高等数学 第七章 常微分方程
高等数学-第七章-微分方程
![高等数学-第七章-微分方程](https://img.taocdn.com/s3/m/8ed2217f11661ed9ad51f01dc281e53a59025114.png)
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
高等数学 上册 第7章 微分方程
![高等数学 上册 第7章 微分方程](https://img.taocdn.com/s3/m/07588dd68662caaedd3383c4bb4cf7ec4bfeb671.png)
形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)
②
两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x
;
5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2
①
假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程
①
dx
y x1 3
②
由①得
( C为任意常数)
第七章 常微分方程 第二节 一阶微分方程
![第七章 常微分方程 第二节 一阶微分方程](https://img.taocdn.com/s3/m/16e0112a4b73f242336c5f9a.png)
2
两边积分, 两边积分,得
20112011-4-16 高 等 数 学 习 题 课 16
3u + 2 ∫ u(u2 +1) du = −3ln | x | +lnC,
2
3u2 + 2 2 u du = ∫ ( + 2 )du 由于 ∫ 2 u u +1 u(u +1) 1 2 ( = 2ln | u| + ln u +1) +C1 , 2 C 2 2 故方程的通解为 u u +1 = , 3 x
5
例2 求解方程 yd x + (x − 4x)d y = 0.
2
此方程为一个可分离变量的微分方程. 解 此方程为一个可分离变量的微分方程.分离 变量, 变量,得
dy dx = , 2 y 4x − x
dx 1 1 1 = + d x, 2 4 x 4− x 4x − x
因
两边积分, 两边积分,得
第七章(1) 第七章
习题课
一阶微分方程的解法及应用
一、一阶微分方程求解 二、解微分方程应用问题 三、课外练习题
20112011-4-16
高 等 数 学 习 题 课
1
一、一阶微分方程求解
1. 一阶标准类型方程求解 几个标准类型: 可分离变量方程, 齐次方程, 几个标准类型 可分离变量方程 齐次方程 线性方程 关键: 关键 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解 代换自变量 变量代换法 —— 代换自变量 代换因变量 代换因变量 代换某组合式 代换某组合式
03考研 考研
微分方程
![微分方程](https://img.taocdn.com/s3/m/2f2328c55fbfc77da269b1d5.png)
dy P ( x ) y Q( x ) dx
dy 2 dx 2 例如 y x , x sin t t , 线性的; dx dt
yy 2 xy 3, y cos y 1,
非线性的.
高等数学(上)
一阶线性非齐次微分方程的通解为:
ye
Ce
P ( x ) dx
过定点的积分曲线; 微分方程的图形
y f ( x , y , y ) 二阶: y x x0 y0 , y x x0 y0
过定点且在定点的切线的斜率为定值的积分曲线.
高等数学(上)
第二节 一阶微分方程
一、可分离变量的微分方程
二、齐次方程
三、一阶线性微分方程
cos x C.
所以原方程通解为
y
1 cos x C . x
高等数学(上)
1 sin x 求方程 y y 的通解. x x
1 解 P( x) , x
sin x Q( x ) , x
sin x y x ln x sin x ln x e e dx C x 1 1 sin xdx C cos x C . x x
高等数学(上)
( x, C1 )
例3 求方程 xy
解
(5)
y
(4)
0 的通解.
(5)
设y
(4)
P ( x ), y
P ( x )
(4)
代入原方程 分离变量,得
xP P 0, (P 0)
1 2 两端积分,得 y C1 x C 2 , 2
原方程通解为
高等数学(上)
高等数学-第七章-微分方程
![高等数学-第七章-微分方程](https://img.taocdn.com/s3/m/cc19fffafc0a79563c1ec5da50e2524de418d04a.png)
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
高等数学第七章微分方程微分方程
![高等数学第七章微分方程微分方程](https://img.taocdn.com/s3/m/7bc040d708a1284ac8504322.png)
熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念
解
2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2
解
对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:
故
等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析
因
本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.
高等数学上册第七章课件.ppt
![高等数学上册第七章课件.ppt](https://img.taocdn.com/s3/m/1ec7fa89b04e852458fb770bf78a6529647d3522.png)
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
《高等数学》 第七章
![《高等数学》 第七章](https://img.taocdn.com/s3/m/968cacf64431b90d6d85c778.png)
C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
高等数学第七章常微分方程
![高等数学第七章常微分方程](https://img.taocdn.com/s3/m/27c185abce2f0066f4332233.png)
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
高等数学
第七章 常微分方程
因此y=eλ1x是原方程的解。 函数y=C1eλ1x+C2eλ2x的一阶导数和二阶导数分别为 y′=C1λ1eλ1x+C2λ2eλ2x y″=C1λ12eλ1x+C2λ22eλ2x 代入原方程,则 (C1λ12eλ1x+C2λ22eλ2x)-(λ1+λ2)(C1λ1eλ1x+C2λ2eλ2x)+λ1λ2( C1eλ1x+eλ2x)≡0 说明y=C1eλ1x+C2eλ2x也是原方程的解。
微分方程的概念 一阶微分方程 可降阶的高阶微分方程 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程
第一节 微分方程的概念
一、 微分方程的基本概念
例1 已知一条曲线经过点(2,1),且该曲线上任一点
P(x,y)处切线斜率为x,求该曲线的方程.
解 设所求曲线方程为y=y(x).由导数的概念及几何意义
F(x,f(x),f′(x),…,f(n)(x))≡0 则称y=f(x)为微分方程 (7-1-1) 在区间I上的解。
第一节 微分方程的概念
例2 验证函数y=eλ1x和y=C1eλ1x+C2eλ2x均为方程 y″-(λ1+λ2)y′+λ1λ2y=0的解。
解 y=eλ1x的一阶导数和二阶导数分别为 y′=λ1eλ1x, y″=λ12eλ1x 将y,y′,y″代入原方程中,则 λ12eλ1x-(λ1+λ2)λ1eλ1x+λ1λ2eλ1x≡0
dx
高等数学中的常微分方程及其应用
![高等数学中的常微分方程及其应用](https://img.taocdn.com/s3/m/470904654a35eefdc8d376eeaeaad1f347931149.png)
高等数学中的常微分方程及其应用随着科学技术的发展,数学的应用范围也越来越广泛。
其中,微积分作为现代数学的核心和基石,发挥着至关重要的作用。
微积分包括微分学和积分学两大部分,其中微分学是研究变化率和斜率等问题的数学分支。
而常微分方程就是微分学中最基础的理论之一,它既是数学基础理论的重要组成部分,也是实际问题求解的重要工具。
一、常微分方程常微分方程是研究变化的数学模型,是微分学的重要组成部分。
在数学中,对于一个未知函数y=f(x),如果该函数的导数y’只是关于x的函数,则称该函数是一个一阶常微分方程。
一阶常微分方程可以表示为dy/dx=f(x),其中f(x)是已知的函数。
相应地,二阶、三阶、n阶常微分方程可以表示为:d²y/dx²=f(x,y,dy/dx)d³y/dx³=f(x,y,dy/dx,d²y/dx²)dn/dx=f(x,y,dy/dx,...,y(n-1))其中,y、y’、y’’,..., y(n-1)都是未知函数。
常微分方程广泛应用于各个领域,如物理、化学、生物学、经济学等。
例如,牛顿第二定律F=ma就是一个二阶变量加速度的常微分方程,其中a是速度的导数。
又如,放射性衰变的实验数据可以用一阶常微分方程来描述,物体受到的空气阻力也可以用一阶常微分方程来表示。
二、常微分方程的初值问题对于一阶常微分方程dy/dx=f(x),我们可以通过求解初值问题来确定未知函数y的具体形式。
常微分方程的初值问题是指,给定常微分方程的初始状态y(x0)=y0,求出相应的解y(x)。
这个初始状态就相当于一个起点,解y(x)就是连接这个起点和各个点的曲线路径。
因此,常微分方程的初值问题可以形式表示为:dy/dx=f(x), y(x0)=y0为了解决常微分方程的初值问题,可以使用解析解、数值解等方法。
解析解是指通过使用数学公式求出未知函数y在每一个时间点的具体值的解法,这种方法只适用于具有简单形式的常微分方程。
微分方程与差分方程详解与例题
![微分方程与差分方程详解与例题](https://img.taocdn.com/s3/m/4c93fe9a941ea76e58fa04c9.png)
第七章 常微分方程与差分方程常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。
微分方程作为考试的重点容,每年研究生考试均会考到。
特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。
【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。
理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。
了解欧拉方程的概念,会求简单的欧拉方程。
会用微分方程处理物理、力学、几何中的简单问题。
【考点分析】本章包括三个重点容:1.常见的一阶、二阶微分方程求通解或特解。
求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。
2.微分方程的应用问题,这是一个难点,也是重点。
利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。
若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。
高等数学第七章第九节常系数非齐次线性微分方程课件.ppt
![高等数学第七章第九节常系数非齐次线性微分方程课件.ppt](https://img.taocdn.com/s3/m/56ee18ae4793daef5ef7ba0d4a7302768e996ff3.png)
这说明 y1 为方程 ③ 的特解 .
第三步 求原方程的特解 原方程
y py qy e x Pl (x) cos x P~n (x)sin x
利用第二步的结果, 根据叠加原理, 原方程有特解 :
y* y1 y1
xk e x Qm ei x Qm ei x xke x Qm (cos x i sin x)
b0
1 ,
b1
1 3
例2.
的通解.
解: 本题 2, 特征方程为 r 2 5 r 6 0 , 其根为
对应齐次方程的通解为
设非齐次方程特解为 y* x (b0 x b1) e2 x
代入方程得 2b0 x b1 2b0 x
比较系数, 得
b0
1 2
,
b1
1
因此特解为
y*
x
(
1 2
Qm (cos x i sin x) xke x Rm cos x R~m sin x
其中 R m , R~m 均为 m 次多项式 .
第四步 分析 y的特点
y y1 y1
xke x Rm cos x R~m sin x
因
y y1 y1 y1 y1
y1 y1
y*
所以 y本质上为实函数 , 因此 Rm , R~m 均为 m 次实
③
设 i 是特征方程的 k 重根 ( k = 0, 1), 则 ② 有
特解:
y1 xkQm (x) e(i) x (Qm (x)为m次多项式)
故 ( y1) p ( y1) q y1 Pm (x) e(i) x
等式两边取共轭 :
y1 p y1 q y1 Pm (x) e(i) x
形式e为xPym*(x)e xQm (x) .
高等数学第七章微分方程试题及答案汇编
![高等数学第七章微分方程试题及答案汇编](https://img.taocdn.com/s3/m/7dcda7ed49649b6648d74780.png)
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
《高等数学》第七章 微分方程
![《高等数学》第七章 微分方程](https://img.taocdn.com/s3/m/8184373aaf1ffc4fff47ac08.png)
曲线积分
1.两类曲线积分的基本计算法 2.格林公式及其应用 3.平面曲线积分与路径无关的条件,二元函数的全微 分求积
曲面积分
1.两类曲面积分的基本计算方法 2.高斯 ( Gauss )公式(p229定理1,p231例1,2 P236.1.作业题.p247.4(2)(3))
2.应用 (几何应用:空间曲线的切线与法平面(p94例4), 曲面的切平面与法线(p99例6).
多元函数的极值:无条件极值(p110定理1.2例4), 条件极值(p115.拉格朗日乘数法,p116例8))
第十,十一章.多元函数积分学(40)%
重积分
1.计算二重积分( 直角坐标, 极坐标),交换积分次序
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
特征方程的两个根r1 ,r2
微分方程的通解
两个不相等的实根 r1,r2
y C1er1x C2er2x
两个相等的实根 r1 r2
y (C1 C2 x)er1x
一对共轭复根 r1,2 i y ex (C1 cos x C2 sin x)
y(x0 ) y0 , y(x0 ) y0 , , y(n1) (x0 ) y0(n1)
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
小结 y py qy f ( x)
通解 y Y y* c1 y1 c2 y2 y*
高等数学_第7章___常微分方程
![高等数学_第7章___常微分方程](https://img.taocdn.com/s3/m/e46fed0af12d2af90242e693.png)
第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。
高等数学第7章(第8节)
![高等数学第7章(第8节)](https://img.taocdn.com/s3/m/1d03732f58fb770bf78a555c.png)
y C 1 e x C 2 e x x e x
x e
k x
i x i x
第四步 分析 y 的特点
y y1 y1 k x
x e
因
~ Rm cos x Rm sin x
y1 y1
y
y1 y1
y1 y1
y*
~ 所以 y 本质上为实函数 , 因此 Rm , Rm 均为 m 次实
因此特解为 y* x ( 1 x 1) e 2 x . 2
所求通解为
1 ( 2
x 2 x ) e2 x .
y 3 y 2 y 1 例3. 求解初值问题 y (0) y (0) y (0) 0
解: 本题 0 , 特征方程为
y* e x [ Q ( x) Q ( x) ] y* e x [ 2 Q ( x) 2 Q ( x) Q ( x) ]
代入原方程 , 得
(1) 若 不是特征方程的根, 则取 x e为[ m 次待定系数多项式 ( x) (2 p q ) Q ( x) ] Q ( x) ( 2 p ) Q Q (x) 从而得到特解
x
i 为特征方程的 k (=0, 1 )重根, 则设特解为
y* x e
k x
~ [ Rm ( x) cos x Rm ( x) sin x]
3. 上述结论也可推广到高阶方程的情形.
思考与练习
1 . (填空) 设
时可设特解为
y* x (a x b) cos x (cx d )sin x
y p y q y Pm ( x) e( i ) x
同济大学高等数学上册第七章常微分方程
![同济大学高等数学上册第七章常微分方程](https://img.taocdn.com/s3/m/d4e304abf9c75fbfc77da26925c52cc58ad69014.png)
同济大学高等数学上册第七章常微分方程同济大学高等数学上册是大多数理工科专业的学生必修的课程,第七章是关于常微分方程的内容。
常微分方程是数学中的一个重要分支,广泛应用于物理、化学、经济等领域。
掌握常微分方程的基本理论和解法对于理解和应用这些领域的知识具有重要意义。
本章内容主要包括:一阶常微分方程、高阶常微分方程、一阶线性微分方程、可分离变量的微分方程、齐次线性微分方程和一阶齐次线性方程、一阶齐次线性非齐次方程、二阶常系数齐次线性方程、常系数非齐次方程等。
一、一阶常微分方程一阶常微分方程是指未知函数的导数只包含一阶导数的方程。
例如,dy/dx = f(x)。
常微分方程的求解可以采用分离变量法、恰当方程、公式法等。
其中分离变量法是常用的解法之一。
分离变量法的基本思想是将方程两边的变量分离开来,从而达到求解的目的。
二、高阶常微分方程高阶常微分方程是未知函数的导数包含高于一阶导数的方程。
例如,d²y/dx² + p(x) dy/dx + q(x) y = f(x)。
高阶常微分方程的求解可以采用常系数线性微分方程的方法。
常系数线性微分方程是指系数为常数的微分方程,其求解方法相对简单。
三、一阶线性微分方程一阶线性微分方程是指未知函数的导数与未知函数本身之间线性相关的方程。
例如,dy/dx + p(x) y = q(x)。
一阶线性微分方程的求解可以借助于积分因子的方法。
积分因子的选择是使方程两边的未知函数系数相等,从而将方程转化为可积分的形式。
四、可分离变量的微分方程可分离变量的微分方程是指未知函数和自变量可以在方程中分离的方程。
例如,dy/dx = f(x)/g(y)。
可分离变量的微分方程的求解可以通过对方程两边的变量分离,然后进行适当的积分得到。
这种方法常用于求解一些特殊形式的微分方程。
五、齐次线性微分方程和一阶齐次线性方程齐次线性微分方程是指未知函数的导数和未知函数本身之间构成齐次线性关系的微分方程。
第七章 微分方程
![第七章 微分方程](https://img.taocdn.com/s3/m/e9737c1e52ea551810a68778.png)
微分方程的基本概念引言大家知道:高等数学的主要研究对象是函数,我们在前面的学习中,对于给定的函数()f x ,进行了微分运算和积分运算,那么函数又是如何得到的呢?我们可以对实验中得到的数据进行处理,从中发现规律得到函数,也就是采用数据拟合的方法。
然而有些问题,往往很难根据数据直接找出所需要的函数关系,比如:我们的新型战机——歼二十战机,使其安全着陆问题;坦克装甲的设计原理,导弹对敌机的追踪问题等等。
寻找这些问题中变量之间函数关系的方法有很多,我们来介绍其中的一种——利用微分方程求解函数关系。
为此今天我们来学习微分方程的基本概念。
下面我们从一张图片开始来认识他们。
一、问题的提出我们注意到:歼—二十战机下降滑跑时,在跑道上会滑行一段距离。
因此对滑跑的跑道提出了严格的要求,那么滑行跑道满足什么样的条件才可以保障战机的安全着陆?那么,当机场跑道不足时,对它的着陆速度又有什么样的要求呢?对此,我们把它抽象成一般的数学问题:战机的安全着陆问题。
案例1 (战机的安全着陆) 我国新型战机——歼二十,质量为m ,以速度0v 着陆降落时,减速伞对飞机的阻力作用与降落时的速度成正比,此外飞机还受到另一个与时间成正比的阻力作用,试讨论飞机降落时的速度与时间的关系?要使得战机可以安全着陆也就是要使得飞机的滑跑距离小于跑道的长度。
对于此问题,我们可以先对飞机滑跑的运动状态进行分析,结合前面我们所学习的微分学知识以及牛顿第二定律,这样便可建立运动方程。
解:设飞机质量为m ,着陆速度为0v ,若从飞机接触跑道时开始计时,飞机的滑跑距离为()x t ,飞机的速度为()v t ,减速伞的阻力为()kv t -,其中k 为阻力系数。
根据牛顿第二定律可得运动方程()dvmkv t kt dt =--,()dx v t dt= 从这个例子中,将这些等式和中学里我们所学的代数方程形式做比较,你有什么发现? 二、微分方程的基本概念1、定义通过比较代数方程与微分方程,从代数方程的定义(含有未知量的等式)得到:含有未知函数的导数或微分的方程称为常微分方程,简称为微分方程,记为()(,,,,)0'⋅⋅⋅=n F x y y y。
高等数学 理工类 第三版 吴赣昌 第7章 微分方程
![高等数学 理工类 第三版 吴赣昌 第7章 微分方程](https://img.taocdn.com/s3/m/a1d089ce58f5f61fb7366646.png)
解:将 y C1e
C2 e 2 x , y C11e 1x C2 2 e 2 x , y C112e1x C222e2 x ,
代入原方程得: 左边
y (1 2 ) y 12 y
2 2
C11 e 1x C2 2 e 2 x (1 2 )(C11e 1x C2 2 e 2 x ) 12 (C1e 1x C2 e 2 x )
a1 X b1Y X x x0 dY 求得通解再回代 f , a X b Y dX Y y y 0 2 2
解; 2.方程组无解,做变量代换 u
即得原方程通
a1 x b1 y ,则
du dy ,原 a1 b1 dx dx
方程化为可分离变量方程,求得通解再回代即可。
解法:联立
a1 x b1 y c1 0 a 2 x b2 y c 2 0
,
1. 方程组有解, 求得交点 ( x0 , y0 ) ,作平移变换
X x x0 , 即 Y y y 0
dY dy x X x0 , 则 有 ,原方程就化为齐次方程 dX dx y Y y0
§12.2 可分离变量的微分方程 内容概要
即为所求函数。
名称
标准形式 形如
解法或通解公式
可分 离变
dy f ( x) g ( y ) dx
解法:设 g ( y )
0 ,整理为
1 dy f ( x)dx g ( y)
,两边积分得
方程通解为 量型
1 dy f ( x)dx g ( y)
du dx (u) u x y x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点
五种标准类型的一阶方程的求解
可降阶的高阶方程的求解
二阶常系数齐次和非齐次线性方程的求解
难点
求解全微分方程 求常系数非齐次线性方程的通解
基本要求
①明确微分方程的几个基本概念
②牢固掌握分离变量法,能熟练地求解可 分离变量的微分方程
③牢固掌握一阶线性微分方程的求解公式,
会将Bernoulli 方程化为一阶线性方程来求解 ④掌握全微分方程的解法
三、主要问题-----求方程的解
微分方程的解: 代入微分方程能使方程成为恒等式的函数.
设y ( x )在区间 I 上有 n 阶导数,
F ( x, ( x ), ( x ),, ( n) ( x )) 0.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独 立的任意常数的个数与微分方程的阶数相同 .
例 y y ,
y y 0,
(2)特解:
通解 y ce x ;
通解 y c1 sin x c2 cos x;
确定了通解中任意常数以后的解.
解的图象:
通解的图象:
微分方程的积分曲线.
积分曲线族.
初始条件:
用来确定任意常数的条件.
初值问题: 求微分方程满足初始条件的解的问题.
d x 方程 2 k 2 x 0的解. 并求满足初始条件 dt dx x t 0 A, 0 的特解. dt t 0 dx 解 kC1 sin kt kC2 cos kt , dt 2 d x 2 2 k C cos kt k C 2 sin kt , 1 2 dt 2 d x 将 2 和x的表达式代入原方程 , dt
⑤会用降阶法求解几种特殊类型的高阶方程 ⑥掌握二阶线性微分方程解的结构并能熟 练地应用特征根法、待定系数法求解二阶 常系数线性方程
一、问题的提出
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
M ( x , y ) 处的切线的斜率为2 x ,求这曲线的方程.
解ቤተ መጻሕፍቲ ባይዱ
设所求曲线为 y y( x )
y f ( x , y ) 一阶: y x x0 y 0
过定点的积分曲线;
y f ( x , y , y ) 二阶: y y , y y 0 0 x x x x 0 0
过定点且在定点的切线的斜率为定值的积分曲线.
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分
y
( n)
( n1 ) f ( x , y, y ,, y ).
分类3: 线性与非线性微分方程.
y P ( x ) y Q( x ),
2 x( y ) 2 yy x 0;
分类4: 单个微分方程与微分方程组.
dy dx 3 y 2 z , dz 2 y z , dx
故 s 0.2t 20t ,
2
20 开始制动到列车完全停住共需 t 50(秒), 0 .4
列车在这段时间内行驶了
s 0.2 50 20 50 500(米).
2
二、微分方程的定义
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程 . 例
y 2 y 3 y e x , z 2 x y, ( t x )dt xdx 0, x
y xy ,
实质: 联系自变量,未知函数以及未知函数的 某些导数(或微分)之间的关系式.
分类1: 常微分方程, 偏常微分方程.
微分方程的阶: 微分方程中出现的未知函数的最 高阶导数的阶数.
分类2: 一阶微分方程 F ( x , y, y) 0,
y f ( x , y );
高阶(n)微分方程 F ( x , y , y,, y ( n ) ) 0,
所求特解为 x A cos kt . 补充: 微分方程的初等解法: 初等积分法.
求解微分方程
求积分
(通解可用初等函数或积分表示出来)
解
设制动后t 秒钟行驶 s 米, s s(t )
ds d 2s t 0时, s 0, v 20, 0.4 2 dt dt ds 2 s 0.2t C1t C 2 v 0.4t C1 dt
代入条件后知
C1 20, C 2 0
ds v 0.4t 20, dt
2
k 2 (C1 cos kt C 2 sin kt ) k 2 (C1 cos kt C 2 sin kt ) 0.
故 x C1 cos kt C2 sin kt 是原方程的解 .
x t 0 dx A, 0, dt t 0
C1 A, C2 0.
常微分方程
在力学、物理学及工程技术等领域中 为了对客观事物运动的规律性进行研究, 往往需要寻求变量间的函数关系,但根据 问题的性质,常常只能得到待求函数的导 数或微分的关系式,这种关系式在数学上 称之为微分方程。微分方程又分为常微分 方程和偏微分方程,本章讨论的是前者。
常微分方程是现代数学的一个重要分支,内容 十分丰富,作为一种有效的工具在电子科学、自动 控制、人口理论、生物数学、工程技术以及其它自 然科学和社会科学领域中有着十分广泛的应用 由于学时有限,高等数学中的常微分方程仅包 含几种特殊类型的一阶微分方程的求解,可通过降 阶求解的高阶微分方程,二阶常系数齐次和非齐次 线性微分方程及其解的结构和特殊情况下的求解方 法。 本章先从解决这类实际问题入手,引出微 分方程的一些基本概念,然后着重讨论一些特殊 类型的微分方程的求解方法。
dy 2x dx
y 2 xdx
其中 x 1时, y 2
即 y x2 C,
求得C 1,
所求曲线方程为 y x 2 1 .
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 2 当制动时列车获得加速度 0.4 米/秒 ,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?