非隔离型光伏并网逆变器主电路拓补结构分析

合集下载

光伏逆变器拓扑分析详解

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器Iván Patrao∗, Emilio Figueres, Fran González-Espín, Gabriel GarceráGrupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain文章信息文章历史:收到于2011年1月12日接受于2011年3月21日关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源摘要为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。

然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。

在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。

一方面,它是替代经典拓扑结构的基础上提出的。

另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。

2011爱思唯尔出版社有限公司版权所有目录1.前言 (3423)2.共模电压问题 (3424)3.桥拓扑功率变换器 (3425)3.1.全H桥 (3425)3.2.半H桥 (3425)3.3.高效可靠的逆变器的概念(HERIC) (3426)3.4.H5的拓扑 (3426)3.5.带发电控制电路的半H桥(GCC) (3426)4.基于多级拓扑的逆变器 (3427)4.1.级联H桥(CHB) (3427)4.2.中点钳位(NPC)半桥 (3427)4.3.飞电容(FC) (3428)4.4.电容分压器NPC半桥 (3428)4.5.ConergyNPC (3428)4.6.有源NPC(ANPC) (3429)5. 无变压光伏逆变器基本特性 (3429)6. 结论 (3429)鸣谢 (3430)参考文献 (3430)1.前言可再生能源,特别是那些光电源[1],由于对全球变暖的日益关注和政府对这些技术的扶持资助,近年来已经初步取得了很大的发展[2,3]。

非隔离型光伏并网逆变器主电路拓补结构分析

非隔离型光伏并网逆变器主电路拓补结构分析

BOOST双模式升压逆变
优点: • 光伏阵列电压较低时,Boost电路升压加逆变运行, 系统为两级能量变换;光伏阵列电压高于设定值 时,系统变为单级逆变系统,有助于系统效率的 提高。这种拓扑加大了光伏阵列设计安装的自由 度。 缺点: • 同第二种拓朴结构类似
多支路BOOST升压逆变
优点: • 同第二种拓朴结构类似 • 由于具有多个DC-DC电路,适合多个不同倾斜面 阵列接入,即阵列1~n可以具有不同的MPPT电 压,十分适合应用于光伏建筑。N一般为2或3。 缺点: • 同第二种拓朴结构类似
耦合电感式双BOOST逆变
• 本发明涉及光伏发电系统中耦合电感式双Boost逆变器电路。本 发明是由两个耦合电感式Boost电路共用直流电源构成,交流输 出取自两个耦合电感式Boost的输出电容之间。本发明解决了单 级逆变电路通过工频变压器升压方式并网和前级DC-DC升压电路、 后级是逆变器方法存在的功率开关管功率损耗较大、变压器功率损耗 大、转换效率低及光伏发电利用率低下等缺陷。本发明是两个耦合电 感式Boost电路,并采用全控型器件开关管,使逆变电路能实现 能量的四像限运行,耦合的电感在较低输入电压时和较小占空比情况 下Boost电路也能输出较高的电压,因此发明的并网逆变器无需 升压变压器,可以实现一级并网发电。 • 光伏发电系统中耦合电感式双Boost逆变器电路,其特征在于: 由两个耦合电感式Boost电路构成,交流输出取自两个耦合电感 式Boost的输出电容之间。 • 发明人:方宇 申请人:扬州大学 申请人地址:江苏省扬州市大学南路88号
H5桥逆变
SMA 的研发团队开发出了H 5 技术—— 一种全新的逆变桥接线方式—— 优化了光 伏系统的并网连接,并大大降低系统成本。于是,全球光伏逆变器中,转换效率高 达98%的首款逆变器在SMA诞生了。 逆变器的基本功能 H桥承担了逆变器的基本功能。一台逆变器通常有四个电气开关,用以调节输入和 输出之间的电流。起初,在逆变器的输入端,光伏组件产生的直流电都暂时储存在 电容器中。这样,电流就可以不受电气开关的影响,一直以峰值运行。由于电气开 关长期打开或关闭,电容器不断地放电,甚至可以说直流电达到了“抽空”状态。 于是,逆变器就只在并网和非并网两种状态下变换。在逆变器的输出端口有电感器, 将脉冲式直流电转化成正弦波式交流电,就可以持续不断地向地方电网进行并网供 电。 H5技术 创立了新标准 目前市场上大部分逆变器都在按照上述方式运行。H5技术的出现打破了这种模式。 因为即便H桥不运行的时候,仍然有电流存在,但却是向相反的方向流动:从逆变器 输出端流向电容器。为了防止并网时的电流波动,减少电流转换过程中的电量损耗, SMA的研发团队开发了一种全新的转换理念——H5技术:电气开关采用一种全新的 脉冲率,在原来四个电气开关的基础上加入了第五个开关,能够在电流自由流动时 防止电流向电容器的流回。这样,也大大减少了原先电流波动造成的电量损耗。 总之,第五个开关的增加,将转换过程的效率损耗降低了一半,达到2%。这样,采 用H5技术的逆变器转换效率就高达98%,这是光伏领域的一个里程碑。

基于DSP的非隔离型光伏并网逆变器设计

基于DSP的非隔离型光伏并网逆变器设计
确性与可行性 。 关键词 :光伏并 网;逆变器 ; 变步长 ; 无差拍控制 中 图分类号 : T M 4 6 4 . 3 1 文献标志码 :B 文章编号 :1 0 0 1 - 5 5 3 1 ( 2 0 1 3 ) 1 7 - 0 0 4 3 - 0 4
技术与 光伏发 电技
术。
De s i g n o f No n— . I s o l a t e d Pho t o v o l t a i c Gr i d. . Co n ne c t e d I nv e r t e r Ba s e d o n DS P
L I NG n g, HU Y e l i n, CHEN Zh a o q u a n, ZHENG Xi ao l i a n g
( E l e c t r i c a l a n d I n f o r ma t i o n E n g i n e e r i n g I n s t i t u t e , A n h u i U n i v e r s i t y o f S c i e n c e& T e c h o n o l o g y , H u a i n a n 2 3 2 0 0 1 ,C h i n a )

分布式 电源及 并网技术 ・
低压 电器 ( 2 0 1 3 N o . 1 7 )
基 于 DS P的 非 隔 离型 光 伏 并 网 逆 变 器 设 计
凌 洋 , 胡业林 , 陈 兆权 , 郑 晓 亮
( 安 徽理 工 大 学 电气与 信 息工程 学 院 , 安徽 淮 南

路拓扑 , 详细分析 了改进 的 D C / AC电路 。在扰 动观察法 的基 础上 , 提 出了变步长扰 动 观察法 , 使最大功率跟。运 用无 差拍 电流控 制

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构首先,光伏并网逆变器的拓扑结构有很多种,常用的有串联逆变器、并联逆变器以及单相桥式逆变器等。

1.串联逆变器串联逆变器是将多个逆变单元串联在一起,通过分时工作的方式实现高电压输出。

它能够实现更高的输出功率和电压,适用于大容量的光伏发电系统。

2.并联逆变器并联逆变器是将多个逆变单元并联在一起,实现总输出功率的叠加。

它具有输出功率分散、可靠性高的特点,适用于小功率的光伏发电系统。

3.单相桥式逆变器单相桥式逆变器是采用单相桥式整流电路和逆变电路,能够实现交流输出。

它结构简单,适用于小功率的光伏发电系统。

选取逆变器的拓扑结构时,需要考虑光伏电池板的输出电压和功率以及电网的要求。

不同的拓扑结构有不同的特点和适用场景,设计者需要根据具体需求选择最合适的拓扑结构。

在硬件设计中,光伏并网逆变器的主要电路包括:整流电路、滤波电路、逆变电路和控制电路等。

1.整流电路:用于将光伏板输出的直流电转换为交流电。

常见的整流电路包括单相全波桥式整流电路和三相全波桥式整流电路等。

2.滤波电路:用于去除转换过程中产生的谐波和噪声,保证逆变器输出的电流和电压的纯净度。

常见的滤波电路有LC滤波电路和LCL滤波电路等。

3.逆变电路:用于将直流电转换为交流电,并注入电网。

常见的逆变电路有全桥逆变电路和半桥逆变电路等。

4.控制电路:用于控制逆变器的输出电流和电压,以及保护逆变器的安全运行。

控制电路通常包括微控制器、驱动电路、保护电路等。

在硬件设计过程中,需要选取合适的元器件和电路参数。

如选择功率器件时需要考虑功率损耗、开关速度等因素;选择电容和电感时需要考虑峰值电流和谐振频率等因素。

同时,还需要设计合理的散热系统来保证逆变器的温度和性能稳定。

总而言之,光伏并网逆变器的硬件设计和拓扑结构是实现光伏发电系统有效注入电网的关键。

合理的硬件设计和拓扑结构能够提高逆变器的效率和可靠性,从而提高光伏发电系统的整体性能。

DSP控制的3kW非隔离型并网逆变器研究

DSP控制的3kW非隔离型并网逆变器研究

F.>州50.。5:2萎者\岁
、、/
lY
MPPI’控制过程
所示为MPPT控制过程,由图可知功率点跟踪效果非常 好,太阳能板的输出效率达到99 86%。 3.3并网控制策略 并网控制策略主要有瞬时P1D控制、重复控制及无 差拍控制等,本文的非隔离型并网逆变系统中采用基于 电流无差拍控制的PWM方法。无差拍控制(Deadbeat Contr01)具有瞬时响应快、精度高、总谐波(THD)小等特 点.是一种基于电路模型和状态观测器的控制方法¨I。 无差拍控制与传统的PI控制算法相比,能更大限 度地发挥数字控制器的优势。无差拍控制的基本思想是 根据本周起以前的采样值,用模型计算出要达到指定的 状态和输出所需要的方波脉冲宽度和极性,使输出的电 流值与下一采样时刻值相吻合。不断调整每一采样周期 内方波脉冲的极性与宽度.就能使输出的实际的电流波 形接近于指令电流波形,从而在很低的开关频率下,也 能得到高质量的输出电流波形161。 无差拍并网控制的计算公式为:
Study of 3
kW non-isolated grid-connected photovohaic inverter
based
on
DSP control
Xue Jiaxiang,Cui Longbin,Zhang Hongwei,Liao Tianfa,Zhang Sizhang (Mechanical and Automobile
置孤岛保护标志位l
l中断处理程序
图6孤岛保护程序流程图
图7所示为被动孤岛保护时电流电压波形图。系统 检测到电网断开时,系统软件即发出孤岛保护信号.断

开并网继电器,切断驱动信号,输出电流和采样电网电 压瞬间变为零,孤岛保护时间不超过I

逆变器拓扑结构及工作原理

逆变器拓扑结构及工作原理

逆变器:从拓扑结构到工作原理逆变器是一种将直流电转换成交流电的电力转换设备,应用于太
阳能发电、风力发电及其他电力系统中。

逆变器可以分为单相逆变器
和三相逆变器两种,其中三相逆变器是比较常见的逆变器形式。

接下
来让我们一起来了解逆变器的拓扑结构及工作原理。

逆变器的拓扑结构通常采用全桥式结构,这种结构能够实现较大
功率的转换,并且不会产生直流浪涌电流。

逆变器的输出电压和频率
可以通过控制开关管的开和关时间来实现。

全桥式逆变器由四个开关
管和两个二极管组成,这些开关管分别将负载连接到正、负交流电源
或者相反的方式来实现正/负输出电压。

当两个对角线上的开关管同时
开启,负载将与交流电源负极相连,从而通过输出电压实现功率转换。

逆变器的工作原理基于在半周期内非常短的时间内,将开关管的
开启和关闭状态不断地进行切换,从而改变输出波形的幅度和频率。

直流能源在通过全桥式结构后,经过开关管的周期性控制,输出为交
流电源。

逆变器的性能取决于开关管的导通和非导通状态,并且需要
精确的时序控制来确保输出波形的准确性。

总之,逆变器是一个复杂的电力转换设备,拓扑结构和工作原理
的理解对于太阳能发电、风力发电及其他电力系统的设计和运行至关
重要。

逆变器的功率转换效率和输出波形质量对于系统功率输出和负
载电器运行的影响巨大,因此需要仔细的设计和调试确保稳定性和可
靠性。

5KW非隔离性光伏逆变器Boost电路及基于DSP的MPPT控制.

5KW非隔离性光伏逆变器Boost电路及基于DSP的MPPT控制.

摘要在绿色再生能源得到广泛应用的今天,太阳能因为其独特的优势而得到青睐。

太阳能光伏发电受到世界各国的普遍关注,光伏并网发电也将成为太阳能利用的主要趋势,必将得到快速的发展。

但因为光伏电池的转化效率较低且输出特性受外界环境因素影响大,使光伏电池实时输出最大功率成为关键。

因此光伏最大功率跟踪也成为光伏发电系统的关键技术之一。

本文主要对光伏最大功率跟踪控制技术以及Boost(升压斩波电路)电路优化设计进行研究。

首先,对光伏电池的电气进行测量,得到了光伏电池的输出特性;采用基于Boost的实现方案,分析光伏最大功率跟踪的工作原理,进行DSP 单片机TMS320F2812实现扰动观察法的C语言编程。

最后进行样机组装并实验,实验证明,本设计能够完成对Boost电路的设计与优化,并能够较好的完成最大功率点跟踪。

关键词:光伏发电;最大功率跟踪;DSP;Boost电路;扰动观察ABSTRACTToday the green renewable energy is widely used , solar is favored because of its unique advantages. Solar photovoltaic power is widely concerned around the world, photovoltaic solar power generation will also become the main trend of development and also be rapid. But because of low conversion efficiency of photovoltaic cells and the output characteristics are affected by the environmental factors, making the largest power of photovoltaic cells real-time output the key. Therefore, the maximum power tracking of solar photovoltaic power generation system has also become one of the key technologies.In this paper, I will mainly research the maximum power tracking technology of the PV, design and improve the Boost circuit (Boost cut broken circuit). First, I measuring the electrical characteristics of photovoltaic cells , and get the output characteristics of photovoltaic cells; then based on Boost circuit of implementations, analysis the works of Photovoltaic maximum power tracking. Then, based an the DSP microcontroller TMS320F2812 , I use the method of perturbation and observation ,to do the programming based on C language.At last, I assembled the sample machine and did experiments, those experiments showed that the paper can accomplish the design and optimization of Boost circuit. And the experiments also showed that the design can complete the maximum power point tracking.Key words:PV;MPPT;DSP;Boost circuit;perturbation and observation目录摘要 (I)ABSTRACT (II)1 前言 (11)1.1 选题背景 (11)1.1.1 能源现状 (11)1.1.2 太阳能光伏发电 (11)1.2 本课题的研究意义和任务 (13)2单相光伏并网发电系统基本原理 (13)2.1 单相光伏并网发电系统结构组成 (14)2.2 主要部分工作原理 (15)2.2.1 DC-DC变换器 (15)2.2.2 DC-AC逆变器 (15)3 光伏电池的特性测量 (17)3.1 光伏电池的等效电路模型 (17)4 硬件电路设计 (17)4.1 Boost电路工作原理 (20)4.2 Boost电路实现光伏最大功率跟踪的理论依据 (21)4.3 Boost电路主要器件选择 (23)4.3.1 电感L (23)4.3.2 电容C (23)4.3.3 功率开关管V和二极管D (24)4.4 控制电路 (24)4.5 驱动电路 (24)4.6 缓冲电路 (25)4.7 检测采样电路 (29)4.7.1 电压采样电路 (30)4.7.2 电流采样电路 (31)4.8 液晶显示 (31)5 软件设计 (32)5.1 光伏最大功率跟踪控制方法 (32)5.2 光伏最大功率跟踪算法的实现 (33)5.3 系统调试实验及分析 (36)结论 (40)参考文献 (41)致谢 (42)附录A 硬件电路总图 (43)附录B 程序代码 (44)1前言1.1 选题背景1.1.1能源现状随着全球工业化进程的进一步深化,对于能源的消耗也在日益增加,而传统能源,像煤炭、石油、天然气储量有限,随着时间的推移,这些能源正在被加速消耗,全球正面临能源危机的挑战。

光伏并网系统拓扑示意图

光伏并网系统拓扑示意图

光伏并网系统拓扑示意图光伏并网发电系统是指将光伏阵列输出的直流电转化为与电网电压同幅值、同频、同相的交流电,并实现与电网连接的系统。

1.1 可调度式与不可调度式系统目前常见的光伏并网发电系统,根据其系统功能可以分为两类:一种为不含蓄电池的“不可调度式光伏并网发电系统”;另一种为系统包括蓄电池组作为储能环节的“可调度式光伏并网发电系统”。

两者的系统配置示意图如图1和图2所示。

可调度式并网光伏系统设置有储能装置,兼有不间断电源和有源滤波的功能,而且有益于电网调峰。

但是,其储能环节通常存在寿命短、造价高、体积笨重以及集成度低的缺点,因此,目前这种形式的应用较少。

可调度式光伏并网发电系统与不可调度式相比,较大的不同是系统中配有储能环节,通常采用铅酸蓄电池组,其容量可根据实际需要进行配置。

在功能上,可调度式系统有一定扩展和提高,主要包括:(1). 系统控制器中除了并网逆变器部分外,还包括蓄电池充放电控制器,根据系统功能要求进行蓄电池组能量管理;(2). 在交流电网断电时,可调度式系统可以实现不间断电源(UPS)的功能,为本地重要交流负载供电;(3). 较大容量的可调度式光伏并网发电系统还可以根据运行需要控制并网输出功率,实现一定的电网调峰功能。

虽然在功能上优于不可调度式光伏并网系统,但由于增加了储能环节,可调度式光伏并网系统存在着明显的缺点。

这些缺点是目前限制可调度式光伏并网系统广泛应用的主要原因,包括:(1). 增加蓄电池组导致系统成本增加;(2). 蓄电池的寿命较短,远低于系统其他部件寿命:目前免维护铅酸蓄电池在合理使用下寿命通常为3到5年,而光伏阵列一般可以稳定工作20年以上;(3). 废弃的铅酸蓄电池必须进行回收处理,否则将造成严重的环境污染。

图1 不可调度式图2 可调度式1.2 光伏并网发电系统的结构大多数用电设备以交流供电方式为主,光伏阵列发出的直流电需用逆变器将其转化为交流电供负载使用。

所以在光伏并网发电系统中,逆变器起到了关键的作用。

单相非隔离光伏并网逆变器拓扑推演与分析

单相非隔离光伏并网逆变器拓扑推演与分析

单相非隔离光伏并网逆变器拓扑推演与分析廖志凌; 曹晨晨【期刊名称】《《电测与仪表》》【年(卷),期】2019(056)020【总页数】5页(P47-51)【关键词】光伏发电; 非隔离; 并网逆变器; 漏电流; 拓扑推演【作者】廖志凌; 曹晨晨【作者单位】江苏大学电气信息工程学院江苏镇江212013【正文语种】中文【中图分类】TM930 引言单相非隔离光伏并网逆变器体积小、重量轻、成本低,可以极大地提高效率[1]。

然而,由于没有变压器的隔离,光伏电池和电网会通过电路中的寄生电容、滤波电感连接,漏电流大幅增加,除了增加电网电流纹波、系统损耗,还会引发安全问题[2]。

根据德国VDE 0126-1-1标准[3],漏电流超过300 mA时必须在0.3 s内断开连接。

为了解决漏电流问题,国内外研究学者提出了大量新型非隔离光伏并网逆变器拓扑。

近年来,国内外对于单相非隔离光伏并网逆变器拓扑研究的文献大多围绕拓扑性能,对拓扑推导过程及演化规律的研究较少。

大部分拓扑的提出相对独立,缺乏拓扑之间的相互联系。

文献[4]从器件个数、器件损耗、共模电压、并网电流质量等方面对近年来提出的拓扑进行对比分析,但没有涉及拓扑之间的演化规律;文献[5]按漏电流抑制方法的不同对部分拓扑进行了分析和归类,但并未更深入地研究拓扑之间的联系;文献[6]仅仅研究了单相全桥型拓扑之间的演化关系,提出了拓扑演化规律,但并未涉及单相半桥型拓扑。

文中在上述文献的研究基础上分析和总结了近年来单相非隔离光伏并网逆变器拓扑,将其分为半桥型拓扑和全桥型拓扑两大类,对这些拓扑进行演化推导,探讨演化规律。

并利用演化规律推导出一种新型拓扑,在相同仿真参数下比较分析了H5拓扑,Heric拓扑与新型拓扑的漏电流抑制效果,验证新型拓扑的有效性和演化规律的正确性。

1 单相半桥型非隔离光伏并网逆变器拓扑演化分析传统两电平单相半桥拓扑如图1(a)所示,仅需要两个开关管和一个电感就可以消除漏电流,拓扑结构简单。

第五章 光伏并网逆变器的电路拓扑总结

第五章 光伏并网逆变器的电路拓扑总结

5-25Βιβλιοθήκη 5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-20 多支路高频链光伏并网逆变器结构
5-26
5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-21 多支路高频链光伏并网逆变器系统整体控制框图
5-27
5.4 多支路光伏并网逆变器
5.4.2 非隔离型多支路光伏并网逆变器
图5-7 三相工频隔离型结构 a) 三相两电平 b) 三相三电平
5-10
5.2 隔离光伏并网逆变器
5.2.2 高频隔离型光伏并网逆变器
DC/DC变换型高频链光伏并网逆变器,单级容量一般在 几个千瓦以内,整机工作效率大约在93%以上。
图5-8 DC/DC变换型高频链光伏并网系统一 a) 电路组成 b) 波形变换模式
第五章
5.1 5.2 5.3 5.4 5.5
光伏并网逆变器的电路拓扑
光伏并网逆变器的分类 隔离型光伏并网逆变器 非隔离型光伏并网逆变器 多支路光伏并网逆变器 微型光伏并网逆变器
5-1
第五章 光伏并网逆变器的电路拓扑
光伏并网逆变器将太阳能电池输出的直流电转换成 符合电网要求的交流电再输入电网,是光伏并网系 统能量转换与控制的核心。 光伏并网逆变器的性能影响和决定整个光伏系统是 否能够稳定、安全、可靠、高效地运行,同时也是 影响整个系统使用寿命的主要因素。 本章将对光伏并网逆变器进行分类讨论。
5.2.1 工频隔离型光伏并网逆变器
优点:结构简单、可靠性高、抗冲击性能好、安全性高、无直流电 流问题。 缺点:体积大、质量重、噪声高、效率低。
图5-5 工频隔离变压器对系统效率的影响
5-8
5.2 隔离光伏并网逆变器

buck-boost同步整流电路在光伏并网逆变器中的应用

buck-boost同步整流电路在光伏并网逆变器中的应用
西安工程大学自动化及电力电子研究室
10/15
电压驱动型同步整流:通常采用输出滤波电感的电压或变压器副边绕组的输 出端电压信号,经过处理后驱动MOS管,有时通过增加辅助绕组来产生驱 动信号。同步整流管的驱动电压波形受输入电压范围影响较大,而且主电路 拓扑不同需要的驱动方式也会有差异,驱动电路不具普适性
西安工程大学自动化及电力电子研究室
2/15
二、光伏并网逆变器的主电路拓扑



可按并网电压的相数单相并网逆变器拓扑、 三相并网逆 变器拓扑。 可根据能量传输的级数,分为单级式并网逆变器拓扑、两 级式并网逆变器拓扑和多级式并网逆变器拓扑。 可按照是否起到电气隔离作用,分为非隔离型和隔离型, 其中隔离型按隔离变压器的类型又分为高频隔离型和工频 隔离型。
西安工程大学自动化及电力电子研究室
3/15
非隔离型并网逆变器拓扑结构如1所示,这种逆变器结构简单, 成本低廉。由于除去了隔离变压器,所以其转换效率较高。但是非 隔离型并网逆变器存在一些问题,例如存在漏电流
图1非隔离型
工频隔离型并网逆变器结构如图2所示,在逆变器与电网之间放 置了工频变压器。这样的结构可以有效地阻止逆变器输出电流中的 直流分量注入到电网当中,可以减小对电网的污染并提高系统的安 全性。但是工频变压器存在体积大、效率低,成本高等问题。
图7 buck-boost电路
BUCK-BOOST工作两种状态:
开关管开通时的等效电路
开关管关断时的等效电路
西安工程大学自动化及电力电子研究室
8/15
由光伏并网逆变器入网认证标准可知,其转换效率必须大于96%, 由于后级采用工频逆变,所以后级逆变桥的开关损耗很小,所以整 体方案的损耗主要集中在前级的DC-DC变换器中

新型非隔离光伏并网逆变器的研究

新型非隔离光伏并网逆变器的研究
流 波形 不 发 生 畸变 , 在 不 导致 管 子损 坏 的 传输 模态 , 进 网电 流只 流 过两 图 3 含 有差模 和 共模 电压 的并 网逆 变器 系统 模 型 £ m 1 ∞】 / / t . o 3 f M Zg 情况下 , 应 避 免设 死 区时 间 ; 其 三, 共 模 漏 个 开 关 管 ,故 器 件 导 通 损 耗
图 4并 网逆 变 器 系统的共 模模 型
它 所构成。二极管 D 。 一 D 分别用于钳位 s 广 地认 识 , 因此 , 建立共模 分析模型可 以为 响漏电流的寄生参数有以下几个方面 , S , 4 个 开关 管 的 压 降 。S 、 D 和S 、 D 6 则 是 漏 电流抑 制 技术 的研 究提 供 理论 支持 。 影 们分别为:
高、 体积 小 、 质 量 轻和 成 本低 等 优 点 , 但变 工作方 式 如下 : 压 器 的 消除 使得 P V和 电网之 间 有 了 电气 1 ) 工作模态 1 , 功 率 处 理 开 连接 , 漏 电 流可 能会 大 幅增 加 , 带来 传 导 模 态 ,进 网 电流 为正 半 周 , 和 辐射 干 扰 ,增 加 进 网 电 流谐 波 以及 损 关 管 S 1 . S 导通 ,其 余 开 关 管 耗, 甚 至危 及设 备 和 人 员安 全 。 因此 共模 关 断 。 电 流 的 消 除 成 为 了非 隔离 式 并 网逆 变 器 2 )工 作 模 态 2 ,续 流模 态 , 进 网 电 流 正 半 周 , 开关 管 得 以普及而必须跨越的障碍。 针对 上 述 问题 , 本 文 研 究 了一 种 非 隔 s 导通 , 二极管 D 导通 , 其 余 离 单 相 光伏 并 网逆 变 器 , 相 对 于文 献 提 到 开 关管 关 断 。 3 ) 工作模态 3 , 功 率 处理 的拓 扑, 此 拓 扑结 构不 但有 效 的解 决 漏 电 流问题 , 且 具有 通 态损 耗 小 、 效率高、 稳 定 模 态 , 进 网 电 流 负半 周 , 开关 管s 、 s 导通 ,其 余 开 关 管关 性 强 等优 点 。 1 新 型 逆变 器 的工 作原 理

无变压器型光伏并网逆变器拓扑结构

无变压器型光伏并网逆变器拓扑结构

无变压器型光伏并网逆变器拓扑结构的研究摘 要:本文首先通过单相无变压器型拓扑结构的研究,对无变压器型光伏并网系统的共模电流的产生机理进行了详细的分析。

然后用不同的控制方法分析了单相无变压器型全桥拓扑结构的共模电流,并对一种新的拓扑结构进行了分析和仿真研究;接着介绍了几种不同的三相无变压器型拓扑结构,并做了简单的分析和仿真;最后对单相和三相拓扑结构的不同进行了分析比较。

关键词:单相和三相无变压器型拓扑结构;光伏并网逆变器;共模电流No transformer-type photovoltaic inverter topologyAbstract: Firstly, no single-phase transformer type of topology, on the non-transformer type photovoltaic systemcommon-mode currents generated a detailed analysis of the mechanism. Then use different methods of single-phase full-bridge non-transformer type topology of the common mode current, and a new topology is analyzed and simulation studies; then introduced a number of different three phase transformer topology structure, and do a simple analysis and simulation.Finally, single-phase and three phase topologies are analyzed and compared the difference.Key words: Single-phase and three phase transformer topology; PV Inverter; Common mode current1.引言在光伏并网系统中一般会采用带变压器型的光伏并网逆变器。

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑5.1 光伏并网逆变器的分类5.2 隔离型光伏并网逆变器5.3 非隔离型光伏并网逆变器5.4 多支路光伏并网逆变器5.5 微型光伏并网逆变器第五章光伏并网逆变器的电路拓扑光伏并网逆变器将太阳能电池输出的直流电转换成符合电网要求的交流电再输入电网,是光伏并网系统能量转换与控制的核心。

光伏并网逆变器的性能影响和决定整个光伏系统是否能够稳定、安全、可靠、高效地运行,同时也是影响整个系统使用寿命的主要因素。

本章将对光伏并网逆变器进行分类讨论。

5.1 光伏并网逆变器的分类根据光伏并网逆变器与电网的连接有无隔离变压器,可将光伏并网逆变器分为隔离型和非隔离型两大类,详细分类如图5-1所示。

图5-1 光伏并网逆变器分类5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构工频隔离型特点:主电路和控制电路相对简单,光伏阵列直流输入电压的匹配范围较大,可有效防止电网电流通过桥臂与人体在直流侧形成回路造成的人体伤害事故,保证系统不会向电网注入直流分量,有效的防止了配电变压器的饱和。

但体积大、质量重,增加了系统损耗及成本。

5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构高频隔离型特点:相比工频隔离型,具有较小的体积和质量,克服了工频隔离型的主要缺点。

图5-3 高频隔离型光伏并网逆变器结构a) DC/DC变换型 b) 周波变换型5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构与隔离型相比,省去了笨重的隔离变压器,体统结构简单、质量变轻、成本降低并提高了效率,将成为今后主要的光伏并网逆变器结构。

包括单级非隔离型和多级非隔离型。

图5-4 非隔离型光伏并网逆变器结构5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构非隔离型的光伏并网系统中,光伏阵列与电网电压直接连接。

大面积的光伏阵列与大地之间存在较大的分布电容,因此会产生光伏阵列对地的共模漏电流。

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究一、本文概述随着全球对可再生能源需求的持续增长,光伏发电技术因其清洁、可再生、无污染的特性,受到了广泛关注。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接影响到整个系统的运行效率和电能质量。

传统的光伏并网逆变器通常采用变压器结构,虽然这种结构在一定程度上能够实现电气隔离和电压匹配,但也存在体积大、成本高、效率低等问题。

因此,研究无变压器结构的光伏并网逆变器拓扑及其控制策略,对于提高光伏系统的整体性能、降低成本、推动光伏发电技术的广泛应用具有重要意义。

本文首先介绍了光伏发电系统的基本原理和并网逆变器的功能要求,阐述了无变压器结构光伏并网逆变器的研究背景和必要性。

随后,文章详细介绍了无变压器结构光伏并网逆变器的拓扑结构,包括其基本原理、电路构成以及与传统变压器结构逆变器的区别。

在此基础上,文章重点研究了无变压器结构光伏并网逆变器的控制策略,包括最大功率点跟踪控制、并网电流控制、孤岛效应检测与保护等方面。

通过理论分析和仿真实验,验证了所提控制策略的有效性和优越性。

文章对无变压器结构光伏并网逆变器的应用前景进行了展望,并指出了进一步研究的方向和可能的挑战。

本文的研究成果将为光伏发电技术的发展提供新的思路和方法,有助于推动可再生能源技术的快速发展和应用。

二、无变压器结构光伏并网逆变器拓扑随着可再生能源的日益普及,光伏(PV)技术已成为一种重要的清洁能源解决方案。

光伏并网逆变器是光伏系统的核心组成部分,其设计对于提高系统的效率和可靠性至关重要。

传统的光伏并网逆变器通常采用变压器结构,但近年来,无变压器结构的光伏并网逆变器因其高效率、低成本和紧凑的设计而受到了广泛关注。

无变压器结构光伏并网逆变器拓扑主要基于直接功率转换技术,省去了传统的工频变压器,从而降低了系统的体积和重量。

这种拓扑结构的关键在于使用高效的电力电子开关器件和先进的控制策略,实现直流(DC)到交流(AC)的直接转换。

光伏逆变器拓扑分析详解

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器Iván Patrao∗, Emilio Figueres, Fran González-Espín, Gabriel GarceráGrupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain文章信息文章历史:收到于2011年1月12日接受于2011年3月21日关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源摘要为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。

然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。

在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。

一方面,它是替代经典拓扑结构的基础上提出的。

另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。

2011爱思唯尔出版社有限公司版权所有目录1.前言 (3423)2.共模电压问题 (3424)3.桥拓扑功率变换器 (3425)3.1.全H桥 (3425)3.2.半H桥 (3425)3.3.高效可靠的逆变器的概念(HERIC) (3426)3.4.H5的拓扑 (3426)3.5.带发电控制电路的半H桥(GCC) (3426)4.基于多级拓扑的逆变器 (3427)4.1.级联H桥(CHB) (3427)4.2.中点钳位(NPC)半桥 (3427)4.3.飞电容(FC) (3428)4.4.电容分压器NPC半桥 (3428)4.5.ConergyNPC (3428)4.6.有源NPC(ANPC) (3429)5. 无变压光伏逆变器基本特性 (3429)6. 结论 (3429)鸣谢 (3430)参考文献 (3430)1.前言可再生能源,特别是那些光电源[1],由于对全球变暖的日益关注和政府对这些技术的扶持资助,近年来已经初步取得了很大的发展[2,3]。

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路光伏逆变器是一种将直流电转换为交流电的装置,在光伏发电系统中起到重要作用。

它的主要功能是将光伏电池板产生的直流电转换为交流电,以满足电网的要求。

同时,逆变器还需要具备稳定可靠、高效节能等特点。

本文将介绍光伏逆变器的拓扑结构及设计思路。

光伏逆变器的拓扑结构主要有单相桥式、三相桥式、多电平桥式、谐振桥式等。

其中,单相桥式是应用最广泛的一种拓扑结构,主要由四个IGBT(绝缘栅双极性晶体管)和四个二极管组成,用于将直流电转换为交流电。

相位控制是单相桥式逆变器的主要控制策略,它可以通过改变IGBT的通断来控制输出交流电的相位和频率。

三相桥式逆变器类似于单相桥式逆变器,但是它由六个IGBT和六个二极管组成,可以实现三相交流电的输出。

多电平桥式逆变器可以通过增加IGBT和二极管的数量,来实现更精确的逆变控制,从而提高逆变器的输出质量。

谐振桥式逆变器是一种利用谐振原理工作的逆变器,具有高效、低开关损耗等优点。

在光伏逆变器的设计过程中,需要考虑以下几个方面。

首先是功率选择,即根据光伏电池板的额定功率和输出功率需求,确定逆变器的额定功率。

其次是控制策略选择,即确定逆变器的工作方式和控制算法,可以选择PWM控制或者谐振控制等方式。

同时,还要考虑逆变器的效率、稳定性等性能指标,尽量提高逆变器的工作效率,并通过合理的电路设计和控制策略来提高逆变器的稳定性。

最后是滤波和保护电路的设计,逆变器输出的交流电需要进行滤波处理,以去除谐波和杂波成分,并且需要设计相应的保护电路,以提高逆变器的安全性和可靠性。

总之,光伏逆变器的拓扑结构和设计思路需要根据具体的应用需求进行选择和确定。

在设计过程中,需要考虑功率选择、控制策略选择、效率和稳定性等方面的问题,并通过合理的电路设计和控制策略来提高逆变器的性能和可靠性。

光伏逆变器的发展将进一步推动光伏发电技术的应用,为可持续能源的开发和利用做出贡献。

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑光伏并网逆变器的主电路拓扑摘要:光伏并网逆变器是光伏发电系统的核心设备,其主电路拓扑与变换效率和安全性等主要指标密切相关。

本文讨论了光伏并网逆变器主电路拓扑的分类,重点介绍了作者所在实验室使用的三种拓扑。

1 引言跨入21世纪之后,全球正在面临能源危机,新能源已经成为世界经济发展中最具决定力的五大技术领域之一。

太阳能光伏发电技术作为新能源的重要一员得到了持续的发展。

太阳能光伏发电系统可区分为两大类:一是独立系统,二是并网系统。

独立系统是由太阳能电池直接给负载提供功率,多用于偏远的电网未到达地区的局部供电,易受到诸如时间和季节的影响。

独立系统结构图如图1所示。

其中,PV表示由光伏电池组成的光伏组件或光伏组件阵列。

光伏并网发电系统已经成为太阳能利用的主要形式。

并网发电系统的特点是通过控制逆变器,直接将太阳能电池阵列发出的直流电转换为交流电,输向电网,如图2所示。

其中,us表示电网电压。

寻求高性能、低造价的光伏材料和器件以减小光伏发电系统的自身损耗是其研究热点之一。

作为光伏阵列与电网系统间进行能量变换的并网逆变器,其安全性、可靠性、逆变效率、制造成本等因素对发电系统的整体投资和收益具有举足轻重的作用。

因此,对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。

2 光伏并网逆变器主电路拓分类并网逆变器的电路拓扑很多。

根据直流侧电源性质的不同可分为电压型逆变器和电流型逆变器,结构如图3。

当前,光伏并网逆变器主要采用直流侧以电压源形式的电压型逆变器。

根据逆变器的输入端和输出端是否隔离,可将逆变器分为隔离型和非隔离型。

隔离型逆变器又可分为高频变压器型和工频变压器型[4]。

工频变压器隔离型逆变器的变压器置于逆变器与电网之间,如图4所示。

这种方式可有效阻止逆变器输出波形中的直流分量注入电网,减小对电网的污染,并提高系统的安全性。

但是工频变压器会使系统成本明显升高。

高频变压器隔离型逆变器采用两级或多级变换,图5是一个例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BOOST双模式升压逆变
优点: • 光伏阵列电压较低时,Boost电路升压加逆变运行, 系统为两级能量变换;光伏阵列电压高于设定值 时,系统变为单级逆变系统,有助于系统效率的 提高。这种拓扑加大了光伏阵列设计安装的自由 度。 缺点: • 同第二种拓朴结构类似
多支路BOOST升压逆变
优点: • 同第二种拓朴结构类似 • 由于具有多个DC-DC电路,适合多个不同倾斜面 阵列接入,即阵列1~n可以具有不同的MPPT电 压,十分适合应用于光伏建筑。N一般为2或3。 缺点: • 同第二种拓朴结构类似
耦合电感式双BOOST逆变
• 本发明涉及光伏发电系统中耦合电感式双Boost逆变器电路。本 发明是由两个耦合电感式Boost电路共用直流电源构成,交流输 出取自两个耦合电感式Boost的输出电容之间。本发明解决了单 级逆变电路通过工频变压器升压方式并网和前级DC-DC升压电路、 后级是逆变器方法存在的功率开关管功率损耗较大、变压器功率损耗 大、转换效率低及光伏发电利用率低下等缺陷。本发明是两个耦合电 感式Boost电路,并采用全控型器件开关管,使逆变电路能实现 能量的四像限运行,耦合的电感在较低输入电压时和较小占空比情况 下Boost电路也能输出较高的电压,因此发明的并网逆变器无需 升压变压器,可以实现一级并网发电。 • 光伏发电系统中耦合电感式双Boost逆变器电路,其特征在于: 由两个耦合电感式Boost电路构成,交流输出取自两个耦合电感 式Boost的输出电容之间。 • 发明人:方宇 申请人:扬州大学 申请人地址:江苏省扬州市大学南路88号
BOOST升压逆变
优点: • 和第一种拓朴结构类似,由于省去了笨重的工频 变压器,所以可以带来以下优点:高效率、重量 轻。同时加入了BOOST电路用于DC/DC直流输 入电压的提升,所以太阳电池阵列的直流输入电 压范围可以很宽(150V-450V)。这种拓扑结构 越来越成为市场的主流。 缺点: • (1)同样,太阳电池板与电网没有电气隔离,太阳 电池板两极有电网电压。 • (2)使用了高频DC/DC,EMC难度加大。
H5桥逆变
SMA 的研发团队开发出了H 5 技术—— 一种全新的逆变桥接线方式—— 优化了光 伏系统的并网连接,并大大降低系统成本。于是,全球光伏逆变器中,转换效率高 达98%的首款逆变器在SMA诞生了。 逆变器的基本功能 H桥承担了逆变器的基本功能。一台逆变器通常有四个电气开关,用以调节输入和 输出之间的电流。起初,在逆变器的输入端,光伏组件产生的直流电都暂时储存在 电容器中。这样,电流就可以不受电气开关的影响,一直以峰值运行。由于电气开 关长期打开或关闭,电容器不断地放电,甚至可以说直流电达到了“抽空”状态。 于是,逆变器就只在并网和非并网两种状态下变换。在逆变器的输出端口有电感器, 将脉冲式直流电转化成正弦波式交流电,就可以持续不断地向地方电网进行并网供 电。 H5技术 创立了新标准 目前市场上大部分逆变器都在按照上述方式运行。H5技术的出现打破了这种模式。 因为即便H桥不运行的时候,仍然有电流存在,但却是向相反的方向流动:从逆变器 输出端流向电容器。为了防止并网时的电流波动,减少电流转换过程中的电量损耗, SMA的研发团队开发了一种全新的转换理念——H5技术:电气开关采用一种全新的 脉冲率,在原来四个电气开关的基础上加入了第五个开关,能够在电流自由流动时 防止电流向电容器的流回。这样,也大大减少了原先电流波动造成的电量损耗。 总之,第五个开关的增加,将转换过程的效率损耗降低了一半,达到2%。这样,采 用H5技术的逆变器转换效率就高达98%,这是光伏领域的一个里程碑。
非隔离型光伏并网逆变器 主电路拓补结构分析-by袁智明
• • • • • • 单级逆变/直接逆变(无BOOST) BOOST升压逆变 BOOST双模式升压逆变(阳光采用) 多支路BOOST升压逆变(艾索采用) H5桥逆变(SMA采用) 耦合电感式双BOOST逆变
了笨重的工频变压器:高效率(>97%)、重 量轻、结构简单。成本低。 缺点: • (1)太阳电池板与电网没有电气隔离,太阳电池板 两极有电网电压,对人身安全不利。 • (2) 直流侧太阳电池MPPT电压需要大于350V。这 对于太阳电池组件乃至整个系统的绝缘有较高要 求,容易出现漏电现象。
相关文档
最新文档