两直线的位置关系平行与垂直
《两直线的位置关系》课件
CHAPTER 04
两直线的关系应用
解析几何中的应用
解析几何的基本概念
01
解析几何是研究图形与坐标之间的关系,通过代数方法解决几
何问题。两直线的位置关系是解析几何中的基本问题。
直线的方程
02
在二维坐标系中,直线可以用一个或两个方程来表示。例如,
通过两点式、点斜式、截距式等可以求出直线的方程。
两直线的交点
两直线的斜率与截距
斜率的定义与计算
总结词
斜率是直线在平面上的一个重要属性,它表示直线相对于x轴 的倾斜程度。
详细描述
斜率是直线方程y=kx+b中k的值,它表示直线在y轴上的单 位长度内,x轴的变化量。如果k为正数,则直线向右上方倾 斜;如果k为负数,则直线向右下方倾斜。
截距的定义与计算
总结词
截距是直线与y轴和x轴相交的点,表示直线在坐标轴上的位置。
判断方法
斜率法
若两直线斜率相等且截距不等,则两 直线平行;若斜率不存在且截距相等 ,则两直线平行。
交点法
若两直线无公共点,则两直线平行或 重合;若两直线有且仅有一个公共点 ,则两直线相交;若两直线有无数个 公共点,则两直线重合。
平行与垂直的性质
平行性质
平行直线间的距离是固定的,且与两直线的方向向量或斜率有关。
03
两直线相交于一点,这个点是两直线的交点。求两直线的交点
可以通过联立两直线的方程来求解。
三角函数图象中的应用
01
三角函数的图象与性质
三角函数(如正弦、余弦、正切等)的图象是周期性的,这些图象在某
些部分表现出直线性。
02
三角函数与直线的交点
在三角函数的图象中,求直线与三角函数的交点可以通过将直线的方程
两条直线的平行与垂直
两条直线的平行与垂直一、要点两条直线的位置关系有三种,即相交、平行与重合1111:0l A x B y C ++=,或,当直线的斜率存在时y=k 1x+b 12222:0l A x B y C ++=,或,当直线的斜率存在时y=k 2x+b 2方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩两条直线垂直是两条直线相交的特殊情况,它满足条件:12120A A B B +=或如果1l 与2l 的斜率都存在,则121k k =-注意:判别两条直线平行或垂直的前提须是直线都要有斜率,在判断平行时,除了判断两直线的斜率同时存在或同时不存在外,还要注意两直线不能重合;在判断垂直时,要注意特殊情况,一条直线的斜率为0,另一条直线的斜率不存在。
二、例题讲解1、判断下列两条直线是否相交(1)12:35;:53l y x l y x =+=+;(2)12:3270;:2370l x y l x y ++=+-=(3)1260;:2690l y l x y -+=++=;(4)1260;l y l α-+=的倾斜角为(5)212:120,:(2)340l x m y l m x my ++=-++=2、已知直线1:230l x my +-=与直线2:(31)50l m x my --+=互相平行,求实数m 的值3、求满足下列条件的直线l 的方程:(1)过点(3,1)且与直线3x+2y-3=0垂直;(2)过点(5,7),且与直线x-3=0垂直(3)过点(- 2,4),且与直线y=5垂直;(4)过点(3,5)且与直线3mx+(m+5)y+3m-7=0垂直4、已知三点A (1,3),B (- 1,- 1),C (2,1),求:(1)△ABC 的重心坐标;(2)△ABC 的面积三、基础演练与综合应用一、选择题1、若直线12,l l 是两条不同的直线,则下列命题①若12l l ,则斜率12k k =;②若斜率12k k =,则12l l ;③若12l l ,则倾斜角12αα=;④若倾斜角12αα=,则12l l ;其中正确的个数为( )(A)1个(B)2个(C)3个(D)4个2、直线11112222:0;:0l A x B y C l A x B y C ++=++=,则12l l 是12210A B A B -=的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3、下列直线中,与2x-y-3=0相交的是( )(A)260(0)ax ay a -+=≠(B)2y x =(C) 25y x =+ (D) 23y x =-+4、已知直线212:60;:(2)320l x m y l m x my m ++=-++=,且12l l ,则m 的值为( )(A)3(B)0(C)0或2(D)0或- 15、四点A (-m,6),B(- 5,3m),C(m , 2),D (3,6)满足AB ∥CD 且AC ⊥BC ,则m 的值为( )(A)2(B)3(C) - 1(D)m 不存在二、填空题6、确定12l l 与的位置关系:(1)1l 过点A (2,3),B (- 1,0),2l 过点P (1,0)且斜率为1,则1l ______2l ;(2)1l 过点C (3,1),D (- 2,0),2l 过点M (1,- 4)且斜率为- 5,则1l ______2l ;7、△ABC 的三个顶点分别上A (-1,1),B (0,1,C 1,2),则三角形的形状是________________8、已知直线1l 的斜率为2,直线2l 经过三点M (3,5),N (x ,7),P ( - 1,y ),若1l ∥2l ,则x=_____,y=_______三、解答题9、试确定m 的值,使过点A(2m ,2)、B (-2,3m )的直线与过点P (1,2)、Q (-6,0)的直线:(1)平行;(2)垂直10、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为(1,p )求m-n+p 的值11、已知四边形MNPQ 的顶点为M (1,1),N (3,-1),P (4,0),Q (2,2),求证:四边形MNPQ 为矩形12、求m ,n 的值,使直线1:(1)7l y m x n =--+满足:(1)平行于轴;(2)平行于直线2:7150l x y -+=;(3)垂直于直线2:7150l x y -+=(4)与直线(2m+2)x - (m+1)y+mn=0★13、已知直线1:240l x y +-=,求1l 关于直线l :3x+4y-1=0对称的直线2l 的方程★14、证明:梯形两对角线的中点连线平行于上、下底,且等于两底差的一半。
两直线平行与垂直的判定公式
两直线平行与垂直的判定公式平行与垂直是直线相对关系中的两种特殊情况。
在解决几何题目和实际应用中,我们经常需要判断两条直线是否平行或垂直。
本文将为您介绍两直线平行与垂直的判定公式。
两条直线平行的判定条件是:它们的斜率相等。
直线的斜率表示直线在坐标平面上的倾斜程度,斜率相等就意味着两条直线的倾斜程度相同,即它们平行。
设直线AB的斜率为k1,直线CD的斜率为k2,则有以下公式可以用来判断两条直线是否平行:k1=k2其中,斜率的计算公式为:k=(y2-y1)/(x2-x1)其中,(x1,y1)和(x2,y2)是直线上任意两个点的坐标。
举个例子来说明:设直线AB的两个点的坐标分别是A(x1,y1)和B(x2,y2),直线CD的两个点的坐标分别是C(x3,y3)和D(x4,y4)。
首先计算直线AB和CD的斜率:k1=(y2-y1)/(x2-x1)k2=(y4-y3)/(x4-x3)然后比较斜率,如果k1=k2,则两条直线平行。
两条直线垂直的判定条件是:它们的斜率的乘积等于-1、这是因为当两条直线互相垂直时,它们的斜率之间具有这样的关系。
设直线AB的斜率为k1,直线CD的斜率为k2,则有以下公式可以用来判断两条直线是否垂直:k1*k2=-1举个例子来说明:设直线AB的两个点的坐标分别是A(x1,y1)和B(x2,y2),直线CD的两个点的坐标分别是C(x3,y3)和D(x4,y4)。
首先计算直线AB和CD的斜率:k1=(y2-y1)/(x2-x1)k2=(y4-y3)/(x4-x3)然后计算斜率的乘积,如果k1*k2=-1,则两条直线垂直。
需要注意的是,当一条直线的斜率为0时,它与x轴平行;当一条直线的斜率不存在时,它与y轴平行。
总结一下,平行直线的判定公式为k1=k2,垂直直线的判定公式为k1*k2=-1、掌握了这两个公式,我们可以准确地判断两条直线的相对关系,以便于解决几何题目和实际问题。
7.2 两条直线的位置关系 公开课一等奖课件
唯一解,交点坐标就是方程组 无解 ; 无数个解 .
3.两条直线的夹角 l1到l2的角 定义 l1与l2的夹角
直线l1与l2相交,l1依 l1到l2的角与l2到l1 逆时针 方向旋转到与 的角中不超过的 90° l2重合时所转的角 角
计算公式
k 2 k1 | k 2 k1 | tan 1 tan 2 1 k1k 2 1 k1k 2 (1 k1k 2 0) (1 k1k 2 0)
§7.2
两条直线的位置关系 自主学习
基础知识
要点梳理 1.两条直线平行与垂直的判定 (1)两条直线平行
对于两条不重合的直线l1,l2,其斜率分别为 k1,k2,则有l1∥l2 k1=k2 .特别地,当直线l1、 l2的斜率都不存在时,l1与l2 平行 .
(2)两条直线垂直
如果两条直线l1,l2斜率存在,设为k1,k2,则l1⊥l2
m 1 解析 由已知得l1的斜率k1=1,l2的斜率k2= . 5 ∵l1⊥l2,∴k1·k2=-1. m 1 1 1, m 6. 5
题型分类
题型一
深度剖析
两条直线的平行与垂直
【例1】已知点M(2,2),N(5,-2),点P在 x轴上,分别求满足下列条件的P点坐标.
(1)∠MOP=∠OPN (O是坐标原点);
( C )
B.必要而不充分条件
D.既不充分也不必要条件
当a=1时,直线x+y=0与直线x-y=0垂直成立;
当直线x+y=0与直线x-ay=0垂直时,a=1. 所以“a=1”是“直线x+y=0与直线x-ay=0互相 垂直”的充要条件.
3.一条平行于x轴的线段长是5个单位,它的一个 端点是A(2,1),则它的另一个端点B的坐标 是
两条直线的位置关系(解析版)
第47讲 两条直线的位置关系一、课程标准1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离 二、基础知识回顾 知识梳理1. 斜率存在的两条直线平行与垂直 若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2, 则l 1∥l 2⇔k 1=k 2,b 1≠b 2; l 1⊥l 2⇔k 1·k 2=-1;l 1与l 2重合⇔k 1=k 2,b 1=b 2.2. 直线的一般式方程中的平行与垂直条件若直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(其中A 1,B 1不同时为0,A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2=A 2B 1且A 1C 2≠A 2C 1;l 1⊥l 2⇔A 1A 2+B 1B 2=0.3. 两直线的交点直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. (1)相交⇔方程组有一组解; (2)平行⇔方程组无解; (3)重合⇔方程组有无数组解.4. 已知两点P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离为d =(x 1-x 2)2+(y 1-y 2)2.5. 设点P(x 0,y 0),直线l :Ax +By +C =0(A ,B 不同时为0),则点P 到直线l 的距离为d =||Ax 0+By 0+C A 2+B 2.6. 两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(A ,B 不同时为0)之间的距离d =||C 1-C 2A 2+B 2.三、自主热身、归纳总结1、 若直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则实数m 的值为( )A. 2B. -3C. 2或-3D. -2或-3 【答案】 C【解析】 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或m =-3.故选C.2、 若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( )A. -3B. -43 C. 2 D. 3【答案】 D【解析】 直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23.因为两直线垂直,所以-a 2×23=-1,即a =3.3、直线2x +2y +1=0,x +y +2=0之间的距离是( )A .324 B . 2 C . 22D . 1 【答案】A【解析】 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =⎪⎪⎪⎪2-122=324.故选A .4、若三条直线2x +y +3=0,2x -y -1=0和x +3ky +k +1=0相交于一点,则实数k =____. 【答案】110【解析】 由2x +y +3=0,2x -y -1=0两直线交于点(-12,-2),再将此点代入直线方程x +3ky +k +1=0中,求得k =110.5、若直线(3a +2)x +(1-4a)y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =____. 【答案】0或1【解析】 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a)(a +4)=0,解得a =0或a =1.四、例题选讲考点一 两条直线的位置关系例1、已知直线l 1:ax +2y +3=0和直线l 2:x +(a -1)y +a 2-1=0.(1) 当l 1∥l 2时,求实数a 的值; (2) 当l 1⊥l 2时,求实数a 的值.【解析】 (1)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1)解得a =-1,综上可知,当a =-1时,l 1∥l 2.(方法2)∵l 1∥l 2∴⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6解得a =-1, 故当a =-1时,l 1∥l 2.(2)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立;当a≠1且a≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1)由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. (方法2)∵l 1⊥l 2,∴a +2(a -1)=0,解得a =23.变式1、(1)(江苏省丹阳高级中学2019届模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8(2)(浙江绍兴一中2019届模拟)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】(1)A (2)C【解析】(1)因为l 1∥l 2,所以4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合).因为l 2⊥l 3,所以2×1+1×n =0,即n =-2.所以m +n =-10.(2)当m =2时,代入两直线方程中,易知两直线平行,即充分性成立;当l 1∥l 2时,显然m ≠0,从而有2m =m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立.故选C. 变式2、已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 【解析】 (1)由已知可得l 2的斜率存在,且k 2=1-a.若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1不存在,即b =0.又∵l 1过点(-3,-1),∴-3a+4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a)=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b =b ,②联立①②,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2∴a =2,b =-2或a =23,b =2.方法总结:(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程系数间的关系得出结论.考点二 两条直线的交点问题例2 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是__________.【答案】 ⎝⎛⎭⎫-16,12 【解析】 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A(4,0),B(0,2).直线y =kx +2k +1可变形为y -1=k(x +2),表示这是一条过定点P(-2,1),斜率为k 的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB 上(不包括端点),所以动直线的斜率k 需满足k PA <k <k PB .因为k PA =-16,k PB=12,所以-16<k <12.变式1、(1)三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为__________. 【答案】(1)C (2)5x +3y -1=0【解析】(1)由l 1∥l 3得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若l 1,l 2的交点(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5,且k ≠-10,故选C.(2)解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0得l 1,l 2的交点坐标为(-1,2).由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1.故直线l 的方程为5x +3y -1=0.变式2、下面三条直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能构成三角形,求实数m 的取值集合.【解析】 当三条直线交于一点时:由⎩⎪⎨⎪⎧4x +y -4=0,mx +y =0,解得l 1和l 2的交点A 的坐标⎝ ⎛⎭⎪⎫44-m ,-4m 4-m ,由A在l 3上可得2×44-m -3m×⎝ ⎛⎭⎪⎫-4m 4-m =4,解得m =23或m =-1. 至少两条直线平行或重合时:l 1、l 2、l 3至少两条直线斜率相等,当m =4时,l 1∥l 2;当m =-16时,l 1∥l 3;若l 2∥l 3,则需有m 2=1-3m ,m 2=-23不可能.综合(1)、(2)可知,m =-1,-16,23,4时,这三条直线不能组成三角形,∴m 的取值集合是⎩⎨⎧⎭⎬⎫-1,-16,23,4.方法总结:(1)求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.(2)求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,常用的直线系方程如下:①与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R ,且m ≠C );②与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );③过直线l 1:A 1x +B 1y +C 1 =0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 考点三、 两直线的距离问题 例3、已知点P(2,-1).(1)求过点P 且与原点距离为2的直线l 的方程.(2)求过点P 且与原点距离最大的直线l 的方程,并求出最大距离.(3)是否存在过点P 且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.【解析】 (1)过点P 的直线l 与原点距离为2,而P 点坐标为(2,-1),可见过P(2,-1)垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k(x -2),即kx -y -2k -1=0.由已知得||-2k -1k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)过点P 与原点O 距离最大的直线是过点P 且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1.∴k l =-1k OP=2.由直线的点斜式方程得y +1=2(x -2),即2x -y -5=0,最大距离为||-55= 5.(3)由(2)可知,过P 点不存在与原点距离超过5的直线,∴不存在过P 点且与原点距离为6的直线.变式1、(1)过点P (2,1)且与原点O 距离最远的直线方程为( )A .2x +y -5=0B .2x -y -3=0C .x +2y -4=0D .x -2y =0(2)若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是 5,则m +n =( ) A .0 B .1 C .-2D .-1【答案】 (1)A (2)C【解析】 (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0. (2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.变式2、已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点P.(1) 若点A(5,0)到直线l 的距离为3,求直线l 的方程; (2) 求点A(5,0)到直线l 距离的最大值.【解析】 (1) 由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得⎩⎪⎨⎪⎧x =2,y =1,所以P(2,1).当直线l 的斜率不存在时,其方程为x =2,符合题意;若直线l 的斜率存在,设l 的方程为y -1=k(x -2),即kx -y -2k +1=0.由已知点A(5,0)到直线l 的距离为3,得|3k +1|k 2+1=3,解得k =43,此时直线l 的方程为4x -3y -5=0.综上所述,直线l 的方程为x =2或4x -3y -5=0. (2) 由(1)可知交点P(2,1),如图,过P 作任一直线l , 设d 为点A 到直线l 的距离,则d≤PA(当l ⊥PA 时等号成立), 所以d max =PA =(5-2)2+(0-1)2=10.方法总结:1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.考点四 直线的对称性例4、(1)已知直线l :x +2y -2=0.①求直线l 1:y =x -2关于直线l 对称的直线l 2的方程; ②求直线l 关于点A (1,1)对称的直线方程.(2)光线由点A (-5,3)入射到x 轴上的点B (-2,0),又反射到y 轴上的点M ,再经y 轴反射,求第二次反射线所在直线l 的方程.【解析】(1)①由⎩⎪⎨⎪⎧y =x -2,x +2y -2=0解得交点P (2,0).在l 1上取点M (0,-2), M 关于l 的对称点设为N (a ,b ),则⎩⎨⎧a 2+2·b -22-2=0,⎝⎛⎭⎫-12·b +2a =-1,解得N ⎝⎛⎭⎫125,145,所以kl 2=145-0125-2=7, 又直线l 2过点P (2,0),所以直线l 2的方程为7x -y -14=0.②直线l 关于点A (1,1)对称的直线和直线l 平行,所以设所求的直线方程为x +2y +m =0.在l 上取点B (0,1),则点B (0,1)关于点A (1,1)的对称点C (2,1)必在所求的直线上,所以m =-4,即所求的直线方程为x +2y -4=0.(2)点A (-5,3)关于x 轴的对称点A ′(-5,-3)在反射光线所在的直线BM 上, 可知l BM :y =33(x +2), 所以M ⎝⎛⎭⎫0,233.又第二次反射线的斜率k =k AB =-33,所以第二次反射线所在直线l 的方程为y =-33x +233,即x +3y -2=0.变式、(1)如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是___.(2)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程. 【答案】(1)210 (2)9x -46y +102=0.【解析】 (1)直线AB 的方程为x +y=4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线经过的路程为CD =62+22=210. (2)在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上. 设对称点M′(a ,b),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1解得⎩⎨⎧a =613,b =3013, ∴M′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0得N(4,3).又∵直线m′经过点N(4,3),∴由两点式得直线m′的方程为9x -46y +102=0.方法总结:对称性问题有三类:一是点关于点对称;二是点关于线对称;三是线关于线对称;点关于点对称问题比较简单,只要用中点坐标公式即可;点关于线对称要用到两个条件,一是已知点和对称点的连线与已知直线垂直,二是已知点和对称点的中点在已知直线上;线关于线对称问题,一般是在某一条直线上找两个点,求出这两个点关于另一条直线的对称点,然后用两点式求出其方程.通常情况下会用到两直线的交点.五、优化提升与真题演练1、已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)和B (a ,-1),且直线l 与l 1平行,则实数a 的值为( )A .0B .1C .6D .0或6【答案】C【解析】由直线l 的倾斜角为3π4得l 的斜率为-1,因为直线l 与l 1平行,所以l 1的斜率为-1.又直线l 1经过点A (3,2)和B (a ,-1),所以l 1的斜率为33-a ,故33-a=-1,解得a =6.2、(多选)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则实数c 的值是( )A .2B .-4C .5D .-6【答案】AD【解析】 依题意知,63=a -2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6.3、已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.【答案】 ⎝⎛⎭⎫-16,12 【解析】由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.4、(一题两空)已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________. 【答案】 -1 1【解析】若直线l 1的倾斜角为π4,则-a =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1.5、 过点P(0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段恰好被点P 平分,求直线l 的方程.【解析】 设l 1与l 的交点为A(a ,8-2a),则由题意知,点A 关于点P 的对称点B(-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A(4,0)在直线l 上,∴直线l 的方程为x +4y -4=0.6、已知三条直线:l 1:2x -y +a =0(a >0);l 2:4x -2y -1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,请说明理由.【解析】:(1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+-12=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116, 所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0; 若点P 满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧ x 0=-3,y 0=12(舍去); 联立方程得⎩⎪⎨⎪⎧ 2x 0-y 0+116=0,x 0-2y 0+4=0, 解得⎩⎨⎧x 0=19,y 0=3718. 所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.。
直线的平行与垂直
直线的平行与垂直直线是几何学中最基本的概念之一,对于直线的性质和关系的研究是几何学的重要内容之一。
在几何学中,我们经常会遇到两个直线之间的关系,其中最常见的是平行和垂直。
本文将详细介绍直线的平行与垂直的概念、性质和判定方法。
一、平行线的定义和性质1. 定义:两条直线如果在平面上的任意一点都不相交,则它们被称为平行线。
2. 性质1:平行线永远不会相交,即它们在平面上没有公共点。
3. 性质2:平行线的斜率相等。
斜率是指直线上两点之间纵坐标的差与横坐标的差的比值。
如果两条直线的斜率相等,那么它们是平行线。
4. 性质3:平行线的充要条件是它们的任意一条射线与另一条直线都不相交。
二、垂直线的定义和性质1. 定义:两条直线如果相交成直角,则它们被称为垂直线。
2. 性质1:垂直线相交成直角,直角是指两条相交直线所形成的四个角中的一个角为90度。
3. 性质2:垂直线的斜率的乘积为-1。
如果两条直线的斜率的乘积为-1,那么它们是垂直线。
4. 性质3:垂直线的充要条件是它们的斜率互为相反数。
三、判定平行与垂直的方法1. 判定平行线的方法:(1) 如果两条直线的斜率相等,并且它们不重合,那么这两条直线是平行线。
(2) 如果两条直线的斜率不存在且它们不重合,那么这两条直线是平行线。
2. 判定垂直线的方法:(1) 如果两条直线的斜率的乘积为-1,并且它们不重合,那么这两条直线是垂直线。
(2) 如果两条直线一个的斜率不存在,另一条的斜率为0,且它们不重合,那么这两条直线是垂直线。
四、平行和垂直的应用平行和垂直的概念在几何学中有广泛的应用,其中一些常见的应用包括:1. 平行线用于构建平行四边形、平行四边形的性质证明等。
2. 垂直线用于构建矩形、正方形等直角四边形,以及证明直角三角形等。
五、总结直线的平行与垂直是几何学中的基本概念之一,对于理解和应用几何学理论具有重要意义。
通过了解平行线和垂直线的定义、性质和判定方法,我们可以更好地理解和应用几何学中的平行和垂直的概念。
两条直线的位置关系——平行与垂直
两条直线的位置关系——平行与垂直【基础回顾】1.两条直线平行(1)直线1l :11y k x b =+与2l :22y k x b =+平行12k k ⇔=且12b b =(2)直线1l :1110A x B y C ++=与2220A x B y C ++=平行1221A B A B ⇒=(3)平行直线的假设(平行直线系)11:l y kx b =+且1l //2l ,则2l 可以设为:2y kx b =+(12b b ≠)11:0l Ax By C ++=且1l //2l ,则2l 可以设为:20Ax By C ++=(12C C ≠)2.两条直线垂直(1)直线1l :11y k x b =+与2l :22y k x b =+垂直121k k ⇔=-(2)直线1l :1110A x B y C ++=与2220A x B y C ++=平行12120A A B B ⇔+=(3)垂直直线的假设(垂直直线系)11:l y kx b =+且1l ⊥2l ,则2l 可以设为:21y x b k=-+ 11:0l Ax By C ++=且1l ⊥2l ,则2l 可以设为:20Bx Ay C -+=【典型例题】例1 若1l ,2l 为两条不重合的直线,它们的倾斜角分别为α,β,则下列命题中正确的是 .①1l //2l ,则t an t a n αβ=;②若αβ=,则1l //2l ;③若tan tan αβ=,则1l //2l ;④若1l //2l ,则αβ=. 例2 直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则m 的值为( )A. 2B. 3-C. 2或3-D. 2-或3- 练习:1l :(2)(1)0m x m y ++-=,2l :(1)(23)20m x m y -+++=,12l l ⊥,则m 为( )A. 1-B. 1C. 1±D. 32-例3 已知点(2,2)A 和直线l :34200x y +-=. 求:(1)过点A 和直线l 平行的直线方程;(2)过点A 和直线l 垂直的直线方程.例4 (1)当a 为何值时,直线1l :2y x a =-+与直线2l :2(2)2y a x =-+平行?(2)当a 为何值时,直线1l :(21)3y a x =-+与直线2l :43y x =-垂直?【夯实基础】1.对于两条不同的直线1l 、2l :①两条直线的倾斜角相等,则这两条直线平行;②若直线1l 、2l 都有斜率且斜率相等,则1l //2l ;③若直线12l l ⊥,则它们的斜率互为负倒数;④若直线1l 、2l 的斜率互为负倒数,则12l l ⊥. 其中正确的命题个数是( )A. 1B. 2C. 3D. 42.已知直线420ax y +-=与250x y b -+=互相垂直,垂足为(1,)c ,则a b c ++的值为( )A. 4-B. 20C. 0D. 243.四边形ABCD 的顶点坐标为(4,5)A ,(1,1)B ,(5,3)C ,(8,7)D ,则四边形ABCD 为( ) A. 平行四边形 B. 梯形 C. 矩形 D. 菱形4.将直线20x y m +-=平行移动到点(4,4)M ,所得直线方程变为0x ny t ++=,则n ,t 的值为( )A. 2,12n t ==B. 2,12n t ==-C. 2,12n t =-=D. 2,12n t =-=- 5.若(2,1)OP =- ,0PQ OP ⋅= ,则PQ 所在直线的方程为( )A. 20x y +=B. 240x y +-=C. 250x y -+=D. 230x y ++=6.已知三条直线10x y ++=,280x y -+=,350ax y +-=只有两个不同的交点,则a = .7.已知直线1l 的斜率为0,且直线12l l ⊥,则直线2l 的倾斜角为 .8.若直线l 经过点(2,1)a --和点(2,1)a --,且与经过点(2,1)-,斜率为23-的直线垂直,则实数a 的值是 .9.直线1l :370x y +-=,2l :20kx y --=与x 轴,y 轴的正半轴所围成的四边形有外接圆,则k = .10.已知三角形的顶点为(2,4)A ,(1,2)B -,(2,3)C -,则BC 边上的高AD 所在直线的方程为 .11.已知定点(0,1)A ,点B 在直线0x y +=上运动,当线段AB 最短时,点B 的坐标是 .12.已知两直线1l :40ax by -+=,2l :(1)0a x y b -++=,当直线1l 过点(3,1)--,并且直线1l 与2l 垂直时,求a ,b 的值.13.已知(0,3)A ,(1,0)B -,(3,0)C ,求D 点的坐标,使四边形ABCD 为直角梯形(A ,B ,C ,D 按逆时针方向排列).。
第2节 两直线的位置关系
第2节 两直线的位置关系知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=特别地,原点O (0,0)与任一点P (x ,y )的距离|OP | (2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A.235B.2310 C .7 D.72 答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72.3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·武汉联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( )A .-2B .-4C .-6D .-8 答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1, ∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12.∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.法二 设P ⎝ ⎛⎭⎪⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3, l 2:y =11-ax -(a +1), l 1∥l 2⇔⎩⎪⎨⎪⎧-a2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1,得a =23. 法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)(多选题)(2021·重庆调研)已知直线l 1:x +my -1=0,l 2:(m -2)x +3y +3=0,则下列说法正确的是( ) A .若l 1∥l 2,则m =-1或m =3 B .若l 1∥l 2,则m =3 C .若l 1⊥l 2,则m =-12 D .若l 1⊥l 2,则m =12 答案 (1)A (2)BD解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.(2)若直线l 1∥l 2,则3-m (m -2)=0,解得m =3或m =-1,但m =-1时,两直线方程分别为x -y -1=0,-3x +3y +3=0即x -y -1=0,两直线重合,只有m =3时两直线平行,A 错误,B 正确;若l 1⊥l 2,则m -2+3m =0,m =12,C 错误,D 正确.考点二 两直线的交点与距离问题【例2】 (1)(2021·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-32,-1 B.⎝ ⎛⎭⎪⎫-∞,-32∪(-1,+∞) C.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫-13,12 (2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 答案 (1)D (2)[0,10]解析 (1)联立⎩⎨⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k 2+k (k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10, 所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(多选题)(2020·济宁调研)已知直线l 1:2x +3y -1=0和l 2:4x +6y -9=0,若直线l 到直线l 1的距离与到直线l 2的距离之比为1∶2,则直线l 的方程为( )A .2x +3y -8=0B .4x +6y +5=0C .6x +9y -10=0D .12x +18y -13=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)BD (2)5x +3y -1=0解析 (1)设直线l :4x +6y +m =0,m ≠-2且m ≠-9,直线l 到直线l 1和l 2的距离分别为d 1,d 2,由题知:d 1=|m +2|16+36,d 2=|m +9|16+36,因为d 1d 2=12,所以2|m +2|16+36=|m +9|16+36,即2|m +2|=|m +9|,解得m =5或m =-133,即直线l 为4x +6y +5=0或12x +18y -13=0. (2)先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0. 考点三 对称问题角度1 点关于点对称【例3】过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x ,y ′=2b -y . 2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎨⎧x ′=-2,y ′=-2,即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3-(-2)2-(-2)=54,∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ). (2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ).(3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ).角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( )A .3x -4y +5=0B .3x -4y -5=0C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________. 答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎨⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程.解(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,即M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0.法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a=4,b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0.法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0.三、垂直直线系方程【例4】求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,但不包括l2).A级基础巩固一、选择题1.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=() A. 2 B.2- 2 C.2-1 D.2+1答案C解析由题意得|a-2+3|1+1=1.解得a=-1+2或a=-1- 2.∵a>0,∴a=-1+ 2.2.已知直线l过点(0,7),且与直线y=-4x+2平行,则直线l的方程为() A.y=-4x-7 B.y=4x-7C.y=4x+7 D.y=-4x+7答案D解析过点(0,7)且与直线y=-4x+2平行的直线方程为y-7=-4x,即直线l 的方程为y=-4x+7,故选D.3.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0垂直,则ab的最小值为()A.1 B.2 C.2 2 D.23答案B解析由已知两直线垂直可得(b2+1)-ab2=0,即ab2=b2+1,又b>0,所以ab=b+1 b.由基本不等式得b+1b≥2b·1b=2,当且仅当b=1时等号成立,所以(ab)min=2.故选B.4.坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是()A.⎝ ⎛⎭⎪⎫-45,85B.⎝ ⎛⎭⎪⎫-45,-85 C.⎝ ⎛⎭⎪⎫45,-85 D.⎝ ⎛⎭⎪⎫45,85 答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎪⎨⎪⎧x 0=-45,y 0=85,即所求点的坐标是⎝ ⎛⎭⎪⎫-45,85. 5.(2020·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2-(-1)1-3=-32,∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.6.(多选题)(2021·泰安调研)已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,则下列说法正确的是( )A .当a =-1时,直线l 与直线x +y =0垂直B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等答案 AC解析 对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在两轴上的截距分别是-1,1,所以不正确.7.(2021·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-3,b =16C .a =3,b =-16D .a =-13,b =-6答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称, 所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y = -3x +b 上,所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13.8.(多选题)(2021·长沙模拟)已知直线l :3x -y +1=0,则下列结论正确的是( )A .直线l 的倾斜角是π6B .若直线m :x -3y +1=0,则l ⊥mC .点(3,0)到直线l 的距离是2D .过(23,2)与直线l 平行的直线方程是3x -y -4=0答案 CD解析 对于A ,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B ,因为直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C ,点(3,0)到直线l 的距离d =|3·3-0+1|(3)2+(-1)2=2,故C 正确;对于D ,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得: 3x -y -4=0,故D 正确.二、填空题9.(2020·南昌重点中学联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0.10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________. 答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x ,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________.答案 25解析 因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43. k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S四边形ABCD =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.(多选题)(2021·南京调研)已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( )A .不论a 为何值,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |的最大值是2答案 ABD解析 对于A ,a ×1+(-1)×a =0恒成立,l 1与l 2都互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立,所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确;对于C ,在l 1上任取点(x ,ax +1),关于直线x +y =0对称的点的坐标为(-ax -1,-x ),代入l 2:x +ay +1=0,则等式左边不恒等于0,故C 不正确;对于D ,联立⎩⎨⎧ax -y +1=0,x +ay +1=0,解得⎩⎪⎨⎪⎧x =-a -1a 2+1,y =-a +1a 2+1,即M ⎝ ⎛⎭⎪⎫-a -1a 2+1,-a +1a 2+1, 所以|MO |=⎝ ⎛⎭⎪⎫-a -1a 2+12+⎝ ⎛⎭⎪⎫-a +1a 2+12=2a 2+1≤2,所以|MO |的最大值是2,故D 正确.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0,此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0.由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0.综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.已知点A (4,-1),B (8,2)和直线l :x -y -1=0,动点P (x ,y )在直线l 上,则|P A |+|PB |的最小值为________.答案 65解析 设点A 1与A 关于直线l 对称,P 0为A 1B 与直线l 的交点,∴|P 0A 1|=|P 0A |,|P A 1|=|P A |.在△A 1PB 中,|P A 1|+|PB |>|A 1B |=|A 1P 0|+|P 0B |=|P 0A |+|P 0B |,∴|P A |+|PB |≥|P 0A |+|P 0B |=|A 1B |.当P 点运动到P 0时,|P A |+|PB |取得最小值|A 1B |.设点A 关于直线l 的对称点为A (x 1,y 1),则由对称的充要条件知⎩⎪⎨⎪⎧y 1+1x 1-4·1=-1,x 1+42-y 1-12-1=0,解得⎩⎨⎧x 1=0,y 1=3,∴A 1(0,3). ∴(|P A |+|PB |)min =|A 1B |=82+(-1)2=65.。
四年级上册5.1平行与垂直
平行四边形和梯形第 1 节平行与垂直【知识梳理】1.平行与垂直(1)平行①.平行的含义:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
如图:[提示:平行是两条直线的位置关系,所以提到平行时,不能孤立地说某条直线是平行线,至少要有两条直线才成立。
]②.表示方法:平行可以用符号“∥”表示。
a与b相互平行,记作a∥b,读作a平行与b。
(2)垂直①.垂直的含义:两条直线相交成直角,就是说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
如图:(互相垂直的两条直线相交成直角,与怎样摆放无关)[提示:垂直是两条直线相交的特殊情况,两条直线垂直是相互的,所以不能独立地说哪条直线是垂线。
]②.表示方法:垂直可以用符号“⊥”表示。
如图中a与b相互垂直,记作a⊥b,读作a垂直于b。
(3)归纳总结:①.同一个平面内的两条直线的位置关系不相交-—平行相交—-垂直或不垂直②。
平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
③。
垂直:两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足. (4)拓展提高:①.阐释“同一平面内”:“同一平面内”是确定两条直线是不是平行关系的前提,如果不在同一个平面内,那么有些直线虽然不相交,但也不能称为互相平行.图1 图2 图1:a与b在同一个平面内,而且不相交,就说a与b相互平行。
图2:a与b不在同一个平面内,所以不能称a与b相互平行。
②。
把两根小棒都摆成和第三根小棒平行,这两根小棒会有什么关系?在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行。
即如果a∥c,b∥c,则a∥b。
③。
把两根小棒都摆成和第三根小棒垂直,这两根小棒会有什么关系?在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。
即如果a⊥c,b⊥c,则a∥b。
2.垂线的画法及应用(1)过直线上一点画已知直线的垂线①.方法一:用三角尺画垂线②.用量角器画垂线(2)过直线外一点画已知直线的垂线同过直线上一点画已知直线的垂线的方法相同。
2024届高考一轮复习数学课件(新教材人教A版):两条直线的位置关系
√A.4
B.-4
C.1
D.-1
因为直线 2x+my+1=0 与直线 3x+6y-1=0 平行,所以23=m6 ≠-11, 解得 m=4.
教材改编题
3.直线x-2y-3=0关于x轴对称的直线方程为_x_+__2_y_-__3_=__0_.
直线 x-2y-3=0 的斜率为 k=12且与 x 轴交于点(3,0), 故所求直线的斜率为-12,且过点(3,0), 其方程为 y=-12(x-3), 即x+2y-3=0.
跟踪训练1 (1)(2023·襄阳模拟)设a,b,c分别为△ABC中角A,B,C所对
边的边长,则直线xsin A+ay+c=0与bx-ysin B+sin C=0的位置关系是
A.相交但不垂直 C.平行
√B.垂直
D.重合
由题意可知,直线 xsin A+ay+c=0 与 bx-ysin B+sin C=0 的斜率 分别为-sina A,sinb B, 又在△ABC 中,sina A=sinb B, 所以-sina A·sinb B=-1, 所以两条直线垂直.
(2)(2022·桂林模拟)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,
若l1⊥l2,则实数a的值是
√A.0或-1
B.-1或1
C.-1
D.1
由题意可知l1⊥l2,故2a+a(a-1)=0, 解得a=0或a=-1,经验证,符合题意.
思维升华
判断两条直线位置关系的注意点 (1)斜率不存在的特殊情况. (2)可直接利用直线方程系数间的关系得出结论.
命题点1 点关于点的对称问题
例 3 直线 3x-2y=0 关于点13,0对称的直线方程为
A.2x-3y=0 C.x-y=0
两条直线的位置关系(平行与垂直)
求证: ∥ 的充要条件是
课后思考2:已知直线 和 的一般式方程为 : ,
: ,则
三、课堂练习:
1.求使直线 和 平行的实数 的取值。(答案: )
2.当 为何实数时,两直线 和 平行?
( 答案: =1)
3.求直线 和直线 平行的条件.
(答案:平行的条件是 且 )
四、小结:1.本节知识重点是掌握两条直线垂直的判断条件,并能熟练地判断;难点是对斜率的讨论,即利用斜率判定两直线垂直时,要注意考虑斜率不存在时是否满足题意,以防漏解
2.填表:
两直线方程
重合
平行
限制条件
:
:
、 都存在
:
:
五、课后作业:
六、板书设计(略)
教学目的:
1.熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系.
2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.
3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.
教学重点:两条直线平行和垂直的条件
(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直
2.斜率存在时两直线的平行与垂直.
设直线 和 的斜率为 和 ,它们的方程分别是:
: ; : .
两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征
例4已知直线 与 互相垂直,求 的值.
例5求过点 ,且与直线 垂直的直线 的方程.
注意: ①解法一求直线方程的方法是通法,必须掌握;
直线与直线的位置关系(平行与垂直)
其中待定(直线系)
2024/6/19
5
1 若直线 x - 2ay 1和 2x - 2ay 1平行,则 a = 0 。
2 若直线 x + ay 2a + 2和 ax + y a + 1平行,则 a= 1
3 直线 Ax - 2 y -1 0和直线 6x - 4 y + C 0平行
4
5 的条件是
。
2024/6/19
6
2 斜率存在时两直线垂直.
y
l1
l2
2
1
O
甲
y
y
l2 l1
l1
l2
1
2
O
x
x
乙
1 2
O
x
丙
2024/6/19
7
结论2: 如果两直线的斜率为k1, k2,那么,这两条直线垂直
的充要条件是k1·k2= -1
注意:上面的等价是在两直线斜率存在的前提下才成立的, 缺少这个前提,结论并不存立.
那么L1⊥L2的充要条件是A1A2+B1B2=1
2024/6/19
11
缺少这个前提,结论并不存立.
特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: 当另一条直线的斜率也不存在时,且不重合时 两直线的倾斜角都为90°,互相平行;
l1//l2k1k2且 b1b2或 l1,l2斜率都不存
2024/6/19
3
例1: 两条直线L1:2x-4y+7=0,L2:x-2y+5=0求证:L1∥L2
特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: 当另一条直线的斜率为0时, 则一条直线的倾斜角为900,另一条直线的倾斜角为0° 两直线互相垂直
两条直线的位置关系
两条直线的位置关系1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1、l 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.选择题:设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 充分性:当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0平行; 必要性:当直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行时有a =-2或1; 所以“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2- 2 C.2-1 D.2+1解析 依题意得|a -2+3|1+1=1,解得a =-1+2或a =-1-2,∵a >0,∴a =-1+ 2.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( )A .-7B .-1C .-1或-7 D.133解析 l 1的斜率为-3+m 4,在y 轴上的截距为5-3m 4,l 2的斜率为-25+m ,在y 轴上的截距为85+m .又∵l 1∥l 2,由-3+m 4=-25+m得,m 2+8m +7=0,得m =-1或-7.m =-1时,5-3m 4=85+m =2,l 1与l 2重合,故不符合题意;m =-7时,5-3m 4=132≠85+m =-4,符合题意已知两条直线l 1:(a -1)·x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A .-1 B .2 C .0或-2 D .-1或2解析 若a =0,两直线方程为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0.当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或a =2,选D.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ) A .b =a 3 B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析 若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0,若∠B =π2,根据垂直关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a =0,以上两种情况皆有可能,故只有C 满足条件.已知过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行,则m 的值为( ) A .-1 B .-2 C .2 D .1 解析 由题意得:k AB =m -0-5-(m +1)=m-6-m ,k CD =5-30-(-4)=12.由于AB ∥CD ,即k AB =k CD ,所以m-6-m=12,所以m =-2当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A .x +2y -4=0 B .2x +y -1=0 C .x +6y -16=0 D .6x +y -8=0 解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.填空题:已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为_____解析 由于直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,所以a (b -3)=2b ,即2a +3b =1(a ,b 均为正数),所以2a +3b =(2a +3b )⎝ ⎛⎭⎪⎫2a +3b =13+6⎝ ⎛⎭⎪⎫b a +a b ≥13+6×2b a ·a b =25(当且仅当b a =ab ,即a=b =5时取等号)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________ 解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________. 解析 ∵l 1⊥l 2,∴k 1k 2=-1,即a2=-1,解得a =-2.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________解析 由方程组⎩⎨⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行),∴交点坐标为⎝ ⎛⎭⎪⎪⎫2-4k 2k +1,6k +12k +1, 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为______ 解析 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________解析由题意得⎩⎪⎨⎪⎧a +b (a -1)=0,4a 2+(-b )2=|b |(a -1)2+1.解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎨⎧a =23,b =2经检验,两种情况均符合题意,∴a +b 的值为0或83已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =______;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为_______解析 若直线l 1的倾斜角为π4,则-a =k =tan45°=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1-(-3)|1+1=2 2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________解析 设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.解答题:已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.解 (1)当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sinα≠0时,k1=-1sinα,k2=-2sinα,要使l1∥l2,需-1sinα=-2sinα,即sinα=±22.所以α=kπ±π4,k∈Z,此时两直线的斜率相等.故当α=kπ±π4,k∈Z时,l1∥l2.(2)因为A1A2+B1B2=0是l1⊥l2的充要条件,所以2sinα+sinα=0,即sinα=0,所以α=kπ,k∈Z. 故当α=kπ,k∈Z时,l1⊥l2.如图,设一直线过点(-1,1),它被两平行直线l1:x+2y-1=0,l2:x+2y-3=0所截的线段的中点在直线l3:x-y-1=0上,求其方程.解与l1、l2平行且距离相等的直线方程为x+2y-2=0.设所求直线方程为(x+2y-2)+λ(x-y-1)=0,即(1+λ)x+(2-λ)y-2-λ=0.又直线过(-1,1),∴(1+λ)(-1)+(2-λ)·1-2-λ=0,解得λ=-13.∴所求直线方程为2x+7y-5=0.正方形的中心为点C(-1,0),一条边所在的直线方程是x+3y-5=0,求其他三边所在直线的方程解点C到直线x+3y-5=0的距离d=|-1-5|1+9=3105.设与x+3y-5=0平行的一边所在直线的方程是x+3y+m=0(m≠-5),则点C到直线x+3y+m=0的距离d=|-1+m|1+9=3105,解得m=-5(舍去)或m=7,所以与x+3y-5=0平行的边所在直线的方程是x+3y+7=0. 设与x+3y-5=0垂直的边所在直线的方程是3x-y+n=0,则点C到直线3x-y+n=0的距离d=|-3+n|1+9=3105,解得n=-3或n=9,所以与x+3y-5=0垂直的两边所在直线的方程分别是3x-y-3=0和3x-y+9=0.已知直线l:2x-3y+1=0,求直线m:3x-2y-6=0关于直线l的对称直线m′的方程解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0.求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程. 解 依题意,设所求直线方程为3x +4y +c =0 (c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0.求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43, 由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0, 联立l AC 、l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)易知l 不可能为l 2,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∵点A (5,0)到l 的距离为3,∴|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴λ=2,或λ=12,∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤P A (当l ⊥P A 时等号成立).∴d max =P A =(5-2)2+(0-1)2=10.专项能力提升若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是 ( ) A .2 B .2 2 C .4 D .2 3 解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.已知直线l :y =12x -1,(1)求点P (3,4)关于l 对称的点Q ; (2)求l 关于点(2,3)对称的直线方程.解 (1)设Q (x 0,y 0),由于PQ ⊥l ,且PQ 中点在l 上,有⎩⎪⎨⎪⎧y 0-4x 0-3=-2,y 0+42=12·x 0+32-1,解得⎩⎪⎨⎪⎧x 0=295,y 0=-85,∴Q ⎝ ⎛⎭⎪⎫295,-85.(2)在l 上任取一点,如M (0,-1),则M 关于点(2,3)对称的点为N (4,7).∵当对称点不在直线上时,关于点对称的两直线必平行,∴所求直线过点N 且与l 平行, ∴所求方程为y -7=12(x -4),即为x -2y +10=0.。
高考数学考点专题:解析几何:两直线的位置关系
两直线的位置关系【考点梳理】1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:a .对于两条不重合的直线l 1、l 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.b .当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:a .如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.b .当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0 (其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.【教材改编】1.(必修2 P 87例3改编)已知A (2,3),B (-4,0),P (-3,1),Q (-m ,m +1),若直线AB ∥PQ ,则m 的值为( )A .-1B .0C .1D .2[答案] C[解析] ∵AB ∥PQ , ∴k AB =k PQ ,即0-3-4-2=m +1-1-m -(-3),解得m =1,故选C.2.(必修2 P 89例6改编)已知A (5,-1),B (m ,m ),C (2,3),若△ABC 为直角三角形且AC 边最长.则整数m 的值为( )A .4B .3C .2D .1[答案] D[解析] 由题意得B =90°, 即AB ⊥BC ,k AB ·k BC =-1, ∴m +1m -5·3-m 2-m=-1. 解得m =1或m =72,故整数m 的值为1,故选D.3.(必修2 P 110B 组T 4改编)若A (3,4),B (6,3)两点到直线l :ax +y +1=0的距离相等,则a 等于( )A.13 B .-1 C .1 D .-1或13 [答案] D[解析] 依题意,|3a +4+1|a 2+1=|6a +3+1|a 2+1, 解得a =-1或a =13.故选D.4.(必修2 P 114A 组T 10改编)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )C.823 D .2 2[答案] C[解析] ∵l 1∥l 2,得1a -2=a 3≠62a ,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=83 2.5.(必修2 P 105例3改编)已知点A (-1,2),B (3,4).P 是x 轴上一点,且|P A |=|PB |,则△P AB 的面积为( )A .15 B.552 C .6 5 D.152[答案] D[解析] AB 的中点坐标为M (1,3), k AB =4-23-(-1)=12,∴AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0), |AB |=(-1-3)2+(2-4)2=2 5. P 到AB 的距离为|PM |=(1-52)2+32=352.∴S △P AB =12|AB |·|PM |=12×25×352=152.6.(必修2 P 115B 组T 4改编)与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________.[答案] 12x +8y -15=0[解析] l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.7.(必修2 P 114A 组T 8改编)以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________.[答案] 25[解析] k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形.故面积S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25.8.(必修2 P 101A 组T 10(2)改编)经过点P (2,-3)且平行于过点M (1,2)和N (-1,-4)的直线,分别与x 轴、y 轴交于A 、B 两点,则|AB |=________.[答案] 310[解析] ∵k MN =-4-2-1-1=3.∴所求的直线的斜率为k =k MN =3. 则所求的直线方程为y -(-3)=3(x -2). 即3x -y -9=0. 故A (3,0),B (0,-9),∴|AB|=32+(-9)2=310.9.(必修2 P110A组T10改编)两平行直线x-2y-1=0与x-2y+m=0的距离为5,则m=________.[答案] 4或-6[解析] 由平行线间的距离公式得|-1-m|12+(-2)2=5,即|m+1|=5,∴m=4或m=-6.10.(必修2 P107例6改编)已知三点O(0,0),A(1,3),B(3,1),则△OAB的面积为________.[答案] 4[解析] ∵|AB|=(1-3)2+(3-1)2=2 2.AB所在的直线方程为y-3 1-3=x-1 3-1,即x+y-4=0.∴O到AB的距离d=|-4|2=2 2.∴S△OAB =12|AB|·d=12×22×22=4.11.(必修2 P110B组T8改编)已知点P在平面直角坐标系内,求M到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小值及此时点M的坐标.[解析] 如图,因为|MA|+|MC|≥|AC|,当且仅当A,M,C共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎨⎧ 2x -y =0,x +y -6=0,∴⎩⎨⎧x =2,y =4,∴M (2,4).此时 |MA |+|MB |+|MC |+|MD |的最小值为|AC |+|BD |=(3-1)2+(6-2)2+(7-1)2+(-1-5)2=25+6 2.即当M (2,4)时,M 到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和取得最小值25+6 2.。
两条直线的位置关系(复习课)课件
总结词
将两条直线的位置关系应用于实际问题中,进行解析和解 答。
要点二
详细描述
在实际问题中,如建筑、工程、交通等领域,经常涉及到 两条直线的位置关系。通过将实际问题转化为数学模型, 利用几何知识和数学方法进行解析和解答,可以解决实际 问题。例如,在建筑设计中,需要判断建筑物的立面是否 与地面平行或垂直;在交通规划中,需要判断道路的走向 是否与另一条道路相交或平行。
在此添加您的文本16字
详细描述:在解析几何中,两条直线与x轴的夹角是解决 许多问题的重要参数,如求交点、判断平行等。
两条直线与y轴的夹角
总结词:角度计算 详细描述:计算两条直线与y轴的夹角
,同样需要先确定直线的斜率,然后 利用三角函数计算夹角。
总结词:性质分析
详细描述:分析两条直线与y轴夹角的 大小关系,可以推断出两条直线的倾 斜程度和方向。
总结词:应用实例
详细描述:在解析几何中,两条直线 与y轴的夹角是解决许多问题的重要参 数,如求交点、判断垂直等。
利用夹角判断两条直线的位置关系
总结词:平行与垂直的判断 总结词:位置关系的性质
详细描述:根据两条直线与坐标轴的夹角,可以判断两 条直线是平行、垂直还是相交。
详细描述:通过夹角判断位置关系时,需要考虑夹角的 大小和方向,以及直线的斜率。
两条直线的位置关系( 复习课)ppt课件
目录
• 两条直线的位置关系概述 • 两条直线交点的问题 • 两条直线与坐标轴的夹角问题 • 两条直线的距离问题 • 综合应用题
01
两条直线的位置关系概 述
平行与垂直的定义
平行
在同一平面内,两条直线没有交 点,则这两条直线平行。
垂直
两条直线相交形成的角为90度, 则这两条直线垂直。
空间直线与直线、面平行或垂直的判定
空间直线1. 空间两条直线的三种位置关系—相交、平行、异面.2. 公理4 平行于同一直线的两条直线互相平行.定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.3.异面直线所成的角直线a,b是异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,我们把直线a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.4.异面直线的距离和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.[要点内容]1.空间两条直线的三种位置关系—相交、平行、异面。
相交直线和平行直线都是共面直线,异面直线是立体图形。
2.空间两直线的位置关系分类从有无公共点的角度看,可分为两类:(1)两条直线有且仅有一个公共点—相交直线;3.异面直线概念的理解“不同在任何一个平面内的两条直线”,是指这两条直线不能同时在任何一个平面内。
注意:分别在某两个平面内的两条直线,不一定是异面直线,它们可能是相交直线,也可能是平行直线,如图。
4.异面直线的画法及判定画异面直线时,以平面为衬托,可使两直线不能共面的特点显示得更清楚,如图判定两条直线是异面直线的方法:方法一,利用:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。
”方法二,利用反证法,假设这两条直线不是异面直线,推导出矛盾。
这可能是与公理矛盾、与定理矛盾、与定义矛盾、与已知条件或事实矛盾等。
5.对于两条异面直线所成的角的定义应注意以下几点:(1)取直线a′、b′所成的锐角(或直角)作为异面直线a、b所成的角。
(2)在这个定义中,空间一点是任意选取的,根据等角定理,可以判定异面直线a和b 所成的角和a′和b′所成的锐角(或直角)相等,而与点O的位置无关。
(3)由于异面直线a、b所成的角与点O的位置无关,一般情况下,可将点O取在直线a或b上。
两条直线的位置关系知识点及题型归纳
知识点精讲
一、两直线平行与垂直的判定
两条直线平行与垂直的判定以表格形式出现,如表9-1所示.
两直线方程
平行
垂直
(斜率存在)
(斜率不存在)
或
或 中有一个为0,另一个不存在.
二、三种距离
1.两点间的距离
平面上两点 的距离公式为 .
特别地,原点O(0,.0)与任一点P(x,y)的距离
简证:首先易知:若直线l关于直线 对称的直线是 ,则经过它们的交点(假定相交)且垂直于 的直线 也是l与 的同,故只证 的情形.
然后把每条直线都平移至过原点O,所得直线分别为 ,且
不妨在直线 上取异于O的点 ,则关于 对称的点为
故 ,所以 ,得证.
变式1 (1)求点P(4,5)关于点M(3,-2)对称的点Q的坐标;
2.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=( )
A.1或-3B.-1或3C.1或3D.-1或-3
3.直线y=3x绕原点逆时针旋转 ,再向右平移1个单位,所得直线( )
A. B. C. D.
4.设a,b,c分别是 中角A,B,C所对边的边长,则直线 与的 位置关系是( )
A. B.6C. D.
变式2 在等腰三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P(如图9-9所示).若光线QR经过 的重心,则AP等于( )
A.2B.1C. D.
有效训练题
1.若直线ax+2y+6=0和直线 垂直,则a的值为( )
A. B.0C. 或0D.-3
2.点到直线的距离
点 到直线 的距离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求两 条直 线斜 率
k1= k2 k1= k2
平行 相交
课时小结
两条直线互相垂直的判定程序
两 求 一个斜率为 0,
垂
条 它 一个斜率不存在
直
直们
线的 方斜
K1.K2= - 1
垂直
程 率 K1.K2= - 1
不垂直
α1 o
α2 X
1 2且b1 b2
l1 L1∥L2
k1=k2且b1 ≠b2
特殊情况:
若两直线 l1 , l2 斜率都不存在也不 重合则两直线 l1 , l2 平行
判断不重合的两条直线平行的程序
两
两条直线斜率都不存在 平行
条
直
线 方 程
化为 斜截 式方 程
解: 1 . (1) 平行
2 . (1) 2x y 7 0
3 . (1) 另一条也无斜率,且在 x
轴上的截距不同.
思考
(97年高考题)如果直线 ax 2y 2 0 与 3x y 2 0 平行,那么系数a = ( B )
A. 3
C. 3 2
B. 6
D. 2 3
2.
分若别两为不重ar合的(直1 线, kl1),,
y 4 2 (x 1) 3
即 2x+3y+10=0
练一练
P/47 1. 判断下列直线是否平行或垂直: (1) y 3x 4 与 2 y 6x 1 0
2. 求过点 A(2 , 3) 且分别适合下列 条件的直线的方程: (1) 平行于直线 2x y 5 0
3. 已知两直线 l1 , l2 ,其中一条没有斜率, 求这两条有以下位置关系的充要条件: (1) 平行
两直线的位置关系
(平行与垂直)
❖
1.“1 2”是“tan 1 tan 2”的什么 条件? 若 1 , 2 [0, ) ,又如何?
充分非必要 充分必要
2 .两条直线的倾斜角相等,这两条
直线是否平行?反之呢?
不一定
是
3. 平面内不重合两条直线的位置关系有哪几
种?
平行和相交
4.问:在解析几何中两条直线平行与什么有关?
思考
1.已知直线 l1 : x ay 2a 2 0
l2 : ax y 1 a 0
(1) 若 l1 // l2 ,试求 a 的值.
答:a=1
(2) 若 l1 l2 ,试求 a 的值.
答:a=0
课时小结
判断不重合的两条直线平行的程序
两
两条直线斜率都不存在 平行
条
直
线 方 程
化为 斜截 式方 程
l1 // l2
注:这里若 l1 改为 2x 4 y 10 0
l1 , l2 的位置关系又将怎样?
例2. 求过点 A (1 , 4) 且与直线 2x 3y 5 平行的直线的方程.
解:已知直线的斜率是 2 ,
3
又所求直线与已知直线平行,
所以它的斜率也是 2
3
根据点斜式,得所求直线方程是
求两 条直 线斜 率
k1= k2 k1= k2
平行 相交
例1.已知直线 l1 : 2x 4 y 7 0 l2 : x 2 y 5 0 证明: l1 // l2
证明:把两直线的方程写成斜截式
17
15
l1 : y 2 x 4 , l2 : y 2 x 2
Q k1 k2 且 b1 b2
(A1B1C1 ≠ 0 ,A2B2C2≠ 0 ).
那么 l1//l2的充要条件是什么?
答:l1//l2
A1 B1 C1 A2 B2 C2
讨论
两直线如果 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0 那么 l1 l2 的充要条件是什么?
答: l1 l2 A1 A2 B1B2 0
l 2
r的方向向量
b (1 , k )
1
2
如何判断 l l ?
1
2
解:根据平面向量的有关知识
r r rr
l l a b ab 0
1
2
11+k k 0
1
2
此即 l l k k 1
1
2
12
以上k , k 分别为l , l 的斜率
1
2
1
2
结论:
如果两条直线的斜率为k1和 k2 , 那么这两条直线垂直的充要条件是 :
已知:直线 l1 , l2 的斜截式方程为
l1 : y k1x b1 ,l2 : y k2 x b2
若 l1//l2 则有 1 2 且 b1 b2
tan 1 tan 2
即
k1 k2
Y
反之,是否成立?
若 k1 k2 且 b1 b2
则有 tan 1 tan 2
Q 0 1 , 2
k k 1
1
2
特殊情况:
若一直线的斜率不存在,那么当 另一条直线的斜率为0时 ,这两条直线
垂直
两条直线互相垂直的判定程序
两 求 一个斜率为 0,
垂
条 它 一个斜率不存在
直
直们
线 方
的 斜
K1.K2= - 1
垂直
程 率 K1.K2= - 1
不垂直
例1.已知直线 l1 : 2x 4y 7 0,
l
的斜率
k1 2
l
的方程:y 1 1 ( x 2)
2
即 : x-2y = 0.
练一练
P/47 1. 判断下列直线是否平行或垂直: (2) y x 与 3x 3y 10 0 (3) 3x 4 y 5 与 6x 8y 7.
2. 求过点A(2 , 3) 且分别适合下列 条件的直线的方程: (2) 垂直于直线 2x y 5 0
l2 : 2x y 7 0, 求证:l1 l2
证明:由已知,l1 , l2 的斜率分别为
1
Q
k1
k1
2
k2
k2 2
1 (2) 2
1
l1 l2
例2. 求过点 (2,1) 且与直线 :
2x y 10 0垂直的直线 l的方程.
解:已知直线的斜率是 –2,
Q 所求直线与已知直线垂直,
3. 已知两直线 l1 , l2 ,其中一条没有斜率, 求这两条有以下位置关系的充要条件: (2) 垂直
解: 1 . (1) 垂直 (2) 既不平行也不垂直
2 . (2) x y 5 0 3 . (1) 另一条斜率为 0
讨论
已知直线 l1 : A1x+B1y+C1 = 0 l2 : A2x+B2y+C2= 0