三坐标检测发展历史.

合集下载

意大利coord3三坐标

意大利coord3三坐标

意大利coord3三坐标公司历史:Coord3成立于1973。

公司的使命曾经是为汽车工业制造者生产划线仪器。

从70年代到80年代:本公司生产安装了400多台划线仪器。

在80年代末期:公司产品范围进一步扩大,包括不同架构的机器:桥式,龙门式,水平臂式。

1992年:Coord3开发了基于Windows TM平台的手动及数控三坐标测量机的软件。

1999年:新股东投入资金并为公司管理走上快速成长道路作出贡献。

2004年:Coord3和卡尔蔡司公司宣布了在开发和销售Coord3龙门式测量设备反面的合作关系。

2007年:Coord3加入了高度创新,快速增长的测量机解决方案提供商Metris公司。

2009年:Metris公司分拆意大利三坐标测量机的运作,成立新的公司,名称为:Coord3 Industries有限责任公司。

当今:Coord3 Industries有限责任公司总部设在Bruzolo,意大利都灵。

公司使命:1.为三维测量提供整体解决方案。

2.制造高品质的机器以及最先进的软件和控制器设备。

Coord3 Industries是在意大利的三坐标测量机领军企业之一,拥有全球安装基础(超过3,000套,50%应用于意大利)的铝制桥式和大型龙门式三坐标测量机而且在不同高科技行业都有很多重要客户。

Coord3 Industries在全球市场范围内设有三坐标测量机的代理和服务中心网络。

Coord3 Industries仍然是Metris公司独家分销商(意大利),产品包括激光传感器,雷达/GPS系统和手动关节壁。

首页 >>> 产品目录 >>> 意大利COORD3三坐标测量机产品[水平臂测量机,水平臂测量仪,双悬臂测量机]资料点击看大图如果您对该产品感兴趣的话,可以产品名称: 水平臂测量机,水平臂测量仪,双悬臂测量机产品型号:产品展商: 昆山科德三测量仪器有限公司关注指数:62产品文档: 无相关文档简单介绍水平臂测量机,水平臂测量仪,双悬臂测量机水平臂测量机,水平臂测量仪,双悬臂测量机的详细介绍品牌Coord3 型号SWAN SI类型水平臂式三坐标测量机定位精度 0.001(mm)外形尺寸 1000*1860*2155(mm)水平臂型测量机:SWAN SISWAN SI系列的主要特点是承载运动主滑架的导航直接固定在地面上(“轨道”式结构),“轨道”式结构设计,充分保障待测工件无阻碍进出。

三坐标初级培训

三坐标初级培训
由测量机厂家定义,是测量机的基准 坐标系,通常用于机器的定位和校准 。
工件坐标系
坐标系转换
通过平移、旋转等变换,实现不同坐 标系之间的转换,以满足测量需求。
根据被测工件的几何特征建立的坐标 系,用于描述工件上各点的位置。
几何量测量原理
长度测量
利用测头接触被测点,通过测量机内部算法计算两点之间的距离 。
选择依据
选择编程语言时,需要考虑ቤተ መጻሕፍቲ ባይዱ备 的兼容性、编程效率、易学易用 性等因素。
编程环境搭建与配置过程
硬件环境
需要配置高性能计算机、 三坐标测量机等硬件设备 。
软件环境
安装相应的编程软件,如 PC-DMIS、CMMManager等,并进行配置 和调试。
网络环境
确保计算机与三坐标测量 机之间的网络连接稳定可 靠。
关闭流程
02
03
04
退出测量软件,关闭计算机及 控制系统。
断开总电源,关闭设备。
清理工作台面,确保设备整洁 。
工件装夹与定位方法
工件装夹 选择合适的夹具,确保工件稳固且易于测量。
将工件放置在夹具上,调整夹具位置,使工件处于测量范围内。
工件装夹与定位方法
• 紧固夹具,防止工件在测量过程中移动或松动。
角度测量
通过测量三个或更多点之间的相对位置,利用三角函数计算角度 值。
形状和位置误差测量
通过比较实际测量数据与理论数据,计算形状和位置误差。
误差来源及分类
01
02
03
系统误差
由于测量机本身的设计、 制造、安装等因素引起的 误差,如机器精度、测头 误差等。
随机误差
由于环境因素(如温度、 湿度变化)或操作因素( 如测头接触力不稳定)引 起的误差。

机械设计文献综述最终版

机械设计文献综述最终版

1课题的背景和意义扫描式三维形貌检测系统即为三坐标测量机,是经过40多年发展起来的一种高效率的新型精密测量仪器,有着非常广泛的用途。

20世纪60年代以来,工业生产有了很大的发展,特别是机床、机械、汽车、航空航天和电子工业兴起后,各种复杂零件的研制和生产需要先进的检测技术与仪器,因而体现三维测量技术的三坐标测量机应运而生,并迅速发展和日趋完善。

作为近40年发展起来的一种高效率的新型精密测量仪器,三坐标测量机已广泛地用于机械制造、电子、汽车和航空航天等工业中。

它可以进行零件和部件的尺寸、形状及相互位置的检测,例如箱体、导轨、涡轮和叶片、缸体、凸轮、齿轮、形体等空间型面的测量。

此外,还可用于划线、定中心孔、光刻集成线路等,并可对连续曲面进行扫描及制备数控机床的加工程序等。

由于它的通用性强、测量范围大、精度高、效率高、性能好、能与柔性制造系统相连接,已成为一类大型精密仪器,故有“测量中心”之称。

三坐标测量机主要由四大部分组成:主机机械系统(X、Y、Z三轴或其它)、测头系统、电气控制硬件系统、数据处理软件系统(测量软件)。

三坐标测量机的出现是标志计量仪器从古典的手动方式向现代化自动测试技术过渡的一个里程碑。

三坐标测量机在下述方而对三维测量技术有重要作用: (1)解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测;(2)提高了三维测量的精度,目前高精度的坐标测量机的单轴精度,每米长度内可达1μm以内,三维空间精度可达1μm一2μm。

对于车间检测用的三坐标测量机,每米测量精度单轴也可达3μm一4μm;(3)由于三坐标测量机可与数控机床和加工中心配套组成生产加工线或柔性制造系统,从而促进了自动化生产线的发展;(4)随着三坐标测量机的精度不断提高,自动化程度不断发展,促进了三维测量技术的进步,大大地提高了测量效率。

尤其是电子计算机的引入,不但便于数据处理,而且可以完成CNC的控制功能,可缩短测量时间达95%以上。

1-三坐标测量机测量技术讲解

1-三坐标测量机测量技术讲解

世界上第一台三坐标测量机(英国Ferranti公司1956)
•1992年全球拥有三坐标测量机46100台,年销售增长率 在7%-25%左右。
•发达国家拥有量高,在欧美、日韩每6-7台机床配备一 台三坐标测量机。 •我国三坐标测量机生产始于20世 纪70年代,年增长率在20%以上。
•目前,三坐标测量机被广泛应用 在汽车、航天、航空 、家电、电 子、模具等制造领域。
2.意义和作用
随着人们生活水平的提高和制造业的快速发展, 特别是机床、机械、汽车、航空航天和电子工业,各 种复杂零件的研制和生产需要先进的检测技术;
同时为应对全球竞争,生产现场非常重视提高加 工效率和降低生产成本。其中,最重要的便是生产出 高质量的产品。
因此,为确保零件的尺寸和技术性能符合要求, 必须进行精确的测量,因而体现三维测量技术的三坐 标测量机应运而生,并迅速发展和日趋完善。
综上所述,三坐标测量机的出现是标志计量仪器从古典的手 动方式向现代化自动测试技术过渡的一个里程碑。三坐标测量 机在下述方面对三维测量技术有重要作用。
1、实现了对基本的几何元素的高效率、高精度测量与评定, 解决了复杂形状表面轮廓尺寸的测量,例如箱体零件的孔径与 孔位、叶片与齿轮、汽车与飞机等的外廓尺寸检测。
三坐标测量机的发展历程
1.三坐标测量机的发展历程
三坐标测量机是近30年发展起来的一种高效率的新 型精密测量仪器。它广泛件的尺寸、形状及相互位置的 检测。由于它的通用性强、测量范围大、精度高、效率 高、性能好、能与柔性制造系统相连接,已成为一类大 型精密仪器,有“测量中心”之称。
如图所示,测量孔1和2的中心距,先在孔1和2各测至少3点, 计算出各自的圆心坐标值,然后计算两点的距离,同时可以测 量外形尺寸、孔径、孔的圆度和圆柱度、两孔轴线的平行度、 轴线与基面的垂直度、工件表面的平面度等。

爱德华三坐标简介

爱德华三坐标简介

爱德华三坐标简介什么是爱德华三坐标?爱德华三坐标(Edward’s Coordinates)是一种用于描述物体在三维空间中位置和姿态的数学表示方式。

它由奥地利数学家保罗·爱德华(Paul Edward)在20世纪初提出,因而得名。

爱德华三坐标采用三个相互垂直的轴,分别为x、y和z轴,构成了一个三维坐标系。

在这个坐标系中,物体的位置可以由三个数值表示,即x、y和z坐标。

同时,物体的姿态(包括旋转和倾斜)可以通过欧拉角或四元数等方式进行描述。

爱德华三坐标的应用爱德华三坐标广泛应用于工程、计算机图形学、机器人学等领域。

下面介绍几个常见的应用场景。

工程测量在工程测量中,爱德华三坐标可以用于测量物体的位置和姿态。

通过将三个坐标轴固定在一个参考点上,并使用传感器测量物体相对于这个参考点的位移和角度,可以准确地确定物体在三维空间中的位置和姿态。

1机器人运动控制在机器人学中,爱德华三坐标被广泛用于描述机器人的位置和姿态。

通过测量机器人末端执行器相对于机器人基座的位移和角度,可以控制机器人在三维空间中的运动。

计算机图形学在计算机图形学中,爱德华三坐标用于描述三维场景中的物体位置和姿态。

通过使用爱德华三坐标,可以精确地渲染三维模型并进行视角的变换和投影。

爱德华三坐标与其他坐标系统的关系爱德华三坐标与其他坐标系统(如笛卡尔坐标、极坐标等)之间存在相互转换的关系。

下面给出几个常见的转换方式。

笛卡尔坐标转爱德华三坐标将笛卡尔坐标系中的点(x, y, z)转换为爱德华三坐标系中的点(x’, y’, z’)的公式如下:•x’ = x * cos(y) * cos(z) - y * sin(z) + z * sin(y) * sin(z)•y’ = x * sin(z) * cos(y) + y * cos(z) + z * sin(y) * cos(z)•z’ = -x * sin(y) + z * cos(y)2爱德华三坐标转笛卡尔坐标将爱德华三坐标系中的点(x’, y’, z’)转换为笛卡尔坐标系中的点(x, y, z)的公式如下:•x = x’ * cos(y) * cos(z’) + y’ * cos(y) * sin(z’) - z’ * sin(y)•y = -x’ * sin(z’) + y’ * cos(z’) + z’ * sin(y) * cos(z’)•z = x’ * sin(y) * cos(z’) - y’ * sin(y) * sin(z’) + z’ * cos(y)总结爱德华三坐标是一种用于描述物体在三维空间中位置和姿态的数学表示方式。

三坐标检测发展历史

三坐标检测发展历史

图2 .1移动桥式BQC系列坐标测量机
(1)结构简单,结构刚性好,承重能力大; (2)工件重量对测量机的动态性能没有影响。
(1)X向的驱动在一侧进行,单边驱动,扭摆大,容易 产生扭摆误差; (2)光栅是偏置在工作台一边的,产生的阿贝臂误差较 大,对测量机的精度有一定影响; (3)测量空间受框架影响。
世 界 上 第 一 个 触 发 测 头
1956年,英国Ferranti公司开发了第一台三坐标测量机
•1992年全球拥有三坐标测量机46100台,年销售增长率 在7%-25%左右。
•发达国家拥有量高,在欧美、日韩每6-7台机床配备一 台三坐标测量机。 •我国三坐标测量机生产始于20世 纪70年代,年增长率在20%以上。 •目前,三坐标测量机被广泛应用 在汽车、航天、航空 、家电、 电子、模具等制造领域。
4、随着生产规模日益扩大,加工精度不断提高, 除了需要高精度三坐标测量机的计量室检测外, 为了便于直接检测工件,测量往往需要在加工车
间进行,或将测量机直接串连到生产线上。检验
的零件数量加大,科学化管理程度加强,因而需 要各种精度的坐标测量机,以满足生产的需要。
1950年至2000年 50年内约提升两个数量级 平均每8年加工误差缩小一半 我国情况
这类测量机有沿着相互正交的导轨而运动的三个组成 部分,装有探测系统的第一部分装在第二部分上并相对 其作垂直运动,第一和第二部分的总成沿着牢固装在机 座两侧的桥架上端作水平运动,在第三部分上安装工件 。 高精度测量机通常采用固定桥式结构,经过改进这类 测量机速度可达400mm/S,加速度达到3000mm/S2,承 重达2000KG,典型的固定桥式有目前世界上精度最好的 出自德国LEITZ公司的PMM-C测量机。
据。因此需要与“数控机床”或“加工中心”相 配合的三维检测技术。

毕业设计_三坐标测量机原理及应用

毕业设计_三坐标测量机原理及应用

三坐标测量机原理及应用摘要三坐标测量机是近40年发展起来的一种高效率的新型精密测量仪器。

它广泛地应用于机械制造、电子、汽车和航空航天等工业领域中。

它可以进行零件和部件的尺寸、形状及相互位置的检测。

如箱体、导轨、涡轮和叶片、缸体、凸轮、形体等空间型面的测量。

此外,还可以用于划线、定中心孔、光刻集成电路等,并可对连续曲面进行扫描及制备数控机床的加工程序等。

由于它的通用性强、测量范围大、精度高、效率好、能与柔性制造系统相连接,已成为一类大型精密仪器,故有“测量中心”之称。

三坐标测量机在模具行业中的应用相当广泛,它是一种设计开发、检测、统计分析的现代化的智能工具,更是模具产品无与伦比的质量技术保障的有效工具。

当今主要使用的三坐标测量机有桥式测量机、龙门式测量机、水平臂式测量机和便携式测量机。

测量方式大致可分为接触式与非接触式两种。

关键词三坐标测量机传感器三维光栅尺目录第一章三坐标测量机简介第一节三坐标测量机的意义 (3)第二节三坐标测量机的研究现状 (4)第二章三坐标测量机的组成与结构第一节三坐标测量机的组成 (5)第二节三坐标测量机的结构。

(6)第三章三坐标测量机的分类及测量方法第一节三坐标测量机的分类 (8)第二节三坐标测量机的测量方法 (9)第四章三坐标测量机的应用及发展第一节三坐标测量机的应用 (10)第二节三坐标测量机的发展 (13)结束语 (15)参考文献 (16)第一章三坐标测量机简介三坐标测量机指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。

三坐标测量机作为现代大型精密测量仪器已有40多年的历史,20世纪60年代以来,随着机床、机械,汽车、航空航天和电子工业的兴起,各种复杂零件的研制急需先进的检测仪器对其检测;同时,随着产品更新节奏的加快,对产品检测速度的要求也越来越高,三坐标测量机正是集合了这两个优点,得以在测量领域得到广泛的应用。

车身三坐标测量技术

车身三坐标测量技术

总结:车身三坐标测量技术的重要性和应用前景
车身三坐标测量技术的重要性 * 提高车身制造精度和产品质 量 * 降低生产成本和减少废品率 * 提升企业竞争力
* 提高车身制造业竞争力
车身三坐标测量技术的应用前景 * 未来将广泛应用于汽车制造领域 * 促进汽车行业的技术创新和发展 * 提高汽车产品的安全性和舒适性
三坐标测量系统组成:包括测量机、 测头、控制系统、测量软件等
三坐标测量原理
三坐标测量特点:高精度、高效率、 高可靠性
添加标题
添加标题
添加标题
添加标题
三坐标测量原理:通过测头接触被 测工件表面,获取三维坐标信息, 进而进行数据处理和分析
三坐标测量应用:汽车制造、航空 航天、模具制造等领域
测量误差来源及控制方法
,a click to unlimited possibilities
汇报人:
目录
定义与作用
定义:车身三坐标测量技术是一种通过测量车身各点在三维空间中的坐标位置,从而对车身进行精确测量和评价的技术。
作用:车身三坐标测量技术是汽车制造过程中不可或缺的环节,它能够提高车身制造的精度和质量,保证车身的几何尺寸和形状符合设计要求, 同时也有助于发现和解决车身制造过程中出现的问题。
数据分析与结果:对测量数据进行详细的分析,包括数据的准确性、可靠性等,并给出最终 的测量结果
结论与展望:总结该案例的测量结果,并探讨未来可能的应用和改进方向
案例二:某车型装配精度检测案例
案例背景:某车型在装配过程中出 现精度问题,需要进行三坐标测量 技术检测。
数据分析:对测量数据进行处理和 分析,找出装配精度问题所在,为 后续改进提供依据。
可重复性好:三坐标测量技术可以重复进行测量,保证测量结果的稳定性和可靠性。

三坐标测量机

三坐标测量机

三坐标测量机三坐标测量机是20世纪60年代后期发展起来的一种高效率的精密测量仪器。

它的出现,一方面是由于生产发展的需要。

即高效率加工机床的出现,产品质量要求进一步提高,复杂立体形状加工技术的发展等都要求有快速、可靠的测量设备与之配合;另一方面也由于电子技术、计算技术及精密加工技术的发展,为三坐标测量机的出现提供了技术基础。

三坐标测量机(CMM)是一种以精密机械为基础,综合应用电子技术、计算机技术、光栅与激光干涉技术等先进技术的检测仪器。

三坐标测量机的主要功能是:1)可实现空间坐标点的测量,可方便的测量各种零件的三维轮廓尺寸、位置精度等。

测量精确可靠,万能性强。

2)由于计算机的引人,可方便的进行数字运算与程序控制,并具有很高的智能化程度。

因此它不仅可方便地进行空间三维尺寸的测量,还可实现主动测量和自动检测。

在模具制造工业中,充分显示了在测量方面的万能性、测量对象的多样性。

三坐标测量机广泛应用于机械制造、仪器制造、电子工业、航空和国防工业各部门,特别适用于测量箱体类零件的孔距和面距、模具、精密铸件、电子线路板、汽车外壳、发动机零件、凸轮以及飞机型体等带有空间曲面的工件。

三坐标测量机的作用不仅是由于它比传统的计量仪器增加了一二个坐标,使测量对象广泛,而且它的生命力还表现在它已经成为有些加工机床不可缺少的伴侣。

例如它能卓有成效地为数控机床制备数字穿孔带,而这种工作由于加工型面愈来愈复杂,用传统的方法是难以完成的,因此,它与数控“加工中心”相配合己具有“测量中心”之称号。

第一节三坐标测量机的类型三坐标测量机有多种分类方法,下面从不同的角度对其进行分类。

一、按照技术水平的高低分类(1)数显及打字型(N)——这种类型主要用于几何尺寸测量,采用数字显示,并可打印出测量结果,一般采用手动测量,但多数具有微动机构和机动装置,这类测量机的水平不高,虽然提高了测量效率,解决了数据打印问题,但记录下来的数据仍需进行人工运算。

车身三坐标测量技术

车身三坐标测量技术

5.3 非接触式三坐标测量机
5.3.1 测量原理与基本结构
1.常用的非接触式测量方法
(1) 三角测量法。其工作原理是,由激光器(通常 是半导体激光器)发出的光,经光学系统形成 一个很细的平行光束,照到被测工件表面上。 由工件表面反射回来的光,可能是镜面反射 光,也可能是漫反射光。
(2) 光纤式测量法。其原理是通过被测量的形面 变化来调制光波,使光纤的光波参量随被测 量的形面变化而变化,从而根据被测信号的 大小求得被测形面的空间位置关系。
结构材料主要有:铸铁、钢、花岗石、陶瓷和铝。
(3)标尺系统
标尺系统,也称测量系统,是三坐标测量机的重要 组成部分。按系统的性质,可分为机械式标尺系统、光 学式标尺系统和电气式标尺系统
2)三维测头
三维测头即是三维测量传感器,它可在3个方向上 感受瞄准信号和微小位移。三坐标测量机测头的两大基 本功能是测微(即测出与给定的标准坐标值的偏差值)和 触发瞄准并过零发讯。按照结构原理,测头可分为机械 式、光学式和电气式等。机械式主要用于手动测量;光 学式主要由于非接触式测量;电气式多用于接触式的自 动测量。
(5) 磁共振成像(Magnetic Resonance Imaging,MRI) 也称为核磁共振,该技术的理论基础是核物理学的磁 共振理论,是20世纪70年代末以后发展的一种新式影 像技术。
(6) 超声波测量法采用的是超声波的数字化方法,其原 理是当超声波脉冲到达被测物体时,在被测物体的两 种介质边界表面会发生回波反射,通过测量回波与零 点脉冲的时间间隔,即可计算出各面到零点的距离。
越来越多的工件需要进行空间三维测量,而传统的测量 方法不能满足生产的需要。
越来越多的工件需要进行空间三维测量,而传统的测量 方法不能满足生产的需要。

PPT-苏州天准培训资料(三坐标)

PPT-苏州天准培训资料(三坐标)

• 控制系统部分 1.控制器 2.驱动器

5.测头采集数据部分 测头采集数据部分
精准测量
恒久如一
Precise Measurement Forever
• 测头采集数据部分 1.测头座 2.测头 3.测针 (软件演示)

6.上位机软件部分 上位机软件部分
Precise Measurement Forever

六、天准三坐标的特点
精准测量
恒久如一
Precise Measurement Forever
• 天准三坐标充分考虑了机械结构对三坐标 精度的影响,汲取并提升了业内大部分生 产厂家的设计优点,从测量机的稳定性到 机械部分的误差源、还有独特的齿形带齿 形轮传动系统,外加全误差补偿,保证了 机床空间内任意位置的精度。

六、天准三坐标的特点
精准测量
恒久如一
Precise Measurement Forever
一、主副立柱的跨距最小化设计,增加机床 的刚性,从而提高机械本体的重复性、稳 定性 二、气浮轴承的跨距大,增加机床的刚性、 稳定性

六、天准三坐标的特点
精准测量
谢谢! 谢谢!


五.三坐标测量机的组成 三坐标测量机的组成
精准测量
恒久如一
Precise Measurement Forever
三坐标可分为六大部分组成: 1.机械主体部分 2.传动部分 3.光栅读数头部分 4.控制系统部分 5.测头采集数据部分 6.上位机软件部分

精准测量
恒久如一
Precise Measurement Forever
• 上位机软件部分 1.软件安装包(安装光盘) 2.软件加密狗(像U盘一样的USB狗) 3.软件授权码(注册序列码) (简介软件的一些功能和模块)

三坐标测量机

三坐标测量机
第二步 从这里用 鼠标单击 下拉菜单
从清单中选 择测座类型
41
产生测头文件
精选ppt
第三步 从清单中 选择测头 附件
42
产生测头文件
精选ppt
第四步 从清单中选 择相应的传 感器如: Tp20, Tp200 等
43
产生测头文件
精选ppt
第五步 从测头清单 中选择所用 的测杆,如 :4 *20 〔直 径、长度〕
15
精选ppt
〔2〕测头系统 测头是坐标测量机触测被测零件的发讯开关, 是
坐标测量机的关键部件,测头精度的上下决定了坐标 测量机的测量重复性。三坐标测量机的功能、工作效 率、精度与测头密切相关。三坐标测头的两大根本功 能是测微和触发瞄准。
16
精选ppt
测头的分类
– 按结构原理,测头可分为机械式、光学式和电气式。 – 按测量方法,测头可分为接触式和非接触式。
〔4〕测量软件
测量机本体只是提取零件外表空间坐标 点的工具。 测量机精度在很大程度上依赖 于软件。测量机软件成 为决定测量机性能 的主要因素。
测量软件从功能上可以分成以下几类:
① 通用测量软件
②专用测量评价软件
20
③附加功能软件
精选ppt
测量软件功能与应用的分类有以下几方面。
①箱体类零件 ②自由曲面类零件 ③特定形 面类零件 ④反求测量
建立零件坐标系时需要做三件事: 找正 (用任何元素的方向矢量〕。找正元素控制了工作平面的方向。 旋转坐标轴 (用所测量元素的方向矢量). 旋转元素需垂直于已找正的 元素。这控制着轴线相对于工作平面的旋转定位。 原点 (任意测量元素或将其设为零点的定义了X、Y、Z值的元素)。
61
精选ppt

CMM的英文资料三坐标

CMM的英文资料三坐标

CMM的英文资料三坐标一、三坐标测量机的产生三坐标测量机(CoordinateMeauringMachining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。

它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。

1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。

进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。

现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。

目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备(一)CMM的组成三坐标测量机是典型的机电一体化设备,它由机械系统和电子系统两大部分组成。

(1)机械系统:一般由三个正交的直线运动轴构成。

如图9-1所示结构中,某向导轨系统装在工作台上,移动桥架横梁是Y向导轨系统,Z向导轨系统装在中央滑架内。

三个方向轴上均装有光栅尺用以度量各轴位移值。

人工驱动的手轮及机动、数控驱动的电机一般都在各轴附近。

用来触测被检测零件表面的测头装在Z轴端部。

三坐标测量机的组成1-工作台2-移动桥架3-中央滑架4-Z轴5-测头6-电子系统(2)电子系统:一般由光栅计数系统、测头信号接口和计算机等组成,用于获得被测坐标点数据,并对数据进行处理。

(二)CMM的工作原理三坐标测量机是基于坐标测量的通用化数字测量设备。

三坐标基础知识

三坐标基础知识

应用领域与前景
汽车制造
用于检测发动机、变速器、车身等关键零部件的尺寸和形状精度 。
航空航天
用于检测飞机发动机、机翼、尾翼等复杂零部件的几何精度。
模具制造
用于检测模具型腔、型芯等关键部位的尺寸和形状精度。
应用领域与前景
机床制造
用于检测机床主轴、导轨等运动部件的位置精度和动态性能。
前景展望
随着智能制造、工业4.0等概念的提出和实施,未来三坐标测量机将朝着更高精 度、更高速度、更智能化方向发展。同时,随着新材料、新工艺的不断涌现和应 用领域的不断拓展,三坐标测量机的市场需求将持续增长。
误差分析与质量控制
对拟合后的曲面进行误差分析,判断 其是否满足设计要求,并实施相应的 质量控制措施。
自动化生产线上的在线检测
生产线集成 将三坐标测量机集成到自动化生 产线中,实现生产过程中的在线 检测。
数据追溯与报告生成 对生产线上的检测数据进行追溯 和记录,生成相应的质量报告和 统计分析结果,为生产管理提供 决策支持。
数据处理
对采集的数据进行滤波、平滑、拟合等处理 ,以消除误差并提高数据质量。
数据输出
将测量结果以图形、报表等形式输出,供用 户参考和使用。
03
三坐标测量机操作与维护
操作规程与注意事项
操作前准备
熟悉三坐标测量机的结构、性能、操作方法及测量原理, 检查设备状态是否良好,确保测量机处于正常工作状态。
操作规程
评定指标
包括定位精度、重复定位精度、探测 误差、测头半径补偿误差等。
评定方法
采用国际标准或国家标准规定的测试 程序,使用标准球、标准环规等器具 进行测试。
校准原理及步骤
校准原理
通过测量已知几何形状和尺寸的标准 件,比较测量结果与标准值的差异, 从而确定测量机的误差。

原创三坐标测量教案PPT课件

原创三坐标测量教案PPT课件

三坐标测量机的发展历史
2024/4/4
三坐标测量机的主要组成部分
三坐标测量机种类繁多但大体上皆由若干具有一定功能的部分 组成,主要由主机、测头、电气系统三大部分。主机部分主要 包括机械框架结构、标尺系统、导轨、驱动装置、转台及附 件。三维测头是三维测量的传感器,它可在三个方向上感受瞄 准信号和微小位移,以实现瞄准与测微两种功能。电气系统包 括控制部分。计算机硬件、计算机软件及输出设备。
测头的材料
红宝石 氮化硅 氧化锆球
杆材料
不锈钢 碳化钨
陶瓷 碳纤维
测头是测量机触测被测零件的发讯开关,它是坐标测量机的
关键部件,测头精度的高低决定了测量机的测量重复性。
接触式
机械接触式测头 电气接触式测头
触发式 扫描式
测头分类
非接触式 光学测头
光学测头的优势
1)由于不存在测量力,因而适合于测量各种软的和薄的 工件;
什么时侯用扫描测头?
应用于有形状要求的零件和轮廓的测量:扫描方式测量 的主要优点在于能高速的采集数据,这些数据不仅可以 用来确定零件的尺寸及位置,更重要的是能用众多的点 来精确的描述形状、轮廓,这特别适用于对形状、轮廓 有严格要求的零件,该零件形状直接影响零件的性能(如 叶片、椭圆活塞等); 也适用于你不能确信你所用的加工 设备能加工出形状足够好的零件,而形状误差成为主要问 题时。
2024/4/4
谢谢大家
2)由于是非接触测量,可以对工件表面进行快速扫描测 量;
3)多数光学测头具有比较大的量程,这是一般接触式测 头难以达到的;
4)可以探测工件上一般机械测头难以测到的部位。
什么时侯用触发式测头?
1.被测零件所关注的是尺寸(如小的螺纹底孔)、间 距或位置,接触式触发测量是合适的,特别是由于对 离散点的测量; 2. 触发测头体积较小当测量空间狭窄时测头易于接近 零件; 3. 一般来讲触发式测头使用及维修成本较低。

三坐标测量技术的相关资料与文献

三坐标测量技术的相关资料与文献

三坐标测量技术的相关资料与文献为什么触发式测头校正后的直径值比名义值小三坐标测量机在进行测量工作前要进行测头校正,这是进行测量前必须要做的一个非常重要的工作步骤,因为测头校正中的误差将加入到以后的零件测量中。

而在触发式测头校正后的测针宝石球直径要比其名义值小,这使许多操作员感到奇怪,但是要解释原因,可不是一两句话能说清楚的。

让我们从校正测头的原理说起。

1为什么要校正测头?校正测头主要有两个原因为了得到测针的红宝石球的补偿直径和不同测针位置与第一个测针位置之间的关系。

坐标测量机在进行测量时,是用测针的宝石球接触被测零件的测量部位,此时测头(传感器)发出触测信号,该信号进入计数系统后,将此刻的光栅计数器锁存并送往计算机,工作中的测量软件就收到一个由X、Y、Z坐标表示的点。

这个坐标点我们可以理解为是测针宝石球中心的坐标,它与我们真正需要的测针宝石球与工件接触点相差一个宝石球半径。

为了准确计算出我们所要的接触点坐标,必须通过测头校正得到测针宝石球的半/直径。

在实际测量工作中,零件是不能随意搬动和翻转的,为了便于测量,需要根据实际情况选择测头位置和长度、形状不同的测针(星形、柱形、针形)。

为了使这些不同的测头位置、不同的测针所测量的元素能够直接进行计算,要把它们之间的关系测量出来,在计算时进行换算。

所以需要进行测头校正。

2、测头校正的原理测头校正主要使用标准球进行。

标准球的直径在10mm至50mm之间,其直径和形状误差经过校准(厂家配置的标准球均有校准证书)。

测头校正前需要对测头进行定义,根据测量软件要求,选择(输入)测座、测头、加长杆、测针、标准球直径(是标准球校准后的实际直径值)等(有的软件要输入测针到测座中心距离),同时要分别定义能够区别其不同角度、位置或长度的测头编号。

用手动、操纵杆、自动方式在标准球的最大范围内触测5点以上(一般推荐在7~11点),点的分布要均匀。

计算机软件在收到这些点后(宝石球中心坐标X、Y、Z值),进行球的拟合计算,得出拟合球的球心坐标、直径和形状误差。

英国LK三坐标

英国LK三坐标

英国LK三坐标英国LK三坐标公司介绍:1959年,世界上第⼀台三坐标测量机诞⽣于英国。

1963年,总部设在英国德⽐郡的LK有限公司(LK Limited)开始制造三坐标测量机,她是全世界第⼆家测量机专业制造商,是现存历史最悠久的三坐标测量机品牌,也是现代测量机的奠基⼈。

专业制造具有"精密制造或计量经验"等,并不代表具有测量机的制造经验。

LK⾃成⽴起40多年的时间⾥,产品仅有⼀种,即三坐标测量机。

他的专业经验不是泛泛的精密计量或精密制造,⽽是完全三坐标测量机的专业经验。

现代三坐标测量机技术的奠基⼈三坐标测量机脱胎于⾦属加⼯设备,因此早期的测量机与⾦属加⼯设备区别不⼤,直到1971年,LK制造出全球第⼀台CNC测量机。

在这台测量机上,LK⾸先采⽤了全花岗岩材料和当时⾮常先进的IBM⼯业控制系统(下图)。

⽤⽯头造机器,在当时不可思议。

LK在全球⾸家采⽤的许多技术,都被同⾏业模仿或采⽤,有些⼀直沿⽤到现代测量机。

例如:花岗岩材料、⼯业陶瓷材料、碳纤维复合材料、⽓浮导轨、电测头、PC控制系统、DIMS程序内核软件等。

差异化经营的典范LK是技术型的企业,设计产品主要针对中⾼端客户群,这些客户中不乏特殊应⽤的要求。

例如:液体中零件的⼏何量测量,超⼤零件、异型零件的测量,亚微⽶级测量等。

虽然⽬标市场⽐较窄,但LK的年产值仍⾼达4千万英镑,折合6亿多⼈民币。

在中国的发展尽管LK进⼊中国市场较晚,但她在所有测量机制造商中⾸家荣获中华⼈民共和国进⼝计量器具型式批准,⾸家在中国推⼴⼯业陶瓷及测量机,向国内客户提供了开放环境下的在线、共线测量机群,并成功应⽤⾄今。

历史上,LK以军⼯和航空航天为主要⽬标市场,定位于⼯业陶瓷的中⾼端产品和差异化产品及服务,随着汽车、模具等⾏业对测量要求的不断提⾼,LK的产品得以⼴泛应⽤,尤其在通⽤汽车、福特汽车、波⾳飞机、空中客车等全球⼤公司中⼴泛应⽤。

2004年9⽉,LK在中国成⽴了合资企业——上海埃尔凯(SLK)测量技术有限公司。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平均每12年加工误差缩小一半
一般加工精度<0.01mm 超精密加工精度0.005μm 增长速度比国外低50%,约落后15~20年
加工中心精度提升历程(刀柄 ISO40 或HSK63)
工作精度每8年提升1倍
5、实现逆向(反求)工程的需要,例如随着模具 生产的发展,往往采用按制好的工件模型去仿制
模具,故需要三维扫描测量出工件轮廓曲线的数
三坐标测量机是精密的测量仪器,它集机、光、 电等于一体。随着电子技术、计算机技术的发展, 三坐标测量机由手动数显逐步发展到目前的CNC控 制的高级阶段。测量机机械结构最初是在精密机床 基础上发展起来的。如美国Moore公司的测量机就 是由坐标镗床——坐标磨——坐标测量机逐步发展 起来的,又如瑞士的SIP公司的测量机就是在大型 万能工具显微镜——光学三坐标测量仪基础上逐步 发展起来的。这些测量机的结构都没有脱离精密机 床及传统精密测试仪器的结构。
4、随着三坐标测量机的精度不断提高,自动化 程序不断发展,促进了三维测量技术的进步,大 大地提高了测量效率。尤其是电子计算机的引入, 不但便于数据处理,而且可以完成CNC的控制功 能,可缩短测量时间达95%以上。 5、随着激光扫描技术的不断成熟,同时满足了 高精度测量(质量检测)和激光扫描(逆向工程) 多功能复合型的三坐标测量机发展更好地满足了 用户需求,大降低用户投入成本,提高工作效率。
4、随着生产规模日益扩大,加工精度不断提高, 除了需要高精度三坐标测量机的计量室检测外, 为了便于直接检测工件,测量往往需要在加工车
间进行,或将测量机直接串连到生产线上。检验
的零件数量加大,科学化管理程度加强,因而需 要各种精度的坐标测量机,以满足生产的需要。
1950年至2000年 50年内约提升两个数量级 平均每8年加工误差缩小一半 我国情况
三坐标测量机是由三个相互垂直的运动轴X,Y,Z建 立起一个直角坐标系,测头的一切运动都在这个坐标系 中进行;测头的运动轨迹由测球中心点来表示。测量时, 把被测零件放在工作台上,测头与零件表面接触,三坐 标测量机的检测系统可以随时给出测球中心点在坐标系 中的精确位置。当测球沿着工件的几何型面移动时,就 可以得出被测几何型面上各点的坐标值。将这些数据送 入计算机,通过相应的软件进行处理,就可以精确地计 算出被测工件的几何尺寸、形状和位置公差等。
1、越来越多的工件需要进行空间三维测量,而 传统的测量方法不能满足生产的需要。 传统的测量方法是指用传统测量工具(如千分表、 量块、卡尺等)进行的测量,属相对测量。
•测量工具本身精度不高,人为误差较大 •工具量程小、被测工件尺寸、形状受到限制 •许多形状较复杂的测量任务(如曲面)难以实现 •且占用机时较长
如图所示,测量孔1和2的中心距,先在孔1和2各 测至少3点,计算出各自的圆心坐标值,然后计算 两点的距离,同时可以测量外形尺寸、孔径、孔的 圆度和圆柱度、两孔轴线的平行度、轴线与基面的 垂直度、工件表面的平面度等。
输出: X = 2.0 I = 0
D=4
Y = 2.0 J = 0 R = 2
Z = 2.5 K = 1
随着人们生活水平的提高和制造业的快速发展, 特别是机床、机械、汽车、航空航天和电子工业, 各种复杂零件的研制和生产需要先进的检测技术; 同时为应对全球竞争,生产现场非常重视提高加工 效率和降低生产成本,其中,最重要的便是生产出 高质量的产品。为此,必须实行严格的质量管理, 只有在保证高质量生产的前提下,制造业才能生存 和发展。因此,为确保零件的尺寸和技术性能符合 要求,必须进行精确的测量,因而体现三维测量技 术的三坐标测量机应运而生,并迅速发展和日趋完 善。三维测量是基于以下的客观要求发展起来的。
世 界 上 第 一 个 触 发 测 头
1956年,英国Ferranti公司开发了第一台三坐标测量机
•1992年全球拥有三坐标测量机46100台,年销售增长率 在7%-25%左右。
•发达国家拥有量高,在欧美、日韩每6-7台机床配备一 台三坐标测量机。 •我国三坐标测量机生产始于20世 纪70年代,年增长率在20%以上。 •目前,三坐标测量机被广泛应用 在汽车、航天、航空 、家电、电 子、模具等制造领域。
据。因此需要与“数控机床”或“加工中心”相 配合的三维检测技术。
综上所述,三坐标测量机的出现是标志计量仪器 从古典的手动方式向现代化自动测试技术过渡的一 个里程碑。三坐标测量机在下述方面对三维测量技 术有重要作用。 1、实现了对基本的几何元素的高效率、高精度测 量与评定,解决了复杂形状表面轮廓尺寸的测量, 例如箱体零件的孔径与孔位、叶片与齿轮、汽车与 飞机等的外廓尺寸检测。
2、提高了三维测量的测量精度,目前高精度的 Байду номын сангаас标测量机的单轴精度,每米长度内可达1um以 内,三维空间精度可达1um-2um。对于车间检测 用的三坐标测量机,每米测量精度单轴也达3um4um。
3、由于三坐标测量机可与数控机床和加工中 心配套组成生产加工线或柔性制造系统,从 而促进了自动生产线的发展。
2、由于机械加工、数控机床加工及自动加工线 的发展,生产节拍的加快,加工一个零件仅有几 十分钟或几分钟,要求加快对复杂工件的检测。
例如:汽车和摩托车都采用流水生产线,每辆 车上有几千甚至上万个零件,这些零件是由专业 化厂分散生产,最后集中部装和总装,每隔几分 钟就生产出一辆车。
3、在制造业中,大多数产品都是按照CAD数学模 型在数控机床上制造完成的,它与原CAD数学模型 相比,确定其在加工制造中产生的误差,就需用三 坐标测量机进行测量。 在三坐标测量机的软件系统中可以用图形方式显 示原CAD数学模型,再按照可视化方式从图形上确 定被测点,得到被测点的X、Y、Z坐标值及法向矢 量,便可生成自动测量程序。三坐标测量机可按法 线方向对工件进行精确测量,获得准确的坐标测量 结果,也可与原CAD数学模型进行比较并以图形方 式显示,生成坐标检测报告(包括文本报告和图表 报告),全过程直观快捷,而用传统的检测方法则 无法完成。
相关文档
最新文档