必修1基本初等函数(Ⅰ)知识要点
新人教A版必修1第二章基本初等函数

logc b loga b (a 0,且a 1; c 0,且c 1; b 0) logc a
三、重点内容
(三)基本性质:
y a x (a 0,且a 1)
0<a<1
y
a>1
y
1
图象
0
1
x
0
x
定义域 值域 性质
(0, )
当x>0时0<y<1; 当x<0时y>1; 当x=0时y=1; 在R上是减函数
R
(0, )
当x>0时y>1; 当x<0时0<y<1; 当x=0时y=1; 在R上是增函数
R
三、重点内容
(三)基本性质: y loga x(a 0,且a 1)
0 a 1
y
a 1
y
图象
定义 域 值域 性质
O
1
x
O
1
x
(0, )
R
(0, )
R
( 3 )) 0过定点 x 1时, y 0; (1)(过定点 3) x 1时, y 0; (1,0) ( 1 (1,0)
四、例题分析 若f ( x) x 2 x b, 且f (log 2 a ) b, log 2 [ f (a )] 2(a 1).
高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1

理论
2.对数函数的图象
由于对数函数 y log a x与指数函数y a x 互为反函数,所以 y log a x 的图象与 y a x
的图象关于直线 y x 对称. 看一般图象:
5
4
3
y=ax (a>1) 2
1
44
33
y=ax 22
∴函数 y loga x2的定义域是 x | x 0
(2)由 4 x 0 得 x 4
∴函数 y loga (4 x) 的定义域是 x | x 4
(3) 由 9 x2 0 得 3 x 3
∴函数 y loga(9 x2) 的定义域是 x | 3 x 3
举例
例2 求下列函数的反函数
在R上是减函数
引例
引例: y 2 x 有无反函数?若有,则求出.
分析:视察图象知,有反函数
由 y 2x 得 x log 2 y 所以,反函数为:
4
fx3 = 2x
2
1
-4
-2
2
y log 2 x x (0,)
理论
1.对数函数的定义:
函数 y log a x (a 0且a 1) 叫做对数函数(logarithmic function), 其中x是自变量,函数的定义域为 (0,) , 值域为 (,) .
1 y 1 x 1;
2
2 y (1) x2 3 (x 0).
2
解 (: 1)
y
1
x
1
1 x
y
1
2
2
(2)
x log1 ( y 1)
2
f 1( x) log1 ( x 1)
数学必修一基本初等函数知识点

数学必修一基本初等函数知识点
1. 线性函数:y = kx + b(k和b为常数),其中k称为斜率,b称为截距。
2. 幂函数:y = x^n(n为常数),其中n可以是正整数、零、负整数。
3. 指数函数:y = a^x(a为正实数且a≠1)。
4. 对数函数:y = loga(x)(a为正实数且a≠1),其中x为正实数。
5. 三角函数(正弦函数、余弦函数、正切函数、余切函数等):y = sinx,y = cosx,y = tanx,y = cotx等。
6. 反三角函数(反正弦函数、反余弦函数、反正切函数、反余切函数等):y = arcsinx,y = arccosx,y = arctanx,y = arccotx等。
7. 绝对值函数:y = |x|。
8. 双曲函数(双曲正弦函数、双曲余弦函数、双曲正切函数等):y = sinh(x),y = cosh(x),y = tanh(x)等。
9. 分段函数:根据不同条件定义函数的不同表达式,例如:y = f(x) =
{ x+1, (x≤0)
{ x^2, (0<x≤1)
{ 2x-1, (x>1)
10. 复合函数:将一个函数的输出作为另一个函数的输入进行运算,例如:f(g(x))。
以上是数学必修一中较为基本的初等函数知识点,只覆盖了一部分内容。
学习初等函数的重点是掌握其基本性质、图像和应用。
知识点整理-[高中数学]第三章 基本初等函数(I)
![知识点整理-[高中数学]第三章 基本初等函数(I)](https://img.taocdn.com/s3/m/c6d1d775524de518964b7da7.png)
如果 a=1,y=1x=1,是一个常量,对它就没有研究的必要。
为了避免上述各种情况,所以规定 a>0 且 a≠1。
1
③如 y=2·3x,y= 2 x ,y= 3 x2 ,y=3x+1 等函数都不是指数函数,要注意区分。
(2)指数函数的图象和性质
y=ax
0<a<1
a>1
图 象
定义域为 R,值域为(0,+∞)
质对于无理指数幂也适用,这样,指数概念就扩充到了整个实数范围。
(3)利用分数指数进行根式与幂的计算
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指
数幂,并尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简、求值、计算,
以利于运算、达到化繁为简的目的。
对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示,如
a0=1,即 x=0 时,y=1,图像都过点(0,1)
性 a1=a,即 x=1 时,y 等于底数 a,图像都经过点(1,a)
质 在定义域上是单调减函数
在定义域上是单调增函数
x<0 时,ax>1;
x<0 时,0<ax<1;
x>0 时,0<ax<1
x>0 时,ax>1
既不是奇函数,也不是偶函数
4
学习指数函数的图象和性质,需要注意的几个问题: ①当底数 a 大小不定时,必须分“a>1”和“0<a<1”两种情况讨论。 ②当 0<a<1 时,x→+∞,y→0;当 a>1 时,x→-∞,y→0。当 a>1 时 a 的值越大, 图象越靠近 y 轴,递增速度越快;当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的 速度越快。(其中“x→+∞”意义是:“x 接近于正无穷大”)。 ③在同一直角坐标系中指数函数图象的位置与底数大小的关系:在 y 轴右侧,图象从 上到下相应的底数由大变小;在 y 轴左侧,图象从下到上相应的底数由大变小。 规律:当 a>1,b>1 时,指数函数 y=ax,y=bx 的图象在同一坐标系中,在直线 x=0 的右边,当 a>b 时,y=ax 的图象在 y=bx 的图象上方,在直线 x=0 的左边正好相反。 当 0<a<1,0<b<1 时,指数函数 y=ax,y=bx 的图象的关系与 a>1,b>1 正好相反。 (3)指数函数的定义域与值域 指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞,+∞),值域是(0,+∞)。 求由指数函数构成的复合函数的定义域时,可能涉及解指数不等式(即未知数在指数 上的不等式)。解指数不等式的基本方法是把不等式两边化为同底的幂的形式,利用指数 函数的单调性脱去幂的形式,从而转化为熟悉的不等式。同时还应注意负数不能开偶次方, 分母不能为零,限制 x 的取值。 求由指数函数构成的复合函数的值域,一般用换元法即可,但应注意在中间变量的值 域以及指数函数的单调性的双重作用下,函数值域的变化情况。 (4)指数函数图象的变换规律 ①平移规律 若已知 y=ax 的图象,则把 y=ax 的图象向左平移 b(b>0)个单位,则得到 y=ax+b 的图 象,向右平移 b(b>0)个单位,则得到 y=ax-b 的图象,向上平移 b(b>0)个单位,则得 到 y=ax+b 的图象,向下平移 b(b>0)个单位,则得到 y=ax-b 的图象。 一般的,把函数 y=f(x)图象向右平移 m 个单位得到函数 y=f(x-m)的图象(m∈R,m< 0,就是向左平移|m|个单位);把函数 y=f(x)的图象向上平移 n 个单位,得函数 g(x)=f(x)+n 的图象(n∈R,n<0,就是向下平移|n|个单位)。
高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版

x-13,x<2.
有两个不同的实根,则实数 k 的取值范围是______.
高中数学
解析:(1)作出
的图象,如
示.再把 f(x)的图象向左平移一个单位长度,可得到 y=
的图象.故选 B.
高中数学
(2)作出函数 f(x)=2x,x≥2,
的简图,如图
x-13,x<2.
方程 f(x)=k 有两个不同的实根,也就是函数 f(x)的图象 =k 有两个不同的交点,所以 0<k<1.
• (4)采用数形结合的方法,通过函数的图象解决
高中数学
比较下列各组数的大小:
(1)0.65.1,5.10.6,log0.65.1;
(2)log712,log812;
1
1
1
1
(3) a=0.22 ,b=0.32 ,c=331)因为 0<0.65.1<1,5.10.6>1,log0.65.1<0,
+
lg 42-lg 16+1-lg 14+log5 35-log
解:(1)原式=53212
3 +
-287-3÷(24)
3 -4
1
+25 ×
-1
=53-23-24+2-1=-22.
高中数学
1
(2)原式=(3-3) -3 + lg 42-2lg 4+1
-lg 4-1+log5
35 7
=3+ lg 4-12+lg 4+log5 5 =3+1-lg 4+lg 4+1
要题型,主要考查幂函数、指数函数、对数函 与性质的应用及差值比较法与商值比较法的应 用的方法有单调性法、图象法、中间搭桥法、 作商法. • (2)当需要比较大小的两个实数均是指数幂或对 可将其看成某个指数函数、对数函数或幂函数 值,然后利用该函数的单调性比较.
高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析

.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1
2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1
5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9
人教A版数学必修一必修①第二章基本初等函数(Ⅰ)

高中数学学习材料金戈铁骑整理制作第11讲 §2.1.1 指数与指数幂的运算¤学习目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.¤知识要点:1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈. n 次方根具有如下性质:(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零.(2)n 次方根(*1,n n N >∈且)有如下恒等式:()n n a a =;,||,n n a n a a n ⎧=⎨⎩为奇数为偶数;np n mp m a a =,(a ≥0). 2. 规定正数的分数指数幂:mn m na a = (0,,,1a m n N n *>∈>且); 11m nm nmna aa-==.¤例题精讲:【例1】求下列各式的值:(1)3n nπ-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-();当n 为偶数时,3|3|3n nπππ-=-=-().(2)2()||x y x y -=-.当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-.【例2】已知221na =+,求33n n n na a a a--++的值. 解:332222()(1)1121122121n n n n n n n n nn n na a a a a a a a a a a a ------++-+==-+=+-+=-+++. 【例3】化简:(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)3322114423()a b ab ba b a⋅(a >0,b >0); (3)243819⨯.解:(1)原式=2111150326236[2(6)(3)]44a bab a +-+-⨯-÷-==.(2)原式=1312322123[()](/)a b ab ab b a ⋅⋅=1136322733a b a b a b⋅=104632733a b a b=a b. (3)原式=2212124444244332323[(3)]3333⨯⨯⨯=⨯=⨯221111446336444(33)(3)(3)3333=⨯=⨯=⨯=.点评:根式化分数指数幂时,切记不能混淆,注意将根指数化为分母,幂指数化为分子,根号的嵌套,化为幂的幂. 正确转化和运用幂的运算性质,是复杂根式化简的关键.【例4】化简与求值:(1)642642++-; (2)11111335572121n n +++⋅⋅⋅++++-++.解:(1)原式=22222222(2)2222(2)+⨯⨯++-⨯⨯+ =22(22)(22)++- =2222++-=4. (2)原式=3153752121315375(21)(21)n n n n ---+--+++⋅⋅⋅+---+-- =1(3153752121)2n n -+-+-+⋅⋅⋅++--=1(211)2n +-.点评:形如A B ±的双重根式,当2A B -是一个平方数时,则能通过配方法去掉双重根号,这也是双重根号能否开方的判别技巧. 而分母有理化中,常常用到的是平方差公式,第2小题也体现了一种消去法的思想. 第(1)小题还可用平方法,即先算得原式的平方,再开方而得.第11练 §2.1.1 指数与指数幂的运算※基础达标1.化简1327()125-的结果是( ). A. 35 B. 53C. 3D.52.下列根式中,分数指数幂的互化,正确的是( ). A. 12()(0)x x x -=-> B.1263(0)y y y =< C.33441()(0)xx x-=> D.133(0)x x x -=-≠3.下列各式正确的是( ). A. 35351a a-= B.3322x x = C. 111111()824824a a aa-⨯⨯-⋅⋅= D. 112333142(2)12xx x x---=- 4.计算1()02(4)12(15)221--++---,结果是( ).A.1B. 22C. 2D. 122-5.化简111113216842(12)(12)(12)(12)(12)-----+++++,结果是( ).A. 11321(12)2---B. 1132(12)---C. 13212--D. 1321(12)2-- 6.化简36639494()()a a 的结果是 .7.计算2110332464()( 5.6)()0.125927--+--+= .※能力提高8.化简求值:(1)211132221566()(3)13a b a b a b -; (2)34a a a .9.已知1122x x -+=3,求下列各式的值:(1)1x x -+;(2)33222223x x x x --++++.※探究创新10.已知函数11331()()5f x x x -=-,11331()()5g x x x -=+.(1)判断()f x 、()g x 的奇偶性;(2)分别计算(4)5(2)(2)f f g -和(9)5(3)(3)f f g -,并概括出涉及函数()f x 和()g x 对所有不为0的实数x 都成立的一个等式,并加以证明.第12讲 §2.1.2 指数函数及其性质(一)¤学习目标:理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质.¤知识要点:1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .2. 以函数2x y =与1()2x y =的图象为例,观察这一对函数的图象,可总结出如下性质:定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.¤例题精讲:【例1】求下列函数的定义域: (1)132xy -=; (2)51()3xy -=; (3)1010010100x x y +=-.解:(1)要使132xy -=有意义,其中自变量x 需满足30x -≠,即3x ≠. ∴ 其定义域为{|3}x x ≠.(2)要使51()3xy -=有意义,其中自变量x 需满足50x -≥,即5x ≤. ∴ 其定义域为{|5}x x ≤. (3)要使1010010100x x y +=-有意义,其中自变量x 需满足101000x -≠,即2x ≠. ∴其定义域为{|2}x x ≠.【例2】求下列函数的值域:(1)2311()3x y -=; (2)421x x y =++解:(1)观察易知2031x ≠-, 则有203111()()133x y -=≠=. ∴ 原函数的值域为{|0,1}y y y >≠且. (2)2421(2)21x x x x y =++=++. 令2x t =,易知0t >. 则22131()24y t t t =++=++.结合二次函数的图象,由其对称轴观察得到213()24y t =++在0t >上为增函数,所以221313()(0)12424y t =++>++=. ∴ 原函数的值域为{|1}y y >.【例3】(05年福建卷.理5文6)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ).A .1,0a b ><B .1,0a b >>C .01,0a b <<>D .01,0a b <<<线位置解:从曲线的变化趋势,可以得到函数()f x 为减函数,从而0<a <1;从曲b <0. 看,是由函数(01)x y a a =<<的图象向左平移|-b |个单位而得,所以-b >0,即所以选D.点评:观察图象变化趋势,得到函数的单调性,结合指数函数的单调性,得到参数a 的范围. 根据所给函数式的平移变换规律,得到参数b 的范围. 也可以取x =1时的特殊点,得到01b a a -<=,从而b <0.【例4】已知函数23()(0,1)x f x a a a -=>≠且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.解:(1)当230x -=,即23x =时,2301x a a -==. 所以,该函数的图象恒过定点2(,1)3.(2)∵ 23u x =-是减函数,∴ 当01a <<时,()f x 在R 上是增函数;当1a >时,()f x 在R 上是减函数.点评:底数两种情况的辨析,实质就是分类讨论思想的运用. 而含参指数型函数的研究,要求正确处理与参数相关的变与不变.第12练 §2.1.2 指数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.40.60.50.5>C. 0.10.10.750.75-<D. 1.6 1.4(3)(3)> 2.已知0c <,在下列不等式中成立的是( ).A. 21c >B. 1()2c c >C. 12()2c c <D. 12()2c c > 3.函数y =a x +1(a >0且a ≠1)的图象必经过点( ).A.(0,1)B. (1,0)C.(2,1)D.(0,2) 4.设,a b 满足01a b <<<,下列不等式中正确的是( ). A. a b a a < B. a b b b < C. a a a b < D. b b b a <5.世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).A. 新加坡(270万)B. 香港(560万)C. 瑞士(700万)D. 上海(1200万)6.某地现有绿地100平方公里,计划每年按10%的速度扩大绿地,则三年后该地的绿地为_____平方公里.7.函数21232x x y --=的定义域为 ;函数2231()2xx y -+=的值域为 .※能力提高8.已知,a b 为不相等的正数,试比较a b a b 与b a a b 的大小.9.若已知函数23()(0,1)x f x a a a -=>≠且,()x g x a =. (1)求函数()f x 的图象恒过的定点坐标;(2)求证:1212()()()22x x g x g x g ++≤.※探究创新 10.讨论函数21(01)xy a a a +=>≠,且的值域.第13讲 §2.1.2 指数函数及其性质(二)¤学习目标:在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用.¤知识要点:以函数2x y =与1()2x y =的图象为例,得出这以下结论: (1)函数()y f x =的图象与()y f x =-的图象关于y 轴对称.(2)指数函数(0,1)x y a a a =>≠且的图象在第一象限内,图象由下至上,底数由下到大. ¤例题精讲:【例1】按从小到大的顺序排列下列各数:23,20.3,22,20.2.解:构造四个指数函数,分别为3x y =,0.3x y =,2x y =,0.2x y =,它们在第一象限内,图象由下至上,依次是0.2x y =,0.3x y =,2x y =,3x y =. 如右图所示.由于20x =>,所以从小到大依次排列是:20.2,20.3,22,23.点评:利用指数函数图象的分步规律,巧妙地解决了同指数的幂的大小比较问题. 当然,我们在后面的学习中,可以直接利用幂函数的单调性来比较此类大小.【例2】已知21()21x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.解:(1)()f x 的定义域为R .∵ 21(21)21221()()21(21)21221x x x x x xx x x x f x f x ---------====-=-++++. ∴ ()f x 为奇函数.(2)设任意12,x x R ∈,且12x x <,则121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.由于12x x <,从而1222x x <,即12220x x -<.∴ 12()()0f x f x -<,即12()()f x f x <. ∴ ()f x 为增函数.点评:在这里,奇偶性与单调性的判别,都是直接利用知识的定义来解决. 需要我们理解两个定义,掌握其运用的基本模式,并能熟练的进行代数变形,得到理想中的结果.【例3】求下列函数的单调区间:(1)223x x y a +-=; (2)10.21x y =-.解:(1)设2,23u y a u x x ==+-.由2223(1)4u x x x =+-=+-知,u 在(,1]-∞-上为减函数,在[1,)-+∞上为增函数. 根据u y a =的单调性,当1a >时,y 关于u 为增函数;当01a <<时,y 关于u 为减函数. ∴ 当1a >时,原函数的增区间为[1,)-+∞,减区间为(,1]-∞-; 当01a <<时,原函数的增区间为(,1]-∞-,减区间为[1,)-+∞. (2)函数的定义域为{|0}x x ≠. 设1,0.21x y u u ==-. 易知0.2x u =为减函数. 而根据11y u =-的图象可以得到,在区间(,1)-∞与(1,)+∞上,y 关于u 均为减函数. ∴在(,0)-∞上,原函数为增函数;在(0,)+∞上,原函数也为增函数.点评:研究形如()(01)f x y a a a =>≠,且的函数的单调性,可以有如下结论:当1a >时,函数()f x y a =的单调性与()f x 的单调性相同;当01a <<时,函数()f x y a =的单调性与()f x 的单调性相反. 而对于形如()(01)x y a a a ϕ=>≠,且的函数单调性的研究,也需结合x a 的单调性及()t ϕ的单调性进行研究. 复合函数(())y f x ϕ=的单调性研究,遵循一般步骤和结论,即:分别求出()y f u =与()u x ϕ=两个函数的单调性,再按口诀“同增异减”得出复合后的单调性,即两个函数同为增函数或者同为减函数,则复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 为何有“同增异减”?我们可以抓住 “x 的变化→()u x ϕ=的变化→()y f u =的变化”这样一条思路进行分析.第13练 §2.1.2 指数函数及其性质(二)※基础达标1.如果指数函数y =(2)x a -在x ∈R 上是减函数,则a 的取值范围是( ). A .a >2 B .a <3 C .2<a <3D .a >32.使不等式31220x -->成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1(,)3-+∞3.某工厂去年12月份的产值是去年元月份产值的m 倍,则该厂去年产值的月平均增长率为( ). A. mB.12mC. 121m - D.111m -4.函数2651()()3xx f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞5.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月) 的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等.其中正确的是( ).A. ①②③B. ①②③④C. ②③④D. ①②6.我国的人口约13亿,如果今后能将人口数年平均增长率控制在1%,那么经过x 年后我国人口数为y 亿,则y 与x 的关系式为 .7.定义运算()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的值域为 .※能力提高 8.已知(21)1()(21)1x x f x --=-+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.9.求函数2233x x y -++=的定义域、值域并指出单调区间.※探究创新 10.函数23()2xax f x --=是偶函数. (1)试确定a 的值及此时的函数解析式;(2)证明函数()f x 在区间(,0)-∞上是减函数;(3)当[2,0]x ∈-时,求函数23()2xax f x --=的值域.2 1 0 y/m 2 t/月2 3814第14讲 §2.2.1 对数与对数运算(一)¤学习目标:理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.解:(1)21log 7128=-; (2)3log 27a =; (3)lg 0.11=-; (4)51()322-=; (5)3100.001-=; (6) 4.606100e =. 【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)ln e .解:(1)设lg 0.001x =,则100.001x =,即31010x -=,解得3x =-. 所以,lg0.0013=-.(2)设4log 8x =,则48x =,即2322x =,解得32x =. 所以,43log 82=. (3)设ln e x =,则x e e =,即12xe e =,解得12x =. 所以,1ln 2e =.【例3】求证:(1)log n a a n =; (2)log log log a a a MM N N-=.证明:(1)设log n a a x =,则n x a a =,解得x n =.所以log n a a n =.(2)设log a M p =,log a N q =,则p a M =,q a N =.因为pp q q M a a N a-==,则log log log aa a M p q M N N =-=-. 所以,log log log a a a MM N N-=.点评:对数运算性质是对数运算的灵魂,其推导以对数定义得到的指对互化关系为桥梁,结合指数运算的性质而得到. 我们需熟知各种运算性质的推导.【例4】试推导出换底公式:log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >). 证明:设log c b m =,log c a n =,log a b p =, 则m c b =,n c a =,p a b =. 从而()n p m c b c ==,即np m =. 由于log log 10c c n a =≠=,则m p n=.所以,log log log c a c bb a=. 点评:换底公式是解决对数运算中底数不相同时的核心工具. 其推导也密切联系指数运算性质,牢牢扣住指对互化关系.第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. 123 C. 122D. 133 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:3log 81= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)22log8; (2)9log 3.9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤学习目标:通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题.¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例1】化简与求值:(1)221(lg 2)lg2lg5(lg 2)lg212++-+;(2)2log (4747)++-.解:(1)原式=2211(lg2)lg2lg5(lg 21)22++-=211lg 2lg2lg5(lg 21)42+--=2111lg 2lg2lg5lg21422+-+=1lg2(lg22lg52)14+-+=1lg2(lg1002)10114-+=+=.(2)原式=1222log (4747)⨯++-=221log (4747)2++-=221log (4747247)2++-+-=21log 142.【例2】若2510a b ==,则11a b+= . (教材P 83 B 组2题)解:由2510a b ==,得2log 10a =,5log 10b =. 则251111lg 2g5lg101log 10log 10a b +=+=+==. 【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 . 解:(1)由lg lg(3)1x x ++=,得lg[(3)]lg10x x +=, 即(3)10x x +=,整理为23100x x +-=. 解得x =-5或x =2. ∵ x >0, ∴ x =2.(2)设lg x t =,则原方程化为20t at b ++=,其两根为1122lg ,lg t x t x ==. 由121212lg lg lg()lg10b t t x x x x b +=+===,得到1210b x x =.点评:同底法是解简单对数方程的法宝,化同底的过程中需要结合对数的运算性质. 第2小题巧妙利用了换元思想和一元二次方程根与系数的关系.【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值. 解:(1)原式=77777log 5log 3log 2log (532)log 30++=⨯⨯=. (2)原式左边=2222222222log 4log 5log 2006log log 3log log 3log 4log 2005log 2006mm ⋅⋅⋅=,∴ 422log 4log 2m ==, 解得16m =.点评:换底时,一般情况下可以换为任意的底数,但习惯于化为常用对数. 换底之后,注意结合对数的运算性质完成后阶段的运算.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.1logn n++(1n n +-)等于( ). A. 1B. -1C. 2D. -2 2.25log ()(5)a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3lg 2lg 5log 1++的结果是( ).A.12B. 1C. 2D.10 4.已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg 2lg50+⋅= .7.若3a =2,则log 38-2log 36= . ※能力提高8.(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.9.在不考虑空气阻力的条件下,火箭的最大速度(/)v m s 和燃料的质量()M kg 、火箭(除燃料外)的质量()m kg 的关系是2000ln(1)Mv m=+. 当燃料质量是火箭质量的多少倍时,火箭的最大速度可达到10/km s ?※探究创新10.(1)设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.(2)若a 、b 、c 都是正数,且至少有一个不为1,1x y z y z x z x y a b c a b c a b c ===,讨论x 、y 、z 所满足的关系式.第16讲 §2.2.2 对数函数及其性质(一)¤学习目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3. 解:(1)∵ 0.9log y x =在(0,)+∞上是减函数,且0.90.80.7>>, ∴ 0.90.91log 0.8log 0.7<<.又 0.80.8log 0.9log 0.81<=, 所以0.80.90.9log 0.9log 0.8log 0.7<<. (2)由 333log 1log 2log 3<<,得30log 21<<. 又22log 3log 21>=,441log log 103<=, 所以4321log log 2log 33<<. 【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-. 解:(1)由22log (35)0log 1x -≥=,得351x -≥,解得2x ≥. 所以原函数的定义域为[2,)+∞.(2)由0.5log (4)30x -≥,即30.50.5log (4)3log 0.5x ≥=,所以3040.5x <≤,解得1032x <≤. 所以,原函数的定义域为1(0,]32. 【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围. 解:∵ [2,1]x ∈--, ∴ 132x ≤+≤当1a >时,log 1log (3)log 2a a a x ≤+≤,即0()log 2a f x ≤≤. ∵ |()|2f x <, ∴{1log 22a a ><, 解得2a >.当01a <<时,log 2log (3)log 1a a a x ≤+≤,即log 2()0a f x ≤≤. ∵ |()|2f x <, ∴{01log 22a a <<>-, 解得202a <<.综上可得,实数a 的取值范围是2(0,)(2,)2+∞. 点评:先对底数a 分两种情况讨论,再利用函数的单调性及已知条件,列出关于参数a 的不等式组,解不等式(组)而得到参数的范围. 解决此类问题的关键是合理转化与分类讨论,不等式法求参数范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.解:当1a >时,原不等式化为2704102741x x x x +>⎧⎪->⎨+>-⎪⎩,解得144x <<.当01a <<时,原不等式化为 2704102741x x x x +>⎧⎪->⎨+<-⎪⎩,解得4x >.所以,当1a >时,x 的取值范围为1(,4)4;当01a <<时,x 的取值范围为(4,)+∞.点评:结合单调性,将对数不等式转化为熟悉的不等式组,注意对数式有意义时真数大于0的要求. 当底数a 不确定时,需要对底数a 分两种情况进行讨论.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).A B C D 3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y =2x4.函数12log (1)y x =-的定义域是( ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2] 5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<< 6.函数3log y x =的定义域为 . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()34log 11xf x x x -=++-; (2)21log (45)y x =--.9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.※探究创新10.若,a b 为不等于1的正数,且a b <,试比较log a b 、1log a b 、1log b b.第17讲 §2.2.2 对数函数及其性质(二)¤学习目标:掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函数y =log ax 互为反函数. (a > 0, a ≠1)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.xy1 1oxy o 1 1oy x11 oy x1 12. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.解:先求定义域,由320x ->, 解得32x <. 设332,(,)2t x x =-∈-∞,易知为减函数. 又∵ 函数0.3log y t =是减函数,故函数0.3log (32)y x =-在3(,)2-∞上单调递增.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<变量x解:在同一坐标系中分别画出40.4,3,log x x y y y x ===的图象,分别作出当自取3,0.4,0.3时的函数值.观察图象容易得到:30.44log 0.30.43<<. 故选C.【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系? 解:在指数函数x y a =的图象上任取一点00(,)M x y ,则00x y a =. 由指对互化关系,有00log a y x =.所以,点00'(,)M y x 在对数函数log a y x =的图象上. 因为点00(,)M x y 与点00'(,)M y x 关于直线y x =对称,所以指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象关于直线y x =对称. 点评:两个函数的对称性,由任意点的对称而推证出来. 这种对称性实质是反函数的图象特征,即函数x y a =与log (0,1)a y x a a =>≠互为反函数,而互为反函数的两个函数图象关于直线y x =对称.【例4】2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步.已知火箭的起飞重量M 是箭体(包括搭载的飞行器)的重量m 和燃料重量x 之和.在不考虑空气阻力的条件下,假设火箭的最大速度y 关于x 的函数关系式为:[ln()ln(2)]4ln 2(0)y k m x m k =+-+≠其中. 当燃料重量为(1)e m -吨(e 为自然对数的底数, 2.72e ≈)时,该火箭的最大速度为4(km/s ).(1)求火箭的最大速度(/)y km s 与燃料重量x 吨之间的函数关系式()y f x =;(2)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s ,顺利地把飞船发送到预定的轨道?解:(1)依题意把(1),4x e m y =-=代入函数关系式[ln()ln(2)]4ln 2y k m x m =+-+,解得8k =. 所以所求的函数关系式为8[ln()ln(2)]4ln 2,y m x m =+-+ 整理得8ln().m x y m+= (2)设应装载x 吨燃料方能满足题意,此时,544,8m x y =-= 代入函数关系式8544ln(),ln 1,344().544m x y x m x+===-得解得吨 所以,应装载344吨燃料方能顺利地把飞船发送到预定的轨道.点评:直接给定参数待定的函数模型时,由待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数. 一般求出函数模型后,还利用模型来研究一些其它问题. 代入法、方程思想、对数运算,是解答此类问题的方法精髓.第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称B. x 轴对称C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ). A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.2,43,15,310 B. 2,43,310,15 C. 15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ).A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D.20.2log (4)y x =-6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高 8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.9.我们知道,人们对声音有不同的感觉,这与它的强度有关系. 声音的强度I 用瓦/平方米 (2/W m )表示. 但在实际测量中,常用声音的强度水平1L 表示,它们满足以下公式:1010lg IL I = (单位为分贝),10L ≥,其中120110I -=⨯,这是人们平均能听到的最小强度,是听觉的开端. 回答以下问题:(1)树叶沙沙声的强度是122110/W m -⨯,耳语的强度是102110/W m -⨯,恬静的无限电广播的强度为82110/W m -⨯. 试分别求出它们的强度水平. (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?※探究创新10. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且.(1)求函数()()f x g x -的定义域; (2)判断()()f x g x -的奇偶性,并说明理由;(3)求使()()0f x g x ->成立的x 的集合.第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象.2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;0 x C 1C 2C 4C 3 1y在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年? 解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n=,解得n =5. 所以,到今年为止,该工程已经进行了5年. (3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 122.下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c4.如图的曲线是幂函数n y x =在第一象限内的图象. 已知n 分别取2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ).A .112,,,222-- B. 112,,2,22--C. 11,2,2,22--D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ). A.12y x = B. 4y x = C. 2y x -= D.13y x =6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x-=;⑧ 53y x =.第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-12121222()022x x x x x x a a a a a a +--==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 函数代号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 图象代号42-2510c 4c 3c 2c 1【例2】已知函数2()(0,0)1bxf x b a ax =≠>+. (1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =--∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数x y a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内? 解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈. (2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%. 由1854.8(1)y x =⨯+%≤66.8, 解得1866.8100(1) 1.154.8x ≤⨯-≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >>C. 01,0a b <<>D. 01,0a b <<<。
高一数学必修1知识点总结:第二章基本初等函数

高一数学必修1知识点总结:第二章基本初等函数高中数学必修1知识点总结()元素和集合之间的关系:属于(?)而不属于(?)?1.2)集合中元素的特征:确定性、各向异性、无序性?集合与元素(?)(3)集合的分类:根据集合中元素的个数,将集合分为有限集合、无限集合和空集??4)集合表示方法:枚举法、描述法(自然语言描述、特征属性描述)、图解法、区间法()。
子集:如果x?A.十、B、然后是a?B、也就是说,a是B的子集。
1.如果集合a中有n个元素,则集合a中有2n个子集和(2n-1)个真子集。
2.任何集合都是其自身的子集,即a?A.注:关系3.对于集合a、B、C,如果a?b、 b呢?c、那是一个?C4.空集是任何集合的(真)子集。
真子集:如果a?B和a?B(也就是说,至少有x0?B,但x0?A),那么A是B.集的真正子集设定平等:a?B和a?BA.B设定和设定??定义:a?Bx/x?A和X?B十字路口自然:a?A.a、 aA.BBa、a?Ba、 a?Bb、 a?BA.BA.定义:a?Bx/x?A还是x?B并集自然:a?A.a、 a a、 a?BBa、 a?Ba、 a?Bb、 a?BA.BB活动卡片(a?b)?卡片(a)?卡片(b)-卡片(a?b)定义:CUA??x/x?U和X?A.A.补足性质:?(cua)?A.(cua)?A.u、 cu(cua)?a、特写(a?b)?(cua)?(小熊)c(a?b)?(加州)?(cb)??uuumna,n为根指数,a为被开方数根式:?nm??ana?分数指数幂rsr?s?aa?a(a?0,r,s?q)??指数的运算??rs??指数函数?rs??性质?(a)?a(a?0,r,s?q)(ab)r?arbs(a?0,b?0,r?q)定义:一般地把函数y?ax(a?0且a?1)叫做指数函数。
??指数函数性质:见表1对数:x?logan,a为底数,n为真数loga(m?n)?logam?logan;???基本初等函数logam?logam?logan;???.n?对数的运算?性质nnlogam;(a?0,a?1,m?0,n?0)?logam?对数函数logcb?logab?(a,c?0且a,c?1,b?0)??换底公式:??loga?c对数函数?定义:一般地把函数y?logax(a?0且a?1)叫做对数函数性质:见表1定义:一般地,函数y?x?叫做幂函数,x是自变量,?是常数。
高中数学课件归纳必修1必修1第二章基本初等函数(Ⅰ)分数指数幂

(2)
m3 m
m3
m
1 2
m
3
1 2
5
m2
课时小结
一 理解分数指数幂的意义
m
a
n
m
n
a n
am (a 0, m, n N ,且n
1 (a 0, m, n N ,且n 1) n am
1)
0的正分数指数指数幂等于0 ,0的负分数指数幂没意义
二熟练运用有理指数幂的运算性质
0的正分数指数幂等于0
0的负分数指数幂没有意义
练习1 用根式的形式表示下列各式的的值
(a>0):
1
3
(1)a 5 (2)a 4
1
解: (1)a 5 5 a
3
(3)a 5
2
(4)a 3
3
(2)a 4 4 a3
3
(3)a 5
2
(4)a 3
1
3
a5
1
5 a3
1
2
a3
1 3 a2
练习2 用分数指数幂表示下列各式的值:
(1)3 x2
(2)4 (a b)3 ((a b) 0)
(3)3 (m n)2
2
解: (1)3 x2 x 3
(4) (m n)4 (m n)
3
(2)4 (a b)3 (a b)4
2
(3)3 (m n)2 (m n) 3
4
(4) (m n)4 (m n)2 (m n)2
整数指数幂运算性质
aman amn
(m,n z)
(a m )n amn
必修一基本初等函数复习PPT课件

18
底数互为倒数的两个 对数函数
y = loga x, y = log1 x
的函数图像关于x轴对a称。
19
当a>1时,a值越大, y=logax的图像越靠近x轴;
当0<a<1时,a值越大, y=logax的图像越远离x轴。
20
4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
y
叫做幂函数,
其中x是自变
量,α是常数.
O
x
23
幂函数的性质
函数
性质 y=x
y=x2
1
y=x3 y = x 2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R [0,+∞) R [0,+∞) {y|y≠0}
奇偶性 奇
偶
奇
单调性
增
[0,+∞)增 (-∞,0]减
增
非奇非偶 奇
(0,+∞)减
常用对数:通常将log10N的对数叫做常用对数,为了简便, N的常用对数记作lgN。
自然对数:通常将使用以无理数e=2.71828…为底的对数
叫
做自然对数,为了简便,
N的自然对数logeN简记作lnN.
12
2024/10/27
13
9.对数恒等式
( ) aloga N = N a 0且a 1,N 0 叫做对数恒等式
10.对数的性质 (1)负数和零没有对数; (2)1的对数是零,即loga1=0; (3)底数的对数等于1,即logaa=1 11.对数的运算法则 如果a>0,a≠1,M>0,N>0,那么
人教A版数学必修一第2章《基本初等函数》(1)(幂函数)备课资料

人教A版数学必修一第2章《基本初等函数》(1)(幂函数)备课资料中学高中数学必修1第2章基本初等函数(1)-4.备课资料(幂函(数字)历史上数学计算方面的三大发明你知道数学计算的三大发明吗?这些是阿拉伯数字、十进制和对数研究自然数遇到的第一个问题是计数法和进位制的问题,我们采用的十进制是中国人的一大发明.在商代中期的甲骨文中已有十进制,其中最大的数是3万,印度最早到六世纪末才有十进制.但是,目前使用的计数法和阿拉伯数字1,2,3,4,5,6,7,8,9,0是印度人最早开始使用,后来传到阿拉伯,由阿拉伯人传到欧洲,并被欧洲人所接受.小数点计数法的诞生是自然数发展史上的一次飞跃。
同一个数因其位置不同而具有不同的值。
无限自然数可以由有限个符号控制,所有自然数都可以轻松清晰地表达出来16世纪前半叶,由于实际的需要,对计算技术的改进提出了前所未有的要求.这一时期计算技术最大的改进是对数的发明和应用,它的产生主要是由于天文和航海计算的迫切需要.为了简化天文航海方面所遇到的繁杂数值计算,自然希望将乘除法归结为简单的加减法.苏格兰数学家纳皮尔(napier,j.1550~1617)在球面天文学的三角学研究中,首先发明了对数方法.1614年他在题为《奇妙的对数定理说明书》一书中,阐述了他的对数方法,对数的使用价值为纳皮尔的朋友――英国数学家布里格斯(birggs,h.1561~1630)所认识,他与纳皮尔合作,并于1624年出版了《对数算术》一书,公布了以10为底的14位对数表,并称以10为底的对数为常用对数.常用对数曾经在简化计算上为人们做过重大贡献,而自然对数以及以e为底的指数函数成了研究科学、了解自然的必不可少的工具.恩格斯曾把对数的发明与解析几何的创始,微积分学的建立并称为17世纪数学的三大成就.法国著名的数学家、天文学家拉普拉斯曾说:“对数的发明以其节省劳力而延长了天文学家的寿命.”直到一8世纪,瑞士数学家欧拉(l.1707~1783)才发现指数和对数之间的关系。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)

2。
2。
2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。
因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。
只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。
像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。
对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。
5x 的图象.利用换底公式可以得到:y=log 0。
5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。
5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。
"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。
(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。
人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx

3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。
基本初等函数知识点

《必修一》基本初等函数知识点【知识点一、指数函数】 (一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =, 当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m nm, )1,,,0(11*>∈>==-n N n m a a a anmnmnm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)(),,0(R s r a ∈>; (3)s r r a a ab =)(),,0(R s r a ∈>. 【例1】.下列正确的是( )A .a 0=1B .221a a=- C .10-1=0.1 D .a a =2【例2】.416的值为( )A .±2B .2C .-2D .4【例3】.32)27125(-的值为A .925 B .259 C .925-D .259-【例4】.化简382313232---xx x xxx 的结果是( )A .34xB .x 2C .x 3D .x 4【例5】、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭【例6】、44等于( )A 、16aB 、8aC 、4aD 、2a【例7】、若1,0a b ><,且b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、2【高考例题1】.已知11223a a-+=,求下列各式的值(1)1a a -+= ; (2)22a a -+=【高考例题2】若11225xx-+=,则21x x+的值是【高考例题3】.若13a a -+=,求下列各式的值:(1)1122a a -+= ; (2)22a a -+= ;【知识点二:指数函数及其性质】1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1基本初等函数(Ⅰ)知识要点
〖2.1〗指数函数
【2.1.1】指数与指数幂的运算
(1)根式的概念
①如果,,,1n
x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n
n 是偶数时,正数a 的正的n
表示,负的n
次方根用符号0的n 次方根是0;负数a 没有n 次方根.
n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.
③根式的性质
:n a =;当n 为奇数时
,
a =;当n 为偶数时,
(0)
|| (0)
a a a a a ≥⎧==⎨
-<⎩. (2)分数指数幂的概念
①正数的正分数指数幂的意义是:0,,,m n
a a m n N +=>∈且1)n >.0的正分
数指数幂等于0.
②正数的负分数指数幂的意义是
: 1()0,,,m m n
n a
a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.
(3)分数指数幂的运算性质
①(0,,)r
s
r s
a a a
a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈
③()(0,0,)r r r
ab a b a b r R =>>∈
【2.1.2】指数函数及其性质
〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义
①若(0,1)x
a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫
做底数,N 叫做真数.
②负数和零没有对数.
③对数式与指数式的互化:log (0,1,0)x
a x N a N a a N =⇔=>≠>.
(2)几个重要的对数恒等式
log 10a =,log 1a a =,log b a a b =.
(3)常用对数与自然对数
常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么
①加法:log log log ()a a a M N MN += ②减法:log log log a a a
M M N N
-= ③数乘:log log ()n
a a n M M n R =∈ ④log a N a N =
⑤
log log (0,)b n a a n
M M b n R b
=
≠∈ ⑥换底公式:
log log (0,1)log b a b N
N b b a
=
>≠且
【2.2.2】对数函数及其性质
(6)反函数的概念
设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子
()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确
定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数
()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.
(7)反函数的求法
①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1
()x f y -=;
③将1()x f y -=改写成1
()y f x -=,并注明反函数的定义域.
(8)反函数的性质
①原函数()y f x =与反函数1
()y f x -=的图象关于直线y x =对称.
②函数()y f x =的定义域、值域分别是其反函数1
()y f x -=的值域、定义域.
③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1
()y f x -=的图象
上.
④一般地,函数()y f x =要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义
一般地,函数y x α
=叫做幂函数,其中x 为自变量,α是常数.
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).
③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p
α=
(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q
p
y x =是奇函数,若p 为奇数q 为偶数时,则q p
y x =是偶函数,若p 为偶数q 为奇数时,则q p
y x =是非奇非偶函数.
⑤图象特征:幂函数,(0,)y x x α
=∈+∞,当1α>时,若01x <<,其图象在直线y x =下
方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.
〖补充知识〗二次函数
(1)二次函数解析式的三种形式
①一般式:2
()(0)f x ax bx c a =++≠②顶点式:2
()()(0)f x a x h k a =-+≠③两根式:
12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式.
②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方
便.
(3)二次函数图象的性质
①二次函数2
()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b
x a
=-
顶点坐标是2
4(,)24b ac b a a
--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-
上递减,在[,)2b
a
-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b
a -∞-上递
增,在[,)2b a -+∞上递减,当2b
x a
=-
时,2max 4()4ac b f x a -=. ③二次函数2
()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x
轴有两个交点
11221212(,0),(,0),||||||
M x M x M M x x a =-=
. (4)一元二次方程2
0(0)ax bx c a ++=≠根的分布
一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.
设一元二次方程2
0(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令
2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:
2b
x a
=-
③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔
②x 1≤x 2<k ⇔
③
x 1<k <x 2 ⇔ af (k )<0
④k 1<x 1≤x 2<k 2 ⇔
⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔
f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合
⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.
(5)二次函数2
()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01
()2
x p q =
+.
(Ⅰ)当0a >时(开口向上) ①若2b p a -
<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a
->,则()m f q =
①若02b x a -≤,则()M f q = ②0
x ->,则()M f p =
(Ⅱ)当0a <时(开口向下) ①若2b p a -
<,则()M f p = ②若2b p q a ≤-≤,则()2
b M f a =- ③若2b q a
->,则()M f q =
①若02b x a -≤,则()m
f q = ②02b x a
->,则()m f p =.
x
x
x
x
x x
(q)0x x
f x
f
x
f
x
x
x。