高等数学6章常微分方程

合集下载

常微分方程的数值解

常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn

高等数学题库常微分方程

高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。

2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。

3、通解为xce y =(c 为任意常数)的微分方程是___________。

4、满足条件()()=+?dx x f x f x2的微分方程是__________。

5、 y y x 4='得通解为__________。

6、1+=y dxdy的满足初始条件()10=y 的特解为__________。

7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。

8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。

二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。

《高数》第6章

《高数》第6章

把 x t t 0 1, x t t 0 3 代入 x t c1 cos t c2 sin t 和
x t c1 sin t c2 cos t 得 c1 1, c2 3 .故所求的解为: x t cos t 3sin t
得到通解
G ( y ) F ( x) c 1 其中G(y)与F(x)分别是 与f(x)的一个原函数, c是 g ( y) 任意常数,式(2)就是方程(1)的隐式通解. 第 三 步 , 在 第 一 步 中 , 用 g(y) 除 方 程 的 两 边 , 而 g(y)=0 是 不 能 做 除 数 的 , 所 以 对 g(y)=0 要 单 独 考 虑.由g(y)=0解出的y是常数,它显然满足原方程, 是原方程的特解,这种特解可能包含在所求出的通解 中,也可能不包含在所求出的通解中(此时要把它单 独列出). 例1 分方程 y 2 xy 的通解.
例3(推广普通话问题) 在某地区推广普通话,该地 区的需要推普的人数为N,设t时刻已掌握普通话的 人数为p(t),推普的速度与已推普的人数和还未推普 的人数之积成正比,比例常数为k>0于是得到 dp kp ( N p ) dt
此方程称为logisitic方程,在生物学,经济学等学科 领域有着广泛应用. 定义1 含有未知函数的导数(或微分)的方程叫微分方 程.未知函数为一元函数的微分方程称为常微分方 程.如 (1) y x dp kp ( N p ) (2) dt
y P ( x ) y Q ( x ) 的方程称为一阶线性微分方程,其中P(x)为Q(x)的已 知函数.当Q(x)不恒为0时,方程(5) 称为一阶线性非 齐次微分方程.当 Q( x) 0时,方程(5)变成 y P ( x ) y 0 该方程称为一阶线性齐次微分方程. 显然,一阶线性齐次微分方程是可分离变量的方 程.一阶线性非齐次微分方程的求解步骤如下: 第一步,先求解其对应的齐次方程: y P ( x ) y 0

高数应用数学 第6章 常微分方程

高数应用数学 第6章  常微分方程

dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2gh dt,
100 cm
(200h h2 )dh 0.62 2gh dt,
即为未知函数的微分方程.
可分离变量
dt (200 h h3 )dh, 0.62 2g
t (400 h3 2 h5 ) C,
代入M t0 M0 得 M0 Ce0 C ,
M M0et
衰变规律
例4 有高为1米的半球形容器, 水从它的底部小孔流
出, 小孔横截面积为1平方厘米(如图). 开始时容器内盛满 了水, 求水从小孔流出过程中容器里水面的高度h(水面与 孔口中心间的距离)随时间t的变化规律.
解 由力学知识得,水从孔口流出的 流量为
一、问题的提出
数学知 识
基本科 学原理
微分 方程
例 1 列车在平直的线路上以 20 米/秒的速度行驶,当制动
时列车获得加速度 0.4米/秒 2,问开始制动后多少时间列
车才能停住?以及列车在这段时间内行驶了多少路程?
解: 设制动后 t 秒钟行驶 s 米, s s(t)
d 2s dt 2
0.4
t 0时, s 0,v ds 20, dt
2.微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且任意常数 的个数与微分方程的阶数相同.
例 y y,
通解 y Ce x;
y y 0, 通解 y C1 sin x C2 cos x;
(2)特解: 确定了通解中任意常数以后的解.
初始条件: 用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. 解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族.

《常微分方程》课程大纲

《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。

面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。

二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。

本章教学重点解释常微分方程解的几何意义。

(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。

2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。

3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。

4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。

本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。

并通过习题课进行初步解题训练,提高解题技巧。

(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。

《高等数学》第6章常微分方程

《高等数学》第6章常微分方程

y x2 4 4 x2
想一想
一电机开动后,每分钟温度升高10 C,同时将按冷却定律不断发散
热量.设电机安置在15 C恒温的房子里,求电机温度与时间t的函
数关系.
6.3 二阶常系数线性微分方程
了解二阶常系数线性微分方程的 概念及分类;掌握二阶常系数齐 次、非齐次线性微分方程的求解 方法及分类;能够灵活运用公式 解决实际问题.
Cx x 1,两边积分得 : Cx 1 x 12 C.因此原方程通
2 解为 :
y
1 2
x
12
C x
12
1 2
x
14
Cx
12
(C为任意常数).
2. 求微分方程y 2 y x满足条件y2 0的特解.
x
解:先解方程y 2 y 0 dy 2 dx,两边积分得y Cx2.
方程. 这类方程的求解一般分为两步:
1 分离变量:化原方程为 dy f (x)dx的形式;
g( y)
2 两边积分: gd(yy) f (x)dx得到x与y的一个关系式,即通解.
例题
1. 求微分方程 dy 2xy的通解.
dx
解:分离变量为dy
y
2 xdx, 两边积分得
dy y
2xdx ln
同时,C1,C2为任意常数,故y C1ex C2e2x是微分方程的通解.
将条件代入通解中, 得CC11
C2 0 2C2 1
CC12
1 .
1
故所求特解为: y ex e2x.
想一想
建设绿地、防止土地沙漠化的环保意识已成为人 们的共识.现已查明,有一块土地正在沙化,并且 沙化的数量正在增加,其增加的速率与剩下的绿地 数量成正比.有统计得知,每年沙化土地的增长率 是绿地的 1 ,现有土地10万亩,试求沙化土地与

《高等数学》第6章常微分方程知识讲解

《高等数学》第6章常微分方程知识讲解

微分方程的通解
如果微分方程的解中含有任意常数,且相互独立的任意
常数的个数与微分方程的阶数相同,则这样的解称为微
分方程的通解.
例 函 S 数 0 .4 t2 ct c是微 d 2 S 分 0 .8 的 方 .通 程
12
d2 t
注 形y如 n fx的微分 ,只方 要程 通过 (n次 逐 ), 次积
方程的阶.
例dy 2x是一阶微 ,d2S分 0.8方 都程 是二阶 . 微
dx
d2t
注 通 n 阶 常微分方 为 F 程 (: x,y,y 的 ,y, 一 ,yn)般 0 .
微分方程的解
若把某个函数代入微分方程后,使该方程成为恒等式,则 这个函数称为微分方程的解.
例函数 yx2c和yx2都是微分方 . 程的解
德育目标
培养学生小心求证,大胆应用于实际的综 合能力.
6.1 微分方程的基本概念
通过实际例子;了解微分方程的 概念和微分方程的阶的概念;掌 握求微分方程通解的方法;能够 利用初始条件求微分方程的特解.
6.1.1 实例分析
想一想:
已知曲线上各 斜点 率的 等切 于线 该点 二横 倍 ,且 坐过 标的
0.8,
dt2
且满足条件:t 0时S 0,v dS 40(或写成S(0) 0,S(0) 40). dt
将d2S 0.8两端对x积分,得v dS 0.8t c .再积分一次,得
dt2
dt
1
S 0.4t2 ct c (其中c ,c 都是任意常数 ).将所满足的条件代入
1
2
12
上式,得:c 40,c 0.于是,路程S关于时间t的函数为:
10
时间的函数关系式.
6.2 一阶微分方程

高等数学下册作业本答案

高等数学下册作业本答案

0
,q =
-1
.
3.微分方程 y′′ − 2 y′ + y =0 满足条件 y = 4, y′ = −2 的特解为 y= (4 − 6x)ex . =x 0=x 0
4.微分方程 y′′ − 2 y′ + 5y = 0= 的通解为 y ex (C1 cos 2x + C2 sin 2x) .
= 5.以 y ex (C1 sin x + C2 cos x) 为通解的二阶常系数线性微分方程为 y′′ − 2 y′ + 2 y = 0 .
0
0
y = f (x) ,即 y′′ − y = 0 ,对应的特征方程为 r 2 −1 = 0 ,特征根 r1 = 1, r2 = −1,所以通解
为 y = C1ex + C2e−x ,又 f (0) = 0 , f ′(0) = 0 ,代入得 C1 = 0, C2 = 0 ,故 f (x) = 0 .
第六章 微分方程
第一节 微分方程的基本概念
一、单项选择题
1. 下列各式中是常微分方程的为
B.
A. y2 + y =3 B. y′′ + y2 = y′ C. xy′ + y =(xy)′
D. x + z′x + z′y =y
2. 函数 y= C − x ( C 为任意常数)是微分方程 xy′′ − y′ = 1的 C .
y = C1ex + C2e4x ,由于 λ = 1 是特征方程的一个根,可设 y*(x) = axex 为原方程的一个特
解,代入得
a
=
−2 3
,所以
y*(x)
=
− 2 ex 3
,所以通解为

常微分方程积分曲线课件

常微分方程积分曲线课件
dx n
4、线性和非线性
定义:如果微分方程中,未知函数和出现的各阶导数而 言是一次有理整式,则此微分方程称为线性微分方程, 否则称为非线性微分方程. 参见上述各例.
一般地,n阶线性微分方程为
d d nn yx a 1 (x )d d n n 1 y 1 x a n(x )yf(x ) (1 .1)3
的方向场,又称向量场.

等斜线
在方向场中,方向相同的点的几何轨迹称为等斜线(等倾斜线).
例2 实例分析(方向场)
讨论微分方程
dy 1 xy dx
等斜线是双曲线:1xyk
积分曲线的分布概况如左图.
等斜线
注释:原方程的解为
1x2
1x2
ye2 ( e 2 dxc)
积分曲线:图中实线
拐点 所在 的曲 线
因此,微分方程是一门与实际联系比较密切的数学课程,应 该注意它的实际背景与应用;而作为一门数学基础课程,又应该 把重点放在应用数学方法研究微分方程本身的问题上.
返回
第二节 微分方程的基本概念
1、微分方程
定义:把包含未知函数导数的方程叫做 微分方程.例
如方程(1.1).
定义的注:联系自变量、未知函数及它的导数(或微 分)的关系式,数学上称为微分方程.
例如数学分析中的隐函数问题,就是在一定条件下, 由方程
F(x, y)0 (*)
来确定隐函数,上述方程(*)是众所周知的隐函数方 程,它是函数方程中最简单的一种。而隐函数是所要求 的未知函数。
在数学分析中,不定积分问题 F(x)f(x)dx,实际上是
微分的逆运算问题,也可以用函数的概念叙述如下:
设 f(x) 是自变量为 x 的已知连续函数,试求函数 y=y(x) 满足 下列方程:

方程求根与解常微分方程

方程求根与解常微分方程

第6章方程求根与解常微分方程6.1实验目的了解微分方程的通解、特解和近似解的概念。

熟悉方程求根和常微分方程解的概念,熟悉Mathematica软件的方程求根和求常微分方程解的命令,掌握用数学软件处理方程求根和常微分方程解的有关问题.6.2实验准备6.2.1数学概念1.微分方程2.微分方程的通解、特解6.2.2数学软件命令1. Solve[eqn, x]功能:求多项式方程eqn的所有根,当多项式方程的次数n≤4时,给出eqn所有根的准确形式, 当n>4时,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[eqn, x ]]}n次多项式方程的一般形式为:2 012nna a x a x a x++++="式中a0 ,a1, a2,…,a n为常数。

2.Solve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}的所有根, 当其中每个多项式方程的次数n4 时, 给出所有根的准确形式, 否则,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk} ]]} 。

3. NSolve[eqn, x]功能:求多项式方程eqn的所有根的近似形式。

4. NSolve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}所有根的近似形式。

5. FindRoot[eqn, {x, x0}]功能:求方程eqn的在初值x0附近的一个近似根。

6. FindRoot[{eqn1,eqn2, ... }, {x, x0}, {y, y0}, ... ]功能:求方程组{eqn1, eqn2, …}在初值(x0,y0,…)附近的一个近似根。

高等数学 第六章

高等数学 第六章

(6-16)
式(6-16)就是通过常数变易法得到的式(6-12) 的通解. 我们不主 张读者在求解每一道阶线性微分方程的题目时都用该方法,而 是要求大家熟记并直接利用式(6-16)解题,前提是你首先需要把 所给的方程写成式(6-12)的形式或明确方程中哪些因子是p(x) 和q(x) . 公式中出现了三次不定积分的求解,结果都不需要带不 定常数,只需找一个原函数即可.
yn1 f (x)dx C1 F1 x C1
其中,假定F1(x) 为f(x) 的原函数. 现对yn-1 积分一次,则y(n-1) 可降一次阶,即
yn2 F1(x)dx C1x C2 F2 x C1x C2
6.1.4 高阶微分方程
其中,假定F2(x) 为F1(x)的原函数. 现对y(n-2) 积分一次,则n-2 可降一次阶,可得
解 方程两边同除以m 并整理得
dv k v g dt m 这是一阶线性微分方程,由式(6-16)得它的通解
v
e
k dt m
ge
k dt
m dt
C
e
k dt m
g
e
k m
dt
dt
C
kt
em
mg k
k gt
em
C
mg k
k gt
Ce m
例6.2.5 跳伞运动员降落过程的运动方程是

dy p(x) y 0 dx
(6-13)
为一阶齐次线性微分方程,简称为式(6-12)对应的齐次方程.
下面我们来求式(6-12)的通解. 为此,先求式(6-13)的通解. 分
离变量得 积分得
dy p(x)dx y
dy y
p( x)dx

高等数学微分方程的基本概念教学ppt讲解

高等数学微分方程的基本概念教学ppt讲解

(9)
2
这就是初速度为0的物体垂直下落时距离
s与时间t之间的函数关系.
Nanjing College of Information and Technology
9
第六章 常微分方程
二、微分方程的定义
第一节 微分方程的基本概念
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程.
例 y xy, y 2 y 3 y e x , (t 2 x)dt xdx 0,
分类1:按自变量的个数,分为常微分方程和偏微分方程.
如果其中的未知函数只与一个自变量有关,就 称为常微分方程。
如 y′= x2 , y′+ xy2 = 0 , 都是常微分方程;
y(4) 4 y ' 4 y xex
Nanjing College of Information and Technology
11
第六章 常微分方程
第一节 微分方程的基本概念
如果未知函数是两个或两个以上自变量的函数, 并且在方程中出现偏导数

2u x2

2u y2

2u z2

0
就是偏微分方程;
本章我们只介绍常微分方程。
Nanjing College of Information and Technology
第六章 常微分方程
第一节 微分方程的基本概念
第六章 常微分方程
第一节 微分方程的基本概念 第二节 一阶微分方程 第三节 可降阶的高阶微分方程 第四节 二阶线性微分方程解的结构 第五节 二阶常系数线性齐次微分方程
Nanjing College of Information and Technology

高等数学-第6章-常微分方程【可编辑全文】

高等数学-第6章-常微分方程【可编辑全文】

6.3.3 形如 的y 方f 程y, y
6.4 二阶线性微分方程解的结构
6.4.1 二阶线性微分方程的一般形式 6.4.2 二阶线性齐次微分方程解的结构 6.4.3 二阶线性非齐次微分方程解的结构
6.4.1 二阶线性微分方程的一般形式
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.5.2 二阶常系数线性非齐次微分方程的求解
6.5.2 二阶常系数线性非齐次微分方程的求解
6.6 微分方程的简单应用
微分方程是利用一元微积分解决实际问题的重要数学工具.现实世 界中,能用微分方程建模研究的实际问题有很多,涉及的领域包括物理 学、化学、经济、生物、军事、资源等.下面举几个简单的例子,说明 如何运用微分方程解决实际问题.
6.3.1 形如 y'' f (x) 的方程 6.3.2 形如y'' f (x, y ') 的方程 6.3.3 形如y f y, y 的方程
6.3.1 形如 的y方'' 程f (x)
6.3.2 形如 的y''方f (程x, y ')
6.3.2 形如 的y''方f (程x, y ')
6.3.2 形如 的y''方f (程x, y ')

第六章常微分方程的数值解法

第六章常微分方程的数值解法

第六章常微分方程的数值解法第六章常微分方程的数值解法在自然科学研究和工程技术领域中,常常会遇到常微分方程的求解问题。

传统的数学分析方法仅能给出一些简单的、常系数的、经典的线性方程的解析表达式,不能处理复杂的、变系数的、非线性方程,对于这些方面的问题,只能求诸于近似解法和数值解法。

而且在许多实际问题中,确确实实并不总是需要精确的解析解,往往只需获得近似的解或者解在若干个点上的数值即可。

在高等数学课程中介绍过的级数解法和逐步逼近法,能够给出解的近似表达式,这一类方法称为近似解法。

还有一类方法是通过计算机来求解微分方程的数值解,给出解在一些离散点上的近似值,这一类方法称作为数值方法。

本章主要介绍常微分方程初值问题的数值解法,包括Euler 方法、Runge-Kutta 方法、线性多步法以及微分方程组与高阶微分方程的数值解法。

同时,对于求解常微分方程的边值问题中比较常用的打靶法与有限差分法作了一个简单的介绍。

§1 基本概念1.1 常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求解满足如下条件的函数,,b x a x y ≤≤)(=<<=α)(),(a y bx a y x f dxdy, (1.1) 其中),(y x f 是已知函数,α是给定的数值。

通常假定上面所给出的函数),(y x f 在给定的区域},),{(+∞<≤≤=yb x a y x D 上面满足如下条件:(1) 函数),(y x f 在区域D 上面连续;(2) 函数),(y x f 在区域D 上关于变量y 满足Lipschitz(李普希茨)条件:212121,),(),(y y b x a y y L y x f y x f ?≤≤?≤?,, (1.2)其中常数L 称为Lipschitz(李普希茨)常数。

由常微分方程的基本理论可以知道,假如(1.1)中的),(y x f 满足上面两个条件,则常微分方程初值问题(1.1)对于任意给定的初始值α都存在着唯一的解,,b x a x y ≤≤)(并且该唯一解在区间[a,b]上是连续可微的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 y uxe Pxdx

y
u x e
P x dx
uP x e
P x dx
代入(1)中有:
uxeP xd xuxP xeP xdxPxuxePxdx Qx
Qxuxe
Pxdx
,即:u
x
Q x e
P xdx
ux
Qxe
Pxdx
d
xC,从而,
y uxe Pxdx
e
P xdx
Q x e
可化为
y x
的函数
y x
,即:
f
x,
y
y x
,称
该方程为齐次方程.
如: x y y 2 d x x 2 2 x d y 0 y
可化为:dy
dx
xy y 2 x2 2xy
y x
y x
1 2
2
y x
由齐次方程的形式:dy
dx
y x
得其解法为:
对于
dy dx
y x
,令 u
当 y 0 时,原方程有解: y 0 当 p 0 ,即 y 0 时,原方程有解: y C
显 然 此 二 解 是 (*) 式 分 别 当 C2 0 和 C2 C,C1 0 时的特殊情形.

d2x dt 2
,
x
代入方程
d2x dt 2
k
2
x
0
得:
k2C 1co k ts C 2sikn tk 2 C 1co k s tC 2sikn t 0
即:x
C1
cos kt
C2
sin
kt

d2x dt 2
k
2
x
0
的解.
将条件 x t0 A 代入 x C1 cos kt C2 sin kt 得:
y2 y y 0 为二阶.
定义3 未知函数是一元函数的微分方程为常微分
方程,为多元函数的微分方程为偏微分方程(数学物 理方程).
定义4 使微分方程成为恒等式的函数称为微分 方程的解.
如:(3,4,7)
定义5 微分方程的解中的任意常数的个数与方程
的阶数相同,这种解称为方程的通解.不含有任意 常数的解称为特解.
lnC1x2
p C 11 x2 C1C
即有: y C1 1 x2
将条件 y |x0 3代入得: C1 3
对 y 3 1 x2 两端再积分得:
y
3x
x3 3
C2
再将
y
x0 1 代入得: C2
1 3
故所求方程的特解为: y x3 3x 1
3、右端不显含x的方程
微分方程 yfy,y
当 Qx 0 时,有 y Pxy 0
称为一阶线性齐次微分方程.
…(1) …(2)
当 Qx 不恒等于零时,称为一阶线性非齐次方程.
通常也说(2)是(1)对应的齐次方程.
其解法为:
由(2)易得: dy Pxdx
y
lnyPxdxlnC1
y Ce Pxdx ( C 为任意常数) …(3)
这就是(2)的通解.
高等数学
第6章 常微分方程
主要内容:
一、微分方程的基本概念 二、一阶微分方程 三、可降阶的微分方程 四、二阶常系数线性微分方程
一、微分方程的基本概念
引例 1 某曲线过点 (1,2) 且任一点处的切线的 斜率为 2x ,求曲线方程.
解 依题意有 y 2x
……(1)
且 y x1 2 ,
……(2)
的含有n个任意常数的通解。
例8 解方程 y e2x cos x .
解 对方程两边连续积分三次得:
y1e2x sinxC 2
y1 4e2xcoxsC xC2
y8 1e2xsixn C 1x2C 2xC 3 C1
C 2
2、右端不显含y的方程
微分方程 yf(x,y)
其特点:不显含有未知函数 y 解法:
1)当 c c1 0 时,显然为齐次方程(略)
2)当 c 2
c1 2
0且
a a1
b b1
时,
令 x X h, y Y k ,代入上式有:
dY aX bY a hbkc dX a1Xb1Ya1hb1kc1 显然可取适当的 h, k ,使得:
ahbk c 0 a1hb1k c1 0
从而有: dY dX
x 12 2x123 C
3
三、可降阶的微分方程)
…(1)
对这类方程,只须两端分别积分一次就可化为
n-1阶方程: y(n1) f(x)d xC 1
同理可得: y(n2) [ f(x)dx C1]dx C2
依此法继续进行,接连积分n次,便得方程(1)
0
得:
h
k
3 2
,将
x
y
X Y
3 2
代入方程(*)得:
dY2XY dX XY
2Yx
1YX
令 Y u ,则Y uX , d u Y X d ,于是u
uXXdu2u,分离d 变量有:X d u1X dX
dX 1u
u2 2u2 X
所以 1 2
即: X
lnu 2
2u C1
2 ln C1 ln X
从而可得:s 0.2t 2 20t
……(7)
由上两例,得如下相关定义: 定义1 凡表示未知函数、未知函数的导数与自变
量关系的方程称为微分方程. 如:(1,5)
定义2 微分方程中未知函数的最高阶导数的阶
数称为微分方程的阶. 如:(1)为一阶,(5)为二阶,
f x, y, y , y, , yn 为 n 阶.
x
dx
dx
于是原方程变为: u x du u 2 ,即: x du u
dx u 1
dx u 1
分离变量得: 1
1 u
du
dx x
两端积分得: u ln u C ln x
即: ln xu u C ,将 u y 代回有:ln y y C
x
x
3、可化为齐次方程的微分方程
以下讨论方程 dy ax by c dx a1 x b1 y c1
这是可分离变量的微分方程.
例6 解方程 2x y 4dx x y 1dy 0
解 由原方程得: dy 2x y 4 …(*)
dx x y 1

x
y
X Y
h k
,则
dx dy
dX dY
,代入方程(*)得:
dY 2XY2hk4,又由 dX XYhk1
2h h k
k 1
4
0
C1 A
将条件
dx dt
t 0
0 代入
dx dt
k C1
sin kt
k C2
coskt 得:
C2 0 将 C1,C2 代入 x C1 cos kt C2 sin kt 得所求特解为:
xAcokst
二、一阶微分方程
1、可分离变量的微分方程 先看一个实例:
y 2xy2 将其化为 1 dy 2xdx
1 2
ln
x2 y2
1 1
C1
即:
x2 1 y2 1 C
y|x01
C 1 2
故所求特解为: x 2 1 1 y2 1 2
例4 设放射性元素铀的衰变速度与当时未衰变的铀
原子的含量 M 成正比.已知时间 t 0 时铀的含
量为 M 0 ,求衰变过程中铀的含量 M t 随时间
t 0 的变化规律.
y2 两边积分有: 1 x 2 C
y 即 y 1
x2 C
若某微分方程可化为:
gydy f xdx
的形式,称这种类型的微分方程为可分离变量的微 分方程.
形式: gydyfxdx
特点:左边的表达式中只含有 y ,右边的表达式中
只含有 x .
解法:两边积分
因为:若 f x, gy连续, 设 y x是 gydy f xdx
aX a1 X
bY b1Y
可化为齐次方程求解.
3)若 a b 时, 令 a b
a1 b1
a1 b1
代入原方程有:
dy dx
ax by c
ax by c1
再令 ax by v ,有 dv a b dy
dx
dx
代入上一方程得: 1 dv a v c
b dx v c1
y x
,则
y
ux
, 从而有:
dyux du,将其代入原方程得:
dx
dx
ux duu ,
dx
du dx
uu x
思路:作变换 u y , y ux ,使之成为可分离变 x
量的微分方程.
例5 解方程 y 2 x 2 y xyy.

由原方程得: dy dx
y2 xy x2
y x
2
y x
1
令 y u ,则 dy u x du
令 y p 为一新的未知函数,则可化为
p f x, p ,这是一阶微分方程,可解.
例9 求方程 1 x 2 y 2xy 满足 y x0 1, y x0 3
的特解.
解 设 y p ,则 y dp ,从而方程化为:
dx
dp p
2x 1 x2
dx
,两端积分得:
ln p ln 1 x2 lC n
由(1)可得:y x 2 C
……(3)
所以 y x 2 1
……(4)
引例 2 火车以 20 米/秒行驶时,若以 0.4m / s2 的加速度刹车,则到停止时位移为多少?
解 设刹车后位移与时间关系为 s st ,
则有
d 2s dt 2
相关文档
最新文档