数z=f (x,y)在点(x,y)的全微分,记作 dz
注
dz的特性
Δx与Δy的线性函数 dz Ax By 与Δz相差一个比ρ高阶的无穷小量
A、B的特性
与Δx和Δy无关
定理2 如果函数z = f (x, y) 在点(x, y) 可微 分, 那么函数
z
= f (x, y) 在点(x, y) 的偏导数
z z x y x y z x B z y
函数z = f (x, y) 在点(x, y)的全微分为
dz
z 与 x
z 必定存在,且 y
小 结
几个重要概念间的关系
连续
偏导数连续
判断可微的方法 用定义 用定理3
可微
偏导数存在
判断不可微的方法 用定义 用定理1 用定理2
全微分
一、全微分的概念 二、全微分的存在条件
z f x ( x , y ) x f y ( x, y ) y
z
注 (1) 当 (2) 当 时 时
f y ( x, y ) f x ( x, y ) x z f ( x, y ) f ( x, y )
z f x ( x , y ) x f y ( x , y ) y f x ( x, y) x f y ( x, y) y f x ( x, y) x f y ( x, y ) y
δ z f x ( x , y ) δx f y ( x , y ) δ y
z A x B y o( ) , 其中A,B不依赖于x, y 而仅与x, y
而 Ax By称为函数z=f (x,y)在点(x,y)的全微分,记作 dz
注
dz的特性
Δx与Δy的线性函数 dz Ax By 与Δz相差一个比ρ高阶的无穷小量
A、B的特性
与Δx和Δy无关
定理2 如果函数z = f (x, y) 在点(x, y) 可微 分, 那么函数
z
= f (x, y) 在点(x, y) 的偏导数
z z x y x y z x B z y
函数z = f (x, y) 在点(x, y)的全微分为
dz
z 与 x
z 必定存在,且 y
小 结
几个重要概念间的关系
连续
偏导数连续
判断可微的方法 用定义 用定理3
可微
偏导数存在
判断不可微的方法 用定义 用定理1 用定理2
全微分
一、全微分的概念 二、全微分的存在条件
《高数全微分方程》课件
参数方程法
总结词
参数方程法是通过引入参数,将全微分 方程转化为参数微分方程,然后求解参 数的微分,最后得到原全微分方程的解 。
VS
详细描述
参数方程法的步骤包括引入参数、将全微 分方程转化为参数微分方程、求解参数的 微分、将参数的解代回原方程,最后得到 原全微分方程的解。这种方法适用于具有 参数形式的全微分方程,能够简化求解过 程。
变量分离法
总结词
变量分离法是将全微分方程转化为可分离变量的微分方程,然后分别求解每个变量的微分,最后得到 原全微分方程的解。
详细描述
变量分离法的步骤包括将全微分方程转化为可分离变量的微分方程、分别求解每个变量的微分、将各 个变量的解代回原方程,最后得到原全微分方程的解。这种方法适用于具有可分离变量形式的全微分 方程,能够简化求解过程。
总结词
全微分方程描述了曲线的斜率在各个方向上的变化情 况。
详细描述
全微分方程可以表示曲线上任意一点的切线斜率的变 化情况,即该点处曲线在各个方向上的弯曲程度。通 过求解全微分方程,可以了解曲线的弯曲程度,从而 更好地理解曲线的几何特性。
曲线的弯曲程度与全微分方程
总结词
全微分方程描述了曲线的弯曲程度在各个方向上的变 化情况。
二阶全微分方程实例
总结词
二阶全微分方程是描述物理现象和工程问题的重要工具,具有丰富的数学性质和实际应 用价值。
详细描述
二阶全微分方程的一般形式为 d²y/dx² = f(x, y, dy/dx),其中 f(x, y, z) 是关于 x、y 和 z 的函数。通过求解二阶全微分方程,可以找到满足特定边界条件的解,从而解决实际
高数全微分方程目录来自• 全微分方程简介 • 全微分方程的求解方法 • 全微分方程的实例分析 • 全微分方程的几何意义 • 全微分方程的扩展知识
高等数学第九章第三节全微分课件.ppt
(x)2 (y)2
当 (x)2 (y)2 0 时是无穷小量 .
3. 已知 答案:
Ex:
证明函数
在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连
续, 而 f (x, y) 在点 (0,0) 可微 .
证: 1) 因
xy sin
1 x2 y2
xy
x2 y2 2
所以
lim f (x, y) 0 f (0,0)
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
定理2 (充分条件) 若函数
的偏导数 z , z
在点 (x, y) 连续, 则函数在该点可微分.
x y
推广: 类似可讨论三元及三元以上函数的可微性问题.
x0 y0
故函数在点 (0, 0) 连续 ;
2) f (x,0) 0, fx (0,0) 0 ; 同理 f y (0,0) 0.
3) 当(x, y) (0,0)时,
fx (x, y)
sin
1 x2 y2
x2 y (x2 y2)3
lim
当 (x)2 (y)2 0 时是无穷小量 .
3. 已知 答案:
Ex:
证明函数
在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连
续, 而 f (x, y) 在点 (0,0) 可微 .
证: 1) 因
xy sin
1 x2 y2
xy
x2 y2 2
所以
lim f (x, y) 0 f (0,0)
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
定理2 (充分条件) 若函数
的偏导数 z , z
在点 (x, y) 连续, 则函数在该点可微分.
x y
推广: 类似可讨论三元及三元以上函数的可微性问题.
x0 y0
故函数在点 (0, 0) 连续 ;
2) f (x,0) 0, fx (0,0) 0 ; 同理 f y (0,0) 0.
3) 当(x, y) (0,0)时,
fx (x, y)
sin
1 x2 y2
x2 y (x2 y2)3
lim
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dx x
dy y
0
即 d 1 d( ln x ) d( ln y ) 0
xy
1
因此通解为 1 ln x ln C , 即 x C e xy
xy y
y
因 x = 0 也是方程的解 , 故 C 为任意常数 .
练习题 解方程 y d x ( y x) d y 0.
解法1 积分因子法. 原方程变形为
2
3
因此方程的通解为
y (x, y)
x5 3 x2 y2 xy3 1 y3 C
2
3
o (x,0) x
例2. 求解
(
x
y x2
)
dx
1 x
dy
0
解:
P y
1 x2
Q , x
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为
x
dx
x
d
y x2
y
dx
0
即
d 1 x2 d y 0, 或 d 1 x2 y 0
为全微分方程 ( 又叫做恰当方程 ) .
判别: P, Q 在某单连通域D内有连续一阶偏导数, 则
① 为全微分方程 求解步骤:
P Q , (x, y) D y x
1. 求原函数 u (x, y)
方法1 凑微分法;
方法2 利用积分与路径无关的条件.
2. 由 d u = 0 知通解为 u (x, y) = C .
第二节 一阶微分方程
第十二章
一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程
五、全微分方程
若存在 u(x, y) 使 d u(x, y) P (x, y) dx Q (x, y) dy
则称
P (x, y) dx Q (x, y) dy 0 ①
为全微分方程, 则称 (x, y)为原方程的积分因子.
在简单情况下, 可凭观察和经验根据微分倒推式得到 积分因子.
常用微分倒推公式:
1) dx dy d ( x y )
2) xdy ydx d ( xy )
3)
xdx ydy d (
1 2
(x2
y2
)
)
4)
ydx xdy y2
d(
x y
u
dx x
积分得
1 ln u ln x C u
将 u y 代入 , 得通解 x ln y C
x
y
此外, y = 0 也是方程的解.
写在最后
经常不断地学习,你就什么都知道来自你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
)
5)
ydx xdy x2
d(
y x
)
6) ydx xdy d ( ln x )
xy
y
积分因子不一定唯一 .
例如, 对 ydx xdy 0
7)
ydx x2
xd y y2
d
(
arctan
x y
)
可取
1 y2
,
1 x2
,
8) xdx ydy d ( x2 y2
x2 y2 )
1 xy
,
1 x2
例1. 求解
(5x4 3xy2 y3 ) dx (3x2 y 3xy2 y2 ) d y 0
解: 因为 P 6xy 3y2 Q , 故这是全微分方程.
y
x
取 x0 0, y0 0, 则有
u
(
x,
y)
0x5
x4
dx
y
0
(3
x2
y
3x
y2
y2
)
d
y
x5 3 x2 y2 xy3 1 y3
2
x
2x
故原方程的通解为 1 x2 y C 2x
思考: 如何解方程 ( x3 y ) dx x dy 0 ?
这不是一个全微分方程
,
但若在方程两边同乘
1 x2
,
就化成例2 的方程 .
积分因子法
P(x, y) dx Q(x, y) dy 0
若存在连续可微函数 (x, y) 0, 使 (x, y)P(x, y) dx (x, y)Q(x, y) dy 0
y2
例3. 求解 (1 xy ) y dx (1 xy ) x dy 0
解: 分项组合得 ( y dx x dy ) xy ( y dx x dy ) 0
即 d( xy) x2 y2 ( dx dy ) 0 xy
选择积分因子
(x,
y)
1 x2 y2
, 同乘方程两边
,
得
d( x y) (xy)2
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
(y d x xd y) y d y 0
取积分因子
1 y2
yd
x xd y2
yd y y
0
故通解为 x ln y C y
此外, y = 0 也是方程的解.
解法2 化为齐次方程. 原方程变形为
dy dx
y
y
x
y
1
x
y
x
令 y u x , 则 y u x u,
u xu u 1u
(1 u) d u2