数列求和常见的7种方法(新)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的基本方法和技巧
一、总论:数列求和7种方法: 利用等差、等比数列求和公式
错位相减法求和 反序相加法求和 分组相加法求和
法,
. 的技巧.
1、 23、 S n 5、 21
3)]1(21[+==
∑=n n k S n
k n [例1] 已知3
log 1log 23-=
x ,求⋅⋅⋅++⋅⋅⋅+++n
x x x x 32的前n 项和. 解:由2
1
2log log 3log 1log 3323=⇒-=⇒-=
x x x
由等比数列求和公式得 n
n x x x x S +⋅⋅⋅+++=32 (利用常用公式)
=x x x n --1)1(=
2
11)211(21--n =1-n 21
[例2] 设S n =1+2+3+…+n ,n ∈N *,求1
)32()(++=
n n
S n S n f 的最大值.
}的前n [例3]
)
再利用等比数列的求和公式得:n n x n x x S x )12(121)1(---⋅
+=- ∴ 2
1)1()
1()12()12(x x x n x n S n n n -+++--=+
[例4] 求数列
⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n
前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2
1
}的通项之积
设n n n
S 2226242232+⋅⋅⋅+++=
…………………………………① 14322
226242221++⋅⋅⋅+++=n n n
S ………………………………② (设制错位) ①-②得14322
22222222222)211(+-+⋅⋅⋅++++=-n n n n
S (错位相减)
1122212+---=n n n
∴ 12
2
4-+-=n n n S
三、反序相加法求和
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.
[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++
证明: 设n
n n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①
把①式右边倒转过来得
113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)
又由m
n n m n C C -=可得
n
n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②
①+②得 n
n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ n
n n S 2)1(⋅+=
[例6] 求
89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值
解:设
89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①
将①式右边反序得
1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 2
2
=+-=x x x x
①+②得 (反序相加)
)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89
∴ S =44.5
题1已知函数
(1)证明:;
(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,两式相加得:
所以
.
练习、求值:
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231
,,71,41,
1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231
()71()41()11(12-++⋅⋅⋅++++++=-n a
a a S n n
将其每一项拆开再重新组合得
)23741()1
111(12-+⋅⋅⋅+++++⋅⋅⋅+++
=-n a
a a S n n (分组) 当a =1时,2)13(n n n S n -+==2
)13(n
n + (分组求和)
当1≠a 时,2)13(1111n n a
a S n n -+--
==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.
解:设k k k k k k a k ++=++=2
332)12)(1(
∴ ∑=++=
n k n k k k S 1
)12)(1(=)32(23
1
k k k
n
k ++∑=
(1(3(5(6) n
n
n n n n n n S n n n n n n n n n a 2)1(1
1,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=
-则 (7))1
1(1))((1C
An B An B C C An B An a n +-+-=++=
(8)n a ==