年南通中考数学试卷及解析
南通数学中考试题及答案
南通数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 16B. 18C. 20D. 22答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个函数的解析式可能是?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x + 1)^2 - 2D. y = -(x + 1)^2 - 2答案:B4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为1, 2, 4,那么第四项可能是?A. 6B. 7C. 8D. 16答案:D6. 一个长方体的长、宽、高分别为3, 4, 5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A7. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 一个函数y = 2x + 3的图象经过点(-1, 1),那么这个函数的斜率是多少?A. 2B. 3C. 4D. 5答案:A9. 一个扇形的圆心角为60°,半径为4,那么它的面积是多少?A. 4πB. 8πC. 6πD. 12π答案:A10. 一个数列的前三项为2, 4, 8,那么第四项可能是?A. 10B. 12C. 16D. 32答案:D二、填空题(每题4分,共20分)11. 一个圆的直径为10,那么它的周长是______。
答案:20π12. 一个等差数列的前三项为2, 5, 8,那么它的公差是______。
答案:313. 一个函数y = kx + b的图象经过点(2, 6)和(3, 9),那么k和b的值分别是______和______。
答案:3和314. 一个长方体的长、宽、高分别为2, 3, 4,那么它的表面积是______。
2020年江苏省南通市中考数学试卷含答案解析(word版)
南通市2020年初中毕业、升学考试试卷解析数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的相反数是A .2-B .21-C .2D .21 考点:相反数的定义解析: 2的相反数是2- ,选A2. 太阳半径约为696000km ,将696000用科学记数法表示为A .696×103B .69.6×104C .6.96×105D .0.696×106考点:科学记数法解析:将696000用科学记数法表示为6.96×105,选C 3. 计算x x 23-的结果是 A .26x B .x 6 C .x 25 D .x1 考点:分式的减法 解析:x x 23-=x1,选D 4. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共是A . 4个B .3个C .2个D .1个考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质 解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选C 5. 若一个多边形的外角和与它的内角和相等,则这个多边形是A .三角形B .四边形C .五边形D .六边形考点:多边形的内角和等腰三角形正方形正五边形圆解析:多边形的外角和为 360,多边形的外角和与它的内角和相等,则内角和为360,为四边形,选B 6. 函数y =112--x x 中,自变量x 的取值范围是 A .21≤x 且1≠x B .21≥x 且1≠xC .21>x 且1≠x D .21<x 且1≠x 考点:二次根式的意义,分式的意义,函数自变量的取值范围 解析:由⎩⎨⎧≠-≥-01012x x ,解得21≥x 且1≠x ,选B7. 如图为了测量某建筑物MN 的高度,在平地上A 处测得建筑物 顶端M 的仰角为30°,沿N 点方向前进16 m 到达B 处,在B 处 测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于A .8(3+1)mB . 8 (3—1) mC . 16 (3+1) mD .16(3-1)m考点:锐角三角函数 解析:由1645tan 30tan =-MNMN ,得)13(81316+=-=MN m ,选A 8. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4 cm ,则该圆锥的底面周长是A .π3 cmB .π4 cmC .π5 cmD .π6 cm考点:扇形、弧长公式,圆周长,圆锥侧面展开图解析:圆锥底面圆的半径为34522=-cm ,该圆锥的底面周长是π6cm 9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰 直角三角形ABC ,使点C 在第一象限,90=∠BAC .设点B 的横坐标为x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是(第8题)(第7题)MNAB(第9题)考点:函数图象,数形结合思想解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴ 设点B 的横坐标为x ,点C 的纵坐标为y ;则x y =-1(0>x ); 1+=x y (0>x ),故选A 10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,),1(m D 是一个动点,当ACD ∆周长最小时,ABD ∆的面积为A .31 B .32 C .34 D .38考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC 直线BC 方程为:131-=x y ,右图为ACD ∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.计算25x x ⋅= ▲ . 考点:幂的运算 解析:25x x ⋅=7x12.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =60°,则∠BOD 等于 ▲ 度. 考点:相交线,对顶角,垂直,余角解析:OE ⊥AB ,∠COE =60°,则∠BOD=∠AOC=3013.某几何体的三视图如图所示,则这个几何体的名称是 ▲ . 考点:三视图,圆柱解析:由几何体的三视图可知,该几何体为圆柱EDC B AO(第12题)(第9题)主视图左视图俯视图14.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则cos A 的值是 ▲ . 考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD =2,则AB=4,cos A =43=AB AC15.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是 ▲ . 考点:平均数,中位数 解析:85915105=++++x ,1=x ,这组数据的中位数是916.设一元二次方程0132=--x x 的两根分别是1x ,2x ,则)3(22221x x x x -+= ▲考点:一元二次方程根的概念,一元二次方程根与系数的关系解析:2x 是一元二次方程0132=--x x 的根,∴013222=--x x ,13222=-x x ,则3)3(2122221=+=-+x x x x x x17.如图,BD 为正方形ABCD 的对角线,BE 平分DBC ∠,交DC 于点E ,将BCE ∆绕点C 顺时针旋转90得到DCF ∆,若CE=1cm ,则BF= ▲ cm 考点:角平分线的性质,勾股定理,正方形 解析:BE 平分DBC ∠,则GE=CE=1cm DG=GE=1cm ;2=DE cm,BC=CD=1)2(+cm;)22(+=∴BF cm18.平面直角坐标系xOy 中,已知点),(b a 在直线222++=m mx y (0>m )上,且满足04)21(2222=+++-+b m bm b a ,则=m ▲ .考点:配方法;求根公式解析:已知点),(b a 在直线222++=m mx y (0>m )上,222++=∴m ma b (*)代入04)21(2222=+++-+b m bm b a 整理得:0)()2(22=++-m a m b 解得⎩⎨⎧=-=mb ma 2回代到(*)式得22222++-=m m m ,即0222=-+m m ,解得31±-=m ,又0>m ,13-=∴m ABDC(第14题)(第17题)三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算4)5()1(202--+-+-;(2) 解方程组:⎩⎨⎧-=-=+52392y x y x考点:(1)非零数的零次幂等于1,实数运算 (2)二元一次方程的解法 解析:(1)原式=22112=-++(2)①+②,得:1,44==x x ;代入①,得4=y ,⎩⎨⎧==∴4,1y x 20.(本小题满分8分) 解不等式组⎩⎨⎧+>++<-71533315x x x x ,并写出它的所有所有整数解.考点:一元一次不等式组解析:解:由①,得2<x ,由②,得4->x ;所以不等式组的解集为24<<-x ;它的整数解1,0,1,2,3---21.(本小题满分9分)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图).已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为 ▲ kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子 所对应扇形的圆心角为 ▲ 度. 考点:条形图、扇形图,条形图的画法,统计 解析:(1)4000(2)1200200100016004000=---补全统计图如下:(第21题)重量(kg 品种苹果(3)9022.(本小题满分7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率. 考点:树形图,随机事件等可能性 解析:画出树形图如下:从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.∴两次都摸到红色小球的概率为4123.(本小题满分8分) 列方程解应用题:某列车平均提速h km /60,用相同的时间,该列车提速前行使km 200,提速后比提速前多行使km 100,求提速前该列车的平均速度.考点:二元一次方程应用题解析:设提速前该列车的平均速度为v h km /,行使的相同时间为t h由题意得:⎩⎨⎧=+=300)60(,200t v vt 解得:⎪⎩⎪⎨⎧==35120t v答:提速前该列车的平均速度为h km / 120 24.(本小题满分9分)已知:如图,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作AM BD ⊥于点D ,BD 交⊙O 于C ,OC 平分AOB ∠重量(kg(第21题)第一次第二次 红红 绿 绿红绿(1)求AOB ∠的度数;(2)若⊙O 的半径为2 cm ,求线段CD 的长.考点:圆的切线,角平分线,直线平行,三角形的内角和。
江苏省南通市2021年中考数学试题(解析版)
江苏省南通市2021年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 计算,结果正确的是()A. 3B. 1C.D.【答案】C【解析】【分析】原式利用有理数的减法法则计算即可得到结果.【详解】解:,故选:C.【点睛】本题考查了有理数的减法,熟练掌握有理数的减法法则是解本题的关键.2. 据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A. B. C. D.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1370000用科学记数法表示为:1.37×106.故选:D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. B. C. D.【答案】B【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. ,选项计算错误,不符合题意;B. ,选项计算正确,符合题意;C.,选项计算错误,不符合题意;D. ,选项计算错误,不符合题意;故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.4. 以下调查中,适宜全面调查的是()A. 了解全班同学每周体育锻炼的时间B. 调查某批次汽车的抗撞击能力C. 调查春节联欢晚会的收视率D. 鞋厂检测生产的鞋底能承受的弯折次数【答案】A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:A、了解全班同学每周体育锻炼的时间适合全面调查,符合题意;B、调查某批次汽车的抗撞击能力适合抽样调查,不符合题意;C、调查春节联欢晚会的收视率适合抽样调查,不符合题意;D、鞋厂检测生产的鞋底能承受的弯折次数适合抽样调查,不符合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5. 如图,根据三视图,这个立体图形的名称是()A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选:A .【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.6. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A. 24 B. 20C. 10D. 5【答案】B 【解析】【分析】根据菱形的性质及勾股定理可直接进行求解. 【详解】解:如图所示:∵四边形ABCD 是菱形,BD=8,AC=6, ∴AC ⊥BD ,OA=OC=3,OD=OB=4,Rt △AOD 中,,∴菱形ABCD 的周长为:4×5=20, 故选B .【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.7. 《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组为( ) A B. C. D.【答案】D在【解析】【分析】本题的等量关系是:绳长=木长+4.5;木长=绳长+1,据此可列方程组求解.详解】解:设木长x尺,绳长y尺,【依题意得,故选:D.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A. B. C. D.【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案.【详解】解:解不等式,得:,解不等式,得:,∵不等式组只有3个整数解,即5,6,7,∴,故选:C.【点睛】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于的不等式组.9. 如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】分四段考虑,①点P在AD上运动,②点P在DC上运动,且点Q还未到端点B,③点P在DC 上运动,且点Q到达端点B,④点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.【详解】解:在Rt△ADE中AD=(cm),在Rt△CFB中,BC=(cm),AB=AE+EF+FB=15(cm),①点P在AD上运动,AP=t,AQ= t,即0,如图,过点P作PG⊥AB于点G,,则PG=(0),此时y=AQ PG=(0),图象是一段经过原点且开口向上的抛物线;②点P在DC上运动,且点Q还未到端点B,即13,此时y=AQ DE=(13),图象是一段线段;③点P在DC上运动,且点Q到达端点B,即15,此时y=AB DE=(15),图象是一段平行于x轴的水平线段;④点P在BC上运动,PB=31-t,即18,如图,过点P作PH⊥AB于点H,,则PH=,此时y=AB PH=(18),图象是一段线段;综上,只有D选项符合题意,故选:D.【点睛】本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,10. 平面直角坐标系中,直线与双曲线相交于A,B两点,其中点A在第一象限.设为双曲线上一点,直线,分别交y轴于C,D两点,则的值为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据直线与双曲线相交于A,B两点,其中点A在第一象限求得,,再根据为双曲线上一点求得;根据点A与点M的坐标求得直线AM解析式为,进而求得,根据点B与点M的坐标求得直线BM解析式为,进而求得,最后计算即可.【详解】解:∵直线与双曲线相交于A,B两点,∴联立可得:解得:或∵点A在第一象限,∴,.∵为双曲线上一点,∴.解得:.∴.设直线AM的解析式为,将点与点代入解析式可得:解得:∴直线AM的解析式为.∵直线AM与y轴交于C点,∴.∴.∴.∵,∴.设直线BM的解析式为,将点与点代入解析式可得:解得:∴直线BM的解析式为.∵直线BM与y轴交于D点,∴.∴.∴.∵,∴.∴=4.故选:B.【点睛】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 分解因式:______________【答案】.【解析】【分析】根据平方差公式分解即可.【详解】解:.故答案为.【点睛】本题考查了多项式因式分解,熟练掌握分解因式的方法是关键.的12. 正五边形每个内角的度数是_______.【答案】【解析】【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.13. 圆锥的母线长为,底面圆的半径长为,则该圆锥的侧面积为___________.【答案】【解析】【分析】利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可.【详解】解:依题意知母线长=2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故答案为:2π.【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.14. 下表中记录了一次试验中时间和温度的数据.若温度的变化是均匀的,则14分钟时的温度是___________℃.【答案】52【解析】【分析】根据表格中的数据,依据时间与温度的变化规律,即可用时间t的式子表示此时的温度T,利用一次函数的性质即可解决.【详解】解:设时间为t分钟,此时的温度为T,由表格中的数据可得,每5分钟,升高15℃,故规律是每过1分钟,温度升高3℃,函数关系式是T=3t+10;则第14分钟时,即t=14时,T=314+10=52℃,故答案为:52.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.15. 如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).【答案】.【解析】【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.【详解】解:如图,作PC⊥AB于点C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案为:.【点睛】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.16. 若m,n是一元二次方程的两个实数根,则的值为___________.【答案】3【解析】【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【点睛】本题考查了根与系数关系:若x1,x2是一元二次方程()的两根时,的,.也考查了一元二次方程的解.17. 平面直角坐标系中,已知点,且实数m,n满足,则点P到原点O的距离的最小值为___________.【答案】【解析】【分析】由已知得到点P的坐标为(,),求得PO=,利用二次函数的性质求解即可.【详解】解:∵,∴,则,∴点P的坐标为(,),∴PO=,∵,∴当时,有最小值,且最小值为,∴PO的最小值为.故答案为:.【点睛】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.18. 如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.【答案】.【解析】【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.【详解】解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,设AC=BC=a,∵∴,∴,∵∴∵∴∴∴设CE=x,则FE=在Rt△AFE中,∴解得,,(不符合题意,舍去)∴∵∴∴∴在Rt△BGE中,∴∴故答案为:.【点睛】此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)化简求值:,其中;(2)解方程.【答案】(1)原式=4;(2).【解析】【分析】(1)先用完全平方差公式与多项式乘法公式将原式化简为,再将已知条件代入即可;(2)根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1、检验依次进行求解即可.【详解】解:(1)==当时,原式==;(2),去分母得:,解得:,经检验,是原方程的解.则原方程的解为:.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.20. 如图,利用标杆测量楼高,点A,D,B在同一直线上,,,垂足分别为E,C.若测得,,,楼高是多少?【答案】楼高是9米.【解析】【分析】先求出AC的长度,由∥,得到,即可求出BC的长度.【详解】解:∵,,∴m,∵,,∴∥,∴△ADE∽△ABC,∴,∵,∴,∴;∴楼高是9米.【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题关键.21. 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1)___________,___________;(2)从方差的角度看,___________种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【答案】(1)a=88,b=90;(2)乙;(3)见解析【解析】【分析】(1)根据中位数、众数的意义求解即可;(2)根据数据大小波动情况,直观可得答案;(3)从方差、中位数、众数的比较得出答案.【详解】解:(1)甲品种西瓜测评得分从小到大排列处在中间位置的一个数是88,所以中位数是88,即a=88,将乙品种西瓜的测评得分出现次数最多的是90分,因此众数是90,即b=90,故答案为:a=88,b=90;(2)由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S乙2<S甲2,故答案为:乙;(3)小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.22. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)随机摸取一个小球的标号是奇数,该事件的概率为___________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.【答案】(1);(2).【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球和是5的情况,再利用概率公式求解即可求得答案;【详解】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,“摸出的小球标号是奇数”的概率为:;故答案为:.(2)画树状图得:∴共有16种等可能的结果,两次取出小球标号的和等于5的情况有4种;∴两次取出小球标号的和等于5的概率为:.【点睛】此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.【答案】(1)55°;(2).【解析】【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.24. A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:(元);去B超市的购物金额为:(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.【答案】(1)A商场y关于x的函数解析式:;B商场y关于x的函数解析式:;(2)当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【解析】【分析】(1)利用促销方式,分别写出A、B两商场促销活动的情况,注意需要写出分段函数;(2)小刚一次购物的商品原价超过200元,则可以确定B的函数解析式,再分段求出A函数的解析式,比较两函数值即可,注意分段讨论.【详解】解:(1)A商场y关于x的函数解析式:,即:;B商场y关于x的函数解析式:,即:;(2)∵小刚一次购物的商品原价超过200元∴当时,,令,,所以,当时,即,去B超市更省钱;当时,,令,,所以,当时,即,此时去A、B超市一样省钱;当时,即,去B超市更省钱;当时,即,去A超市更省钱;综上所述,当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意B 商场根据商品原价的取值范围分情况讨论.25. 如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【解析】【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3) 为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2) 位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:【点睛】本题考查了三角形内角和定理(三角形内角和为 )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边) .26. 定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数的“等值点”为(0,0),(2,2);(2)或;(3)或..【解析】【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求A(,),B(,),利用三角形面积公式列出方程求解即可;(3)由记函数y=x2-2(x≥m)的图象为W1,将W1沿x=m翻折后得到的函数图象记为W2,可得W1与W2的图象关于x=m对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数,令y=x,则,即,解得:,∴函数的“等值点”为(0,0),(2,2);(2)∵函数,令y=x,则,解得:(负值已舍),∴函数的“等值点”为A(,);∵函数,令y=x,则,解得:,∴函数的“等值点”为B(,);的面积为,即,解得:或;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于对称,∴函数W的解析式为,令y=x,则,即,解得:,∴函数的“等值点”为(-1,-1),(2,2);令y=x,则,即,当时,函数W的图象不存在恰有2个“等值点”的情况;当时,观察图象,恰有2个“等值点”;当时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴,整理得:,解得:.综上,m的取值范围为或.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.。
2020年江苏省南通市中考数学试题(word版,含解析)
2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算13--,结果正确的是( ) A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( ) A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( ) A .532-=B .3+2=32C .623÷=D .6223⨯=4.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( ) A .3B .3.5C .4D .4.57.下列条件中,能判定ABCD 是菱形的是( ) A .AC =BDB .AB ⊥BCC .AD =BDD .AC ⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )9.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1cm /s .现P ,Q 两点同时出发,设运动时间为x (s ),△BPQ 的面积为y (cm 2),若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .96cm 2B .84cm 2C .72cm 2D .56cm 210.如图,在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为( )A 6B .22C .3D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分) 11.分解因式:22=xy y - .12.已知⊙O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 cm . 13.若271m m <<+,且m 为整数,则m = .14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 . 15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 .16.如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是 1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:(第14题) (第16题)17.若x 1,x 2是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于 .18.将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线()20y kx k k =-->相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)= .三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)()()()22322m n m n m n +-+-; (2)22x y y xy x x x ⎛⎫--÷+ ⎪⎝⎭.20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC . (2)如图②,A 为⊙O 上一点,按以下步骤作图: ①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ; ③在射线OB 上截取BC =OA ; ④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:3y x =+与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示: 第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过A (2,0),B (3n ﹣4,y 1),C (5n +6,y 2)三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根. (1)求抛物线的解析式;(2)若5n <-,试比较y 1与y 2的大小;(3)若B ,C 两点在直线x =1的两侧,且12y y >,求n 的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设AEuBE,点D的纵坐标为t,请直接写出u关于t的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=1﹣3=﹣2.故选:C.2.【解答】解:68000=6.8×104.故选:A.3.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.【解答】解:∵这组数据2,4,6,x,3,9的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(3+4)÷2=3.5.故选:B.7.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,由图2可知当x=14时,点Q与点C重合,∴BC=14,∴矩形的面积为14×6=84.故选:B.10.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG =4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。
2023年江苏南通中考真题数学试卷(详解版)
123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是无理数?A. 2B. 2.5C. √2D. 0.5答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 1D. -1答案:A3. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 14D. 16答案:C4. 计算(2x-1)-(3x+2)的结果是:A. -x-3B. -x+1C. x-3D. x+1答案:A5. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C6. 已知一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 常数函数答案:A7. 一个圆的半径是4,那么这个圆的面积是:A. 16πB. 64πC. 12πD. 8π答案:B8. 计算(-2)^3的结果是:A. -8B. 8C. -6D. 6答案:A9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算2^2 * 3^3的结果是:A. 36B. 72C. 108D. 216答案:D二、填空题(每题3分,共15分)1. 一个数的立方等于27,那么这个数是______。
答案:32. 一个角的补角是120°,那么这个角的度数是______。
答案:60°3. 一个数的平方根是4,那么这个数是______。
答案:164. 一个数的倒数是1/2,那么这个数是______。
答案:25. 一个数的绝对值是5,那么这个数可以是______。
答案:5或-5三、解答题(每题10分,共55分)1. 解方程:2x - 3 = 7。
答案:x = 52. 已知一个矩形的长是10,宽是6,求这个矩形的面积。
答案:603. 已知一个直角三角形的两个直角边长分别是3和4,求斜边的长度。
南通九年级中考数学试卷【含答案】
南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。
()2. 负数的平方是正数。
()3. 所有的偶数都是2的倍数。
()4. 两个负数相乘得到正数。
()5. 所有的正方形都是矩形。
()三、填空题1. 2的平方是______。
2. 若 a = 3,b = -2,则 a + b = ______。
3. 下列图形中,______是轴对称图形。
4. 若 3x + 5 = 14,则 x = ______。
5. 下列数中,______是素数。
四、简答题1. 解释什么是负数。
2. 解释什么是平行四边形。
3. 解释什么是无理数。
4. 解释什么是代数式。
5. 解释什么是因数分解。
五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
3. 若 2x 3 = 7,求 x 的值。
4. 一个数的平方是16,求这个数。
5. 列出所有的2的倍数,从1到10。
六、分析题1. 解释为什么负数的平方是正数。
2. 解释为什么所有的偶数都是2的倍数。
七、实践操作题1. 画出一个边长为5cm的正方形。
2. 画出一个半径为3cm的圆。
八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。
2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。
2022江苏南通中考数学试卷+答案解析
2022年江苏南通中考数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若气温零上2 ℃记作+2 ℃,则气温零下3 ℃记作()A.-3 ℃B.-1 ℃C.+1 ℃D.+5 ℃2.下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A B C D3.沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39 000 000 000元,将39 000 000 000用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1 cmB.2 cmC.3 cmD.4 cm5.如图是由5个相同的正方体搭成的立体图形,则它的主视图为()A B C D6.李师傅家的超市今年1月盈利3 000元,3月盈利3 630元。
若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%7.如图,a∥b,∠3=80°,∠1-∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°8.根据图象,可得关于x的不等式kx>-x+3的解集是()A.x<2B.x>2C.x<1D.x>19.如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为()A B C D10.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+ (m+2n)(m-2n)的最大值为()A.24B.443C.163D.-4二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是(填“全面调查”或“抽样调查”).12.分式2x−2有意义,则x应满足的条件是.13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
2022年江苏省南通市中考数学真题(含答案)
(1)写出图中点B表示的实际意义;
(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位: )之间的函数解析式,并写出x的取值范围;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为 时,它们的利润和为1500元.求a的值.
3.沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为()
A. B. C. D.
4.用一根小木棒与两根长分别为 的小木棒组成三角形,则这根小木棒的长度可以为()
A. B. C. D.
5.如图是中5个相同的正方体搭成的立体图形,则它的主视图为()
A. B. C. D.
6.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()
A.10.5%B.10%C.20%D.21%
7.如图, ,则 的度数是()
A. B. C. D.
8.根据图像,可得关于x的不等式 的解集是()
A. B. C. D.
(3)
【26题答案】
【答案】(1)②③(2)3或 ;
(3)
16.如图,B为地面上一点,测得B到树底部C的距离为 ,在B处放置 高的测角仪 ,测得树顶A的仰角为 ,则树高 为___________m(结果保留根号).
17.平面直角坐标系 中,已知点 是函数 图象上的三点。若 ,则k的值为___________.
18.如图,点O是正方形 的中心, . 中, 过点D, 分别交 于点G,M,连接 .若 ,则 的周长为___________.
南通中考数学试题及答案2022
南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。
7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。
8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。
三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。
10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。
江苏省南通市通州区2024届中考联考数学试题含解析
江苏省南通市通州区2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.345.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.46.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣727.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)9.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或2310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.12.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.13.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.16.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.三、解答题(共8题,共72分)17.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.20.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22.(10分)计算:2cos30°+27-33--(12)-2 23.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.24.如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.2、D【解题分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【题目详解】分两种情况讨论:①当点P顺时针旋转时,BP2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【题目点拨】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.3、D【解题分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【题目详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【题目点拨】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.4、D【解题分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、C【解题分析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解题分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【题目详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【题目点拨】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.8、C【解题分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.9、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2n﹣1,2n﹣1).【解题分析】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).12、1【解题分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.13、-23<x<0【解题分析】根据反比例函数的性质:y随x的增大而减小去解答. 【题目详解】解:函数y= 2x 中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、1.【解题分析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.16、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.三、解答题(共8题,共72分)17、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解题分析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.18、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.21、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt△ADE中,AD=3,DE=1,∴tan∠AED=ADDE=3,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=3=,∴323在Rt△CEP中,tan∠CEP=CPCE3∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB3∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.22、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=234+-7【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.23、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解题分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x =4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【题目详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为x ,y ;(2)由图可得:当点P 运动的路程x =4时,△ABP 的面积为y =2.故答案为2; (3)根据图象得:BC =4,此时△ABP 为2,∴12AB •BC =2,即12×AB ×4=2,解得:AB =8; 由图象得:DC =9﹣4=5,则S 梯形ABCD =12×BC ×(DC +AB )=12×4×(5+8)=1. 【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.24、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1,解得14t =-,24t =-,此时P 点坐标为(﹣,-1)或(﹣4,-1);当214612t t ---=时 ,解得1t =﹣,2t =﹣4﹣;此时P 点坐标为(﹣,1)或(﹣4,1).综上所述,P点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABCS S∆∆=.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.。
2020年江苏省南通中考数学试卷附答案解析版
AC 3 ,求 O 的半径. 卷
上
21.(本小题满分 12 分)如图,直线l1 : y x 3 与过点 A3,0 的直线l2 交于点C 1,m ,
与 x 轴交于点 B .
答
1 求直线l2 的解析式;
2 点 M 在直线l1 上, MN∥y 轴,交直线l2 于点 N ,若 MN AB ,求点 M 的坐
【解析】解:如图,点 P4,5 按逆时针方向旋转90 ,
得点Q 所在的象限为第二象限.故选:B. 5. 【答案】A 【 解 析 】 解 : 过 点 E 作 EF∥AB , 则 EF∥CD , 如 图 所 示 . EF∥AB , AEF A 54 , CEF AEF AEC 54 18 36 .又 EF∥CD ,C CEF 36 .故选:A. 6. 【答案】B 【解析】解:这组数据 2,4,6, x ,3,9 的众数是 3, x 3 ,从小到大排列此数据为:2,3,3,4, 6,9,处于中间位置的两个数是 3,4,这组数据的中位数是(3 4)2 3.5 .故选:B. 7. 【答案】D 【解析】解:四边形 ABCD 是平行四边形,当 AC BD 时,四边形 ABCD 是菱形;故选:D.
点 P 处,折痕为 DE . (1)如图①,若点 P 恰好在边 BC 上,连接 AP ,求 AP 的值;
DE
(2)如图②,若 E 是 AB 的中点,EP 的延长线交 BC 于点 F ,求 BF 的长.
26.(本小题满分 13 分) 【了解概念】 有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余 线.
25.(本小题满分 13 分)已知抛物线 y ax 2 bx c 经过 A(2,0) , B3n 4, y 1, C 5n 6, y2 三点,对称轴是直线 x 1 .关于 x 的方程 ax2 bx c x 有两个相等的
2020年江苏省南通市中考数学试题(解析版)
2020年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)说明: 1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为【 】 A .-20m B .-40m C .20m D .40m 【答案】B.【考点】相反数。
【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。
故根据相反数的定义,可直接得出结果2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】【答案】C .【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形和中心对称图形的定义,可知A 是中心对称图形而不是轴对称图形;B 也是中心对称图形而不是轴对称图形;C 既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D 既不是轴对称图形也不是中心对称图形。
3.计算327的结果是【 】A .±3 3B .3 3C .±3D .3 【答案】D .【考点】立方根。
【分析】根据立方根的定义,因为33=273。
4.下列长度的三条线段,不能组成三角形的是【 】 A .3,8,4 B .4,9,6 C .15,20,8 D .9,15,8 【答案】A .【考点】三角形的构成条件。
A .【分析】根据三角形任两边之和大于第三边的构成条件,A 中3+4<8,故A 的三条线段不能组成三角形。
5.如图,AB ∥CD ,∠DCE =80°,则∠BEF =【 】A .120°B .110°C .100°D .80°【答案】C .【考点】平行线的性质。
【分析】根据同旁内角互补的平行线性质,由于AB ∥CD ,∠DCE 和∠BEF 是同旁内角,从而∠BEF =00018080100-=。
2024年南通市中考数学真题试卷及答案
2024年南通市中考数学真题试卷及答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 如果零上2℃记作2+℃,那么零下3℃记作( ) A. 3-℃B. 3℃C. 5-℃D. 5℃2. 2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为( ) A. 9158.210⨯B. 1015.8210⨯C. 111.58210⨯D. 121.58210⨯3. )A. 9B. 3C.D.4. 如图是一个几何体的三视图,该几何体是( )A. 球B. 棱柱C. 圆柱D. 圆锥5. 如图,直线ab ,矩形ABCD 的顶点A 在直线b 上,若241∠=︒,则1∠的度数为( )A. 41︒B. 51︒C. 49︒D. 59︒6. 红星村种的水稻2021年平均每公顷产7200kg ,2023年平均每公顷产8450kg .求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x .列方程为( ) A. ()2720018450x += B. ()7200128450x += C. ()2845017200x -=D. ()8450127200x -=7. 将抛物线221y x x =+-向右平移3个单位后得到新抛物线的顶点坐标为( ) A. ()4,1--B. ()4,2-C. ()2,1D. ()22-,8. “赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,()n m n >.若小正方形面积为5,()221m n +=,则大正方形面积为( )A. 12B. 13C. 14D. 159. 甲、乙两人沿相同路线由A 地到B 地匀速前进,两地之间的路程为20km .两人前进路程s (单位:km )与甲的前进时间t (单位:h )之间的对应关系如图所示.根据图象信息,下列说法正确的是( )A. 甲比乙晚出发1hB. 乙全程共用2hC. 乙比甲早到B 地3hD. 甲的速度是5km/h10. 在ABC 中,()045B C αα∠=∠=︒<<︒,AH BC ⊥,垂足为H,D 是线段HC 上的动点(不与点H,C 重合),将线段DH 绕点D 顺时针旋转2α得到线段DE .两位同学经过深入研究,小明发现:当点E 落在边AC 上时,点D 为HC 的中点;小丽发现:连接AE ,当AE 的长最小时,2AH AB AE =⋅.请对两位同学的发现作出评判( ) A. 小明正确,小丽错误 B. 小明错误,小丽正确 C. 小明、小丽都正确D. 小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 分解因式:ax ay -=_________.12. 已知圆锥的底面半径为2cm ,母线长为6cm ,则该圆锥的侧面积为______2cm .13. 已知关于x 的一元二次方程220x x k -+=有两个不相等的实数根.请写出一个满足题意的k 的值:______.14. 社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B 处测得旗杆顶部A 的仰角为60︒,6m BC =,则旗杆AC 的高度为______m .15. 若菱形的周长为20cm ,且有一个内角为45︒,则该菱形的高为______cm .16. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I 不能超过10A,那么用电器可变电阻R 应控制的范围是______.17. 如图,在Rt ABC △中,90ACB ∠=︒,5AC BC ==.正方形DEFG,它的顶点D,E,G 分别在ABC 的边上,则BG 的长为______.18. 平面直角坐标系xOy 中,已知()3,0A ,()0,3B .直线y kx b =+(k,b 为常数,且0k >)经过点()1,0,并把AOB 分成两部分,其中靠近原点部分的面积为154,则k 的值为______. 三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:()12112m m m m ⎛⎫--+ ⎪⎝⎭; (2)解方程21133x x x x -=++.20. 我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表. 50个家庭去年月均用水量频数分布表根据上述信息,解答下列问题:(1)m=______,n=______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21. 如图,点D在ABC的边AB上,DF经过边AC的中点E,且EF DE∥.=.求证CF AB22. 南通地铁1号线“世纪大道站”有标识为1,2,3,4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23. 如图,ABC 中,3AB =,4AC =,5BC =,A 与BC 相切于点D .(1)求图中阴影部分的面积; (2)设A 上有一动点P,连接CP ,BP .当CP 的长最大时,求BP 的长.24. 某快递企业为提高工作效率,拟购买A,B 两种型号智能机器人进行快递分拣.相关信息如下: 信息一信息二(1)求A,B 两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A,B 两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25. 已知函数()()22y x a x b =-+-(a,b 为常数).设自变量x 取0x 时,y 取得最小值. (1)若1a =-,3b =,求0x 的值;(2)在平面直角坐标系xOy 中,点(),P a b 在双曲线2y x =-上,且012x =.求点P 到y 轴的距离;(3)当22230a a b --+=,且013x ≤<时,分析并确定整数a 的个数.26. 综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动. 【特例探究】(1)如图①,①,①是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表请补全表格中数据,并完成以下猜想.已知ABC 的角平分线1AD =,AB AC =,BAD α∠=,用含α的等式写出两腰之和+AB AC 与两腰之积AB AC ⋅之间的数量关系:______. 【变式思考】(2)已知ABC 的角平分线1AD =,60BAC ∠=︒,用等式写出两边之和+AB AC 与两边之积AB AC ⋅之间的数量关系,并证明. 【拓展运用】(3)如图①,ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD ==.以点C 为圆心,CD 长为半径作弧与线段BD 相交于点E,过点E 作任意直线与边AB ,BC 分别交于M,N 两点.请补全图形,并分析11BM BN+的值是否变化?2024年南通市中考数学真题试卷答案一、选择题 1. A 2. C 3. B 4. D 5. C 6. A 7. D 9. D 10. C【详解】解:①将线段DH 绕点D 顺时针旋转2α得到线段DE ①,2DH DE HDE α=∠= 当点E 落在边AC 上时,如图:①HDE C CED ∠=∠+∠,C α∠= ①CED C α∠==∠ ①DE CD = ①DH CD =①D 为CH 的中点,故小明的说法是正确的; 连接,AE HE①,2DH DE HDE α=∠= ①()11802902DHE DEH αα∠=∠=︒-=︒- ①AH BC ⊥①90AHB AHD ∠=∠=°①AHE AHD DHE α∠=∠-∠=①点E 在射线HE 上运动①当AE HE ⊥时,AE 的长最小①当AE 的长最小时,90AEH AHB ∠=∠=︒又①B C AHE α∠=∠==∠①AEH AHB ∽ ①AE AH AH AB = ①2AH AB AE =⋅;故小丽的说法正确;故选C .二、填空题.11. ()a x y -12. 12π13. 0(答案不唯一)14.15.216. 3.6R ≥17. 【详解】解:过点G 作GH AC ⊥,则:90AHG GHD ∠=∠=︒①90DGH HDG ∠+∠=︒①90ACB ∠=︒,5AC BC ==①45AB A B =∠=∠=︒①45AGH A ∠=︒=∠①AH HG =设AH HG x ==,则:5CH AC AH x =-=-①正方形DEFG①,90DG DE GDE =∠=︒①90HDG CDE ∠+∠=︒①HGD CDE ∠=∠①90C GHD ∠=∠=︒①GHD DCE ≌①CD GH x ==①52DH CH CD x =-=-在Rt GHD 中,由勾股定理,得:222GD DH GH =+①()22252x x =-+,解得:2x = ①2,3AH CH ==①90C AHD ∠=∠=︒①HG BC ∥ ①23AG AH BG CH ==①3355BG AB ==⨯=故答案为: 18. 35【详解】解:根据题意画出图形如下设直线AB 的解析式为:y mx n =+把()3,0A ,B (0,3)代入可得出:303m n n +=⎧⎨=⎩解得:13m n =-⎧⎨=⎩①直线AB 的解析式为:3y x =-+①直线y kx b =+经过点()1,0C①0k b +=①b k =-①直线y kx k =-联立两直线方程:3y kx k y x =-⎧⎨=-+⎩解得:3121k x k k y k +⎧=⎪⎪+⎨⎪=⎪+⎩①32,11k k D k k +⎛⎫ ⎪++⎝⎭①()3,0A ,B (0,3),()1,0C①3OB =,3OA =,2AC =根据题意有:154ABO ACD S S -= 即1115224D OB OA y AC ⋅⋅-⋅⋅= 112153322214k k ⨯⨯-⨯⨯=+ 解得:35k = 故答案为:35. 三、解答题.19. (1)3m -(2)32x =- 20. (1)20,15 (2)B (3)648个21. 证明:①点E 为边AC 的中点①AE EC =①EF DE =,AED CEF ∠=∠①()SAS AED CEF △≌△①DAE FCE =∠∠①CF AB ∥.22. (1)14 (2)1423. (1)36625π- (2【小问1详解】解①连接AD①3AB =,4AC =,5BC =①22222234255AB AC BC +=+===①90BAC ∠=︒①BC 与A 相切于D①AD BC ⊥ ①1122ABC S AD BC AC AB =⋅=⋅△ ①341255AC AB AD BC ⋅⨯=== ①212901365346236025ABC S S S ππ⎛⎫⨯ ⎪⎝⎭=-=⨯⨯-=-阴影扇形; 【小问2详解】解①延长CA 交A 于P,连接BP ,此时CP 最大由(1)知:90BAC PAB ∠=∠=︒,125AP AD ==①PB == 24. (1)A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元 (2)选择购买A 型智能机器人5台,购买B 型智能机器人5台【小问1详解】解:设A 型智能机器人的单价为x 万元,B 型智能机器人的单价为y 万元 326032360x y x y +=⎧⎨+=⎩解得8060x y =⎧⎨=⎩答:A 型智能机器人的单价为80万元,B 型智能机器人的单价为60万元;【小问2详解】解:设购买A 型智能机器人a 台,则购买B 型智能机器人()10a -台 ①()806010700a a +-≤,①5a ≤,①每天分拣快递的件数()2218104180a a a =+-=+①当5a =时,每天分拣快递的件数最多为45180200万件 ①选择购买A 型智能机器人5台,购买B 型智能机器人5台. 25. (1)01x = (2)2或1 (3)整数a 有4个【小问1详解】解:有题意知()()222221321692410y x x x x x x x x =++-=+++-+=-+ ()()222218218x x x =-++=-+ 当01x =时,y 取得最小值8;【小问2详解】解:①点(),P a b 在双曲线2y x=-上 ①2b a-= ①()()()22222y x a x b x a x a ⎛⎫=-+-=-++ ⎪⎝⎭ 2222422x ax a x x a a ⎛⎫=-++++ ⎪⎝⎭ 2224222x a x a a a ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭①012x =, ①421222a a ⎛⎫- ⎪⎝⎭-=⨯,化解得220a a --=,解得12a =或21a =- 则点()2,1P -或()1,2P -①点P 到y 轴的距离为2或1;【小问3详解】解:()()22y x a x b =-+- 222222x ax a x bx b =-++-+ ()222222x a b x a b =-+++①22230a a b --+=①2322a a b +=+①()222223y x a x a b =-+++①013x ≤<①()231322a -+≤-<⨯,化简得219a ≤< ①2,1,1,2a =--则整数a 有4个.26. (1)见解析; 2cos AB AC AB ACα+=⋅,(2)AB AC AC +=⋅,证明见解析; (3)1112BM BN +=是定值 【详解】解:(1)①30BAD CAD ∠=∠=︒,AD 是ABC 的角平分线,1AD = ①AD BC ⊥①cos303AD AB AC ====︒;①AB AC +=43AB AC ⋅=;如图,由(1)可得:AD BC ⊥①1cos cos AD AB AC αα=== ①2cos AB AC α+=,21cos AB AC α⋅= ①2cos AB AC AB ACα+=⋅;(2)猜想:AB AC AC +=⋅,理由如下: 如图,延长AB 至E 使AE AC =,连接CE ,过B 作BH CE ⊥于H ,延长AD 交CE 于F①60BAC ∠=︒,AD 平分BAC ∠ ①ACE △为等边三角形,AF CE ⊥,30EAF CAF ∠=∠=︒ 设2AC AE CE x ===,EH a =①CF EF x ==,AF =,而1AD =①1DF =-①BH CE ⊥,AF CE ⊥①BH AF ∥①30EBH EAF ∠=∠=︒,CDF CBH ∽①2BE a =,EH =①CDF CBH ∽①DF CFBH CH =,2x x a =-解得:2a =①22424AB AC x a x +=-==; ()2222244AB AC x x a x ax ⋅=-=-=①AB AC AC +=⋅;(3)如图,补全图形如下:①ABC 中,1AB AC ==,点D 在边AC 上,BD BC AD == ①设DAB DBA α∠=∠=,则2BCD BDC α∠=∠=,2ABC ACB α∠=∠= ①22180ααα++=︒解得:36α=︒①36ABE CBE ∠=∠=︒ ①cos362BM BN BM BN +=︒⋅ 即2cos36BM BN BM BN +=︒⋅ ①112cos36BM BN+=︒ 连接CE ,AE ,并延长AE 交BC 于Q①CD CE =①72CDE CED ∠=∠=︒,36ECD BCE ∠=︒=∠ ①CE 平分ACB ∠①AQ 平分BAC ∠①AB AC =①AQ BC ⊥①72ABC ACB CDB ∠=∠=∠=︒①CBD CAB ∽△△ ①CB CD CA CB= 设AD BD BC x ===,则1CD x =- ①21x x =-,即210x x +-=解得:x =(不符合题意的根舍去)①AD BD BC ===①1124BQ BC ==,312CD CE x -==-= ①AQ 是BC 的垂直平分线①32BE CE ==①1cos cos364BQ EBQ BE ∠=︒==;①1112BM BN +=是定值.。
2022年江苏省南通市中考数学真题试卷附解析
2022年江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果a∠是等腰直角三角形的一个锐角,则tanα的值是()A.12B.22C.1D.22.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C两点,则 BC=()A.63B.62C.33D.323.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或44.在ABC∆中,︒=∠90C,AB=15,sinA=13,则BC等于()A.45 B.5 C.15D.1455.下面几个命题中,正确的有()(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A.1 个B.2 个C.3 个D.4 个6.二次函数y=―3x2―7x―12的二次项系数、一次项系数及常数项分别是()A.―3,―7,―12 B.-3,7,12 C.3,7,12 D.3,7,-12 7.在π=3.141 592 653 589 7中,频数最大的数字是()A.1 B.3 C.5 D.98.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球9.分式2221m mm m-+-约分后的结果是()A .1m m n -+B .1(1)m m m --+C .1m m -D .1(1)m m m -+ 10.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定 11. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165° 12.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3二、填空题13.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.14.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.15.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克.16.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.17.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .18.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .19.已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是220cm ,那么△DEF 中EF 边上的高是__________cm .20.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.21.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm 、3 cm 、2cm ,王叔 叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为 .22.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题23.如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.24.已知不等式组3(2)821132x xx xx-+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a+=-,求a的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的高度吗?说说其中的道理.27.解下面的方程,并说明每一步的依据.0.6x=50+0.4x28.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.A7.C8.D9.C10.C11.CC二、填空题13.414.∠E=∠C或∠D=∠B 15.16016.517.2318.2.719.820.6a521.136cm222.135°三、解答题23.提示:∵DE//12BC,FG//12BC,∴DE//FG,∴四边形DFGE是平行四边形24.解原不等式组,得21x-<≤.∴原不等式组的整数解是1x=-.∴612a a-+=--,∴7a=-.25.它们的结果有36种可能;不同,甲赢的机会大,理由略3 cm,理由略27.x=250,依据略28.设原来的两位数是10a+b,则调换位置后的新数是10b+a.(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除29.填法不唯一30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。
2022年江苏省南通市中考数学原题试卷附解析
2022年江苏省南通市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A .34RB .32RC .3RD .23R2.如图所示,CD 是Rt △ABC 斜边 AB 上的高,将△BCD 沿 CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于( )A .25°B . 30°C . 45°D . 60°3.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.如图,直线AB 对应的函数表达式是( )A .3y x 32=-+B .3y x 32=+ C .2y x 33=-+ D .2y x 33=+ 5. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等6.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( )A .4 cmB .5 cmC .9cmD .13 cm 7.二元一次方程组⎩⎨⎧=+=-52723y x y x 的解是( ) A .⎩⎨⎧==23y x B .⎩⎨⎧==21y x C .⎩⎨⎧==24y x D .⎩⎨⎧==13y x8.一副三角板按如图方式摆放,且∠l 比∠2大50°.若设∠1=x ,则可列出方程( )A .x+(x+500)=180°B .x+(x-50°)=180°C . x+(x+500)=90°D .x+(x-50°)=90°9.如图,△A8C ≌△BAD ,A 和B ,C 和D 是对应点,若AB=4 cm ,BD=3 cm ,AD=2 cm ,则BC 的长度为( )A .4 cmB .3 cmC .2 cmD .不能确定10.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km11.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是( )A .36.7℃B .36.8℃C .36.9℃D .37.0℃二、填空题12.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是 m .13.如图,若△ABC ∽△DEF ,则∠D 的度数为______________.14. 如图,已知⊙O 的半径为 4,点C 在⊙O 上,∠ACB=45°,求弦AB 的长.15.自由下落物体的高度h (米)与下落的时间t (秒)的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒. 解答题 16.若y 与 x 2成反比例,且当x=2时,y= 8,则当 y=16 时,x= .17.请写出命题“直角三角形的两个锐角互余”的逆命题: .18. 方程2230x x --=的根是 .19.已知正比例函数232ky kx -=的函数值y 随着x 的增大而减小,则k= . 20.01(1)2π--⨯= ;32(63)(3)a a a -÷= . 三、解答题21.如图,在△ABC 中,⊙O 截△ABC 的三条边所得的弦长相等,求证:0是△ABC 的内心.22.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB 为半径作圆弧⌒BD 得一扇形CBD ,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a ,求该圆锥的底面半径.23.如图:在四边形ABCD 中,M 是BC 的中点,AM ,BD 互相平分于点 0,求证:AM=DC.24.已知y=x2-5x+4,问x取什么值时,y的值等于0?x取什么值时,y的值等于4? 25.图中有三棱柱的展开图吗?26.请你先将分式2211x x xx x---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.27.有甲、乙两家单位到某商店购买空调,可供选择的空调型号有A、B、C三种:(1)空调价格如下表所示,已知甲单位购买两种不同型号的空调 50 台,用去 90 000元,你知道甲单位购买的是哪两种空调吗?说明你的理由.空调价目表空调型号单价A1500元B2100元C2500元5 000元,购买A 空调5 台﹑C空调 1 台共需 8000元. 已知乙单位购买了A空调20台、B空调 5 台、C空调 8 台,共需多少元?28.一个多项式加上2532x x+-的2倍得213x x-+,求这个多项式.21355x x--+29.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?30.如图所示的每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有 n(n≥2)个棋子,每个图案的棋子总数为S,按其排列规律推断,S 与n 之间的关系可以用式子来表示.=-44S n【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.A5.A6.C7.D8.D9.C10.D11.A二、填空题12.613.30°14. 42 15.2 16.2±17.两个角互余的三角形是直角三角形18.13x =,21x =-19.-220.12,22a a -三、解答题21.作 OD ⊥AB 于D ,OE ⊥BC 于 E ,DF ⊥AC 于F.∵⊙O 截△ABC 的三条边所得的弦长相等,∴ OD= OE=OF ,∴ 点0在∠ABC 和∠ACB 的角平分线上,即0是△ABC 的内心.22.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 23. 提示:连结MD24.x 取1、4时,y 的值等于0;x 取0、5值时,y 的值等于4.25.①、②、③都是26.22x -(代入0,1x ≠-的数都可以)27.(1)①设甲单位购买的是A 、B 两种型号的空调,且购买A 型空调x 台,则购买B 型空调(50x -)台.根据题意,得15002100(50)90000x x +-=,化简得60015000x =,解得 25x =,5025x -=即购买A 、B 两利'空调各25 台.②设甲单位购买的是A 、C 两种型号的空调,且购买A 型空调x 台, 则购买C 空调(50x -)台,根据题意,得15002500(50)90000x x +-=,化简,得100035000x =,解得35x =,5015x -=即分别购买 A .C 两种空调35 台和 15 台.③设甲单位购买的是B 、C 两种型号的空调,且购买B 型空调x 台,则购买 C 型空调(50x -)台,根据题意,得21002500(50)90000x x +-=,化简,得40035000x =,解得87.5x =(不合题意,舍去).答:甲单伟购买的可能是A 、B 两种空调,也可能是A 、C 两种空调.(2)设A 型空调的单价为x 元,则 C 型空调的单价为(80005x -)元,B 型 调的单价为5000(80005)43000x x x ---=-元.所以乙单位购买A 型空调20 台、B 型空调5台、C 型空调8台共需:205(43000)8(80005)202015000640004049000x x x x x x +-+-=+-+-=(元) 28.21355x x --+29.两条对角线上的三个日期数之和都等于3n30.44S n =-。
(中考精品卷)江苏省南通市中考数学真题(解析版)
2022年江苏南通数学标卷标答注意事项:考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置。
3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 若气温零上2℃记作2+℃,则气温零下3℃记作()A. 3-℃B. 1-℃C. 1+℃D. 5+℃【答案】A【解析】【分析】根据气温是零上2℃记作+2℃,则可以表示出气温是零下3℃,从而可以解答本题.【详解】解:∵气温是零上2℃记作+2℃,∴气温是零下3℃记作−3℃.故选:A.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题中表示的含义.2. 下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A.不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3. 沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为( )A. 113.910⨯B. 110.3910⨯C. 103.910⨯D. 93910⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知:1039000000000=3.910⨯,故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 用一根小木棒与两根长分别为3cm,6cm 的小木棒组成三角形,则这根小木棒的长度可以为( )A. 1cmB. 2cmC. 3cmD. 4cm【答案】D【解析】【分析】设第三根木棒的长为x cm ,再根据三角形的三边关系得出x 取值范围即可.【详解】解:设第三根木棒的长为x cm ,则6−3<x <6+3,即3<x <9.观察选项,只有选项D 符合题意.故选:D .【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.5. 如图是中5个相同的正方体搭成的立体图形,则它的主视图为( )A. B. C. D.【答案】A【解析】【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【详解】解:从正面看该组合体,所看到的图形与选项A 中的图形相同,故选:A .【点睛】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.6. 李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( )A. 10.5%B. 10%C. 20%D. 21%【答案】B【解析】【分析】设每月盈利的平均增长率为x ,根据今年1月盈利3000元,3月盈利3630元,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每月盈利的平均增长率为x ,依题意,得:3000(1+x )2=3630,解得:x 1=0.1=10%,x 2=−2.1(不合题意,舍去).故选:B .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7. 如图,,380,1220∠=︒∠-∠︒=∥a b ,则1∠的度数是( )A. 30°B. 40︒C. 50︒D. 80︒【答案】C【解析】【分析】根据平行线的性质和三角形外角的性质可得∠1+∠2=80°,结合1220∠-∠=︒,两式相加即可求出1∠.【详解】解:如图,∵//a b ,∴∠4=∠1,∴∠3=∠4+∠2=∠1+∠2=80°,∵1220∠-∠=︒,∴21100∠=︒,∴150∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,求出∠1+∠2=80°是解题的关键.8. 根据图像,可得关于x 的不等式3>-+kx x 的解集是( )A. 2x <B. 2x >C. 1x <D. 1x >【答案】D【解析】【分析】写出直线y =kx 在直线y =−x +3上方所对应的自变量的范围即可.【详解】解:根据图象可得:不等式kx >−x +3的解集为:x >1.故选:D .【点睛】本题考查了一次函数与一元一次不等式,根据两个函数的交点坐标及图象确定不等式的解集是解题的关键.9. 如图,在ABCD 中,对角线,AC BD 相交于点O ,,4,60⊥=∠=︒AC BC BC ABC ,若EF 过点O 且与边,AB CD 分别相交于点E ,F ,设2,==BE x OE y ,则y 关于x 的函数图像大致为( )A. B. C. D.【答案】C【解析】【分析】过点O 向AB 作垂线,交AB 于点M ,根据含有30°角的直角三角形性质以及勾股定理可得AB 、AC 的长,再结合平行四边形的性质可得AO 的长,进而求出OM 、AM 的长,设BE x =,则5EM x =-,然后利用勾股定理可求出y 与x 的关系式,最后根据自变量的取值范围求出函数值的范围,即可做出判断.【详解】解:如图过点O 向AB 作垂线,交AB 于点M ,∵AC ⊥BC ,∠ABC =60°,∴∠BAC =30°,∵BC =4,∴AB =8,AC =,∵四边形ABCD 是平行四边形,∴12AO AC ==,∴12OM AO ==,∴3AM ==,设2,==BE x OE y ,则835EM AB AM EM x x =--=--=-,∵222OE OM EM =+,∴()253y x =-+,∵08x ≤≤,∴312y ≤≤.故选:C .【点睛】此题主要考查了平行四边形的性质、勾股定理、含有30°角的直角三角形的性质以及二次函数图象等知识,解题关键是求解函数解析式和函数值的范围.10. 已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( )A. 24B. 443C. 163D. 4-【答案】B【解析】【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案. 【详解】解:2(23)(2)(2)-++-m n m n m n222241294m mn n m n =-++-225125m mn n =-+()5212mn mn =+-107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn ,∴220mn mn ++≥,∴32mn ≥-, ∴23mn ≥-, ∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键.二、填空题(本人题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是___________(填“全面调查”或“抽样调查”).【答案】抽样调查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查了抽样调查和全面调查区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12. 分式22x -有意义,则x 应满足的条件是___________. 的【答案】2x≠【解析】【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可.【详解】解:分式22x-有意义,即20x-≠,∴2x≠,故答案为:2x≠.【点睛】本题考查分式有意义的条件,牢记分式有意义的条件是分式的分母不为0.13. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年南通市中考数学试卷1、2的相反数是(▲)A ﹒-2B ﹒12-C ﹒2D ﹒122、太阳半径约为696000km ,将696000用科学记数法表示为(▲)A ﹒696×103B ﹒69.6×104C ﹒6.96×105D ﹒0.696×106 3、计算32x x-的结果是(▲) A ﹒26xB ﹒6xC ﹒52xD ﹒1x4、下列几何图形:等腰三角形 正方形 正五边形 圆其中是轴对称图形但不是中心对称图形的共有(▲)A ﹒4个B ﹒3个C ﹒2个D ﹒1个 5、若一个多边形的外角和与它的内角和相等,则这个多边形是(▲)A ﹒三角形B ﹒四边形C ﹒五边形D ﹒六边形 6x 的取值范围是(▲) A ﹒12x ≤且x ≠1 B ﹒12x ≥且x ≠1 C ﹒12x >且x ≠1D ﹒12x <且x ≠17、如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于(▲)A ﹒1)mB ﹒1)mC ﹒1)mD ﹒1)m8、如图所示的扇形纸片半径为5cm ,用它围成一个圆锥的侧面,该圆 锥的高是4cm ,则该圆锥的底面周长是(▲)A ﹒3πcmB ﹒4πcmC ﹒5πcmD ﹒6πcm (第7题)(第8题)9、如图,已知点A(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°﹒设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是(▲)A B C D10、平面直角坐标系xOy中,已知A(-10)、B(30)、C(0-1)三点,D(1m)是一个动点,当△ACD周长最小时,△ABD的面积为(▲)A﹒13B﹒23C﹒43D﹒83二、填空题:11、计算:x3·x2= ▲﹒12、已知,如图,直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于▲度﹒13、某几何体的三视图如图所示,则这个几何体的名称是▲﹒14、如图,Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cos A= ▲﹒15、已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是▲﹒16、设一元二次方程x2-3x-1=0的两根分别是x1,x2,则x1+x2(x22-3x2)= ▲﹒17、如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF= ▲cm﹒18、平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m>0)上,且满足a2+b2-2(1+2bm)+4m2+b=0,则m= ▲﹒三、简答题:(第14题)主视图左视图俯视图(第13题)AEDOCB(第12题)19、(1)计算:202(1)(5)-+-+-;(2)解方程组:29325x y x y +=⎧⎨-=-⎩20、解不等式组51333157x x x x -<+⎧⎨+>+⎩,,并写出它的所有整数解﹒21、某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图)﹒已知西瓜的重量占这批水果总重量的40%﹒ 回答下列问题:(1)这批水果总重量为 kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为 度﹒22、不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别﹒随机摸出一个小球后,放回并摇匀,再随机摸出一个﹒求两次都摸到红色小球的概率﹒23、列方程解应用题:某列车平均提速60km/h ﹒用相同的时间,该列车提速前行驶200km ,提速后比提速前多行驶100km ﹒求提速前该列车的平均速度﹒重量(kg 品种 (第17题)24、已知:如图,AM 为⊙O 的切线,A 为切点﹒过⊙O 上一点B 作BD ⊥AM 于点D ,BD 交⊙O 于点C ,OC 平分∠AOB ﹒ (1)求∠AOB 的度数;(2)当⊙O 的半径为2cm 时,求CD 的长﹒DCOB25、如图,将□ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F ﹒ (1)求证:△BEF ≌△CDF ;(2)连接BD 、CE ,若∠BFD =2∠A ,求证四边形BECD 是矩形﹒26、平面直角坐标系xOy 中,已知抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点,其中m 为常数﹒(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线y =x 2+bx +c 与x 轴有公共点,求m 的值;(3)设(a ,y 1)、(a +2,y 2)是抛物线y =x 2+bx +c 上的两点,请比较y 2-y 1的大小,并说明理由﹒(第24题)(第25题)27、如图,△ABC 中,∠ACB =90°,AC =5,BC =12,CO ⊥AB 于点O ﹒D 是线段OB 上一点,DE =2,ED ∥AC (∠ADE <90°),连接BE 、CD ,设BE 、CD 的中点分别为P 、Q ﹒ (1)求AO 的长; (2)求PQ 的长;(3)设PQ 与AB 的交点为M ,请直接写出PM MQ -的值﹒EP QD CO BA28、如图,平面直角坐标系xOy 中,点C (3,0),函数(00)ky k x x=>>,的图象经过□OABC 的顶点A (m ,n )和边BC 的中点D ﹒ (1)求m 的值;(2)若△OAD 的面积等于6,求k 的值;(3)若P 为函数(00)ky k x x=>>,的图象上一个动点,过点P 作直线l ⊥x 轴于点M ,直线l 与x 轴上方的□OABC 的一边交于点N ,设点P 的横坐标为t ,当14PN PM =时,求t 的值﹒(第27题)2016年南通市中考数学试卷及答案一、选择题(每小题3分,共30分) ACDCBBAD9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰 直角三角形ABC ,使点C 在第一象限,90=∠BAC .设点B 的横坐标为 x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是考点:函数图象,数形结合思想解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴ 设点B 的横坐标为x,点C 的纵坐标为y ;则x y =-1(0>x );1+=x y(0>x ),故选A10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,),1(m D 是一个动点,当ACD ∆周长最小时,ABD ∆的面积为A .31B .32C .34D .38考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC 直线BC 方程为:131-=x y ,右图为ACD ∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C二、填空题(每小题3分,共24分.)11.计算25x x ⋅= 7x .12.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =60°,则∠BOD 等于 30 度.13.某几何体的三视图如图所示,则这个几何体的名称是 .14.如图,在Rt△ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则cos A 的值是 . EDC B AO(第12题)(第9题)ABDC(第14题)考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD =2,则AB=4, cos A =43=AB AC 15.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是 . 考点:平均数,中位数解析:85915105=++++x ,1=x ,这组数据的中位数是916.设一元二次方程0132=--x x 的两根分别是1x ,2x ,则)3(22221x x x x -+= 考点:一元二次方程根的概念,一元二次方程根与系数的关系解析:2x 是一元二次方程0132=--x x 的根,∴013222=--x x ,13222=-x x ,则3)3(2122221=+=-+x x x x x x17.如图,BD 为正方形ABCD 的对角线,BE 平分DBC ∠,交DC 于点E ,将BCE ∆绕点C 顺时针旋转90得到DCF ∆,若CE=1cm ,则BF= cm考点:角平分线的性质,勾股定理,正方形解析:BE 平分DBC ∠,则GE=CE=1cm DG=GE=1cm ;2=DE cm,BC=CD=1)2(+cm;)22(+=∴BF cm18.平面直角坐标系xOy 中,已知点),(b a 在直线222++=m mx y (0>m )上,且满足04)21(2222=+++-+b m bm b a ,则=m .考点:配方法;求根公式解析:已知点),(b a 在直线222++=m mx y (0>m )上,222++=∴m ma b (*)代入04)21(2222=+++-+b m bm b a 整理得:0)()2(22=++-m a m b 解得⎩⎨⎧=-=m b ma 2回代到(*)式得22222++-=m m m ,即0222=-+m m ,解得31±-=m ,又0>m ,13-=∴m三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算4)5()1(202--+-+-;(2) 解方程组:⎩⎨⎧-=-=+52392y x y x考点:(1)非零数的零次幂等于1,实数运算 (2)二元一次方程的解法解析:(1)原式=22112=-++(2)①+②,得:1,44==x x ;代入①,得4=y ,⎩⎨⎧==∴4,1y x20.( 8分)解不等式组⎩⎨⎧+>++<-71533315x x x x ,并写出它的所有所有整数解.解析:解:由①,得2<x ,由②,得4->x ;所以不等式组的解集为24<<-x ;它的整数解1,0,1,2,3---21.( 9分)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图).已知西瓜的重量占这批水果总重量的40%. 回答下列问题:(1)这批水果总重量为 kg ;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子 所对应扇形的圆心角为 度. 解析:(1)4000(2)1200200100016004000=--- 补全统计图如下:(3)9022.( 7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率. 解析:画出树形图如下:从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.∴两次都摸到红色小球的概率为4123.( 8分)列方程解应用题:某列车平均提速h km /60,用相同的时间,该列车提速前行使km 200,提速后比提速前多行使km 100,求提速前该列车的平均速度. 考点:二元一次方程应用题 重量(kg第一次 第二次 红 红 绿 绿 红绿解析:设提速前该列车的平均速度为v h km /,行使的相同时间为t h由题意得:⎩⎨⎧=+=300)60(,200t v vt 解得:⎪⎩⎪⎨⎧==35120t v答:提速前该列车的平均速度为h km / 120 24.( 9分)已知:如图,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作AM BD ⊥于点D ,BD 交⊙ O 于C ,OC 平分AOB ∠ (1)求AOB ∠的度数;(2)若⊙O 的半径为2 cm ,求线段CD 的长.考点:圆的切线,角平分线,直线平行,三角形的内角和。