初三中考复习 二次函数 专题练习题 含答案

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

2023年九年级数学中考专题训练二次函数与角度问题含答案解析

2023年九年级数学中考专题训练二次函数与角度问题含答案解析

中考专题训练——二次函数与角度问题1.已知二次函数232y ax bx =+-(0a ≠)的图象经过A (1,0)、B (−3,0)两点,顶点为点C .(1)求二次函数的解析式; (2)如二次函数232y ax bx =+-的图象与y 轴交于点G ,抛物线上是否存在点Q ,使得∠QAB=∠ABG ,若存在求出Q 点坐标,若不存在请说明理由;(3)经过点B 并且与直线AC 平行的直线BD 与二次函数232y ax bx =+-图象的另一交点为D ,DE ∠AC ,垂足为E ,DF y 轴交直线AC 于点F ,点M 是线段BC 之间一动点,FN ∠FM 交直线BD 于点N ,延长MF 与线段DE 的延长线交于点H ,点P 为△NFH 的外心,求点M 从点B 运动到点C 的过程中,P 点经过的路线长. 2.在平面直角坐标系中,抛物线l :()2220y x mx m m =--->与x 轴分别相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,设抛物线l 的对称轴与x 轴相交于点N ,且3OC ON = (1)求m 的值;(2)设点G 是抛物线在第三象限内的动点,若GBC ACO ∠=∠,求点G 的坐标;(3)将抛物线222y x mx m =---向上平移3个单位,得到抛物线l ',设点P 、Q 是抛物线l '上在第一象限内不同的两点,射线PO 、QO 分别交直线=2y -于点P '、Q ',设P '、Q '的横坐标分别为P x '、Q x ',且4P Q x x ''⋅=,求证:直线PQ 经过定点.3.已知二次函数y =x 2十(k ﹣2)x ﹣2k .(1)当此二次函数的图像与x 轴只有一个交点时,求该二次函数的解析式;(2)当k >0时,直线y =kx +2交抛物线于A ,B 两点(点A 在点B 的左侧),点P 在线段AB 上,过点P 做PM 垂直x 轴于点M ,交抛物线于点N . ∠求PN 的最大值(用含k 的代数式表示);∠若抛物线与x 轴交于E ,F 两点,点E 在点F 的左侧.在直线y =kx +2上是否存在唯一一点Q ,使得∠EQO =90°?若存在,请求出此时k 的值;若不存在,请说明理由.4.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线223(0)y ax ax a a =--<经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ',将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l '与直线AM '重合时停止旋转,在旋转过程中,直线'l 与线段BM '交于点C ,设点B 、M '到直线l '的距离分别为1d 、2d ,当12d d +最大时,求直线l '旋转的角度(即BAC ∠的度数). 5.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =−12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ∠连接BC 、CD ,设直线BD 交线段AC 于点E ,求DEEB的最大值; ∠过点D 作DF ∠AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的∠DCF =2∠BAC ,若存在,求出点D 的坐标;若不存在,请说明理由.6.已知抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),顶点为D ,且过C (-4,m ). (1)求点A ,B ,C ,D 的坐标;(2)点P 在该抛物线上(与点B ,C 不重合),设点P 的横坐标为t .∠当点P 在直线BC 的下方运动时,求∠PBC 的面积的最大值, ∠连接BD ,当∠PCB =∠CBD 时,求点P 的坐标.7.如图所示,抛物线y =−x 2+bx +3经过点B (3,0),与x 轴交于另一点A ,与y 轴交于点C .(1)求抛物线所对应的函数表达式;(2)如图,设点D 是x 轴正半轴上一个动点,过点D 作直线l ∠x 轴,交直线BC 于点E ,交抛物线于点F ,连接AC 、FC .∠若点F 在第一象限内,当∠BCF =∠BCA 时,求点F 的坐标; ∠若∠ACO +∠FCB =45°,则点F 的横坐标为______.8.已知抛物线2y ax c =+过点()2,0A -和()1,3D -两点,交x 轴于另一点B .(1)求抛物线解析式;(2)如图1,点P 是BD 上方抛物线上一点,连接AD ,BD ,PD ,当BD 平分ADP 时,求P 点坐标; (3)将抛物线图象绕原点O 顺时针旋转90°形成如图2的“心形”图案,其中点M ,N 分别是旋转前后抛物线的顶点,点E 、F 是旋转前后抛物线的交点. ∠直线EF 的解析式是______;∠点G 、H 是“心形”图案上两点且关于EF 对称,则线段GH 的最大值是______.9.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,连接AB ,过点A 作AD x ⊥轴于点D ,点P 在直线AB 上方的抛物线上,过点P 作PE AD ∥交x 轴于点E ,交线段AB 于点G ,连接PD 交线段AB 于点Q .(1)求抛物线的表达式;(2)当GQ AQ =时,设点P 的横坐标为m ,求m 的值;(3)在(2)的条件下,线段BE 上有一点F ,直线AD 上有一点K ,连接KF 、GF ,当2FKD FGB ∠=∠,且8KF =时,直接写出....点K 的纵坐标.... 10.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,OA =OC =3.(1)求抛物线的函数表达式;(2)若点P 为直线AC 下方抛物线上一点,连接BP 并交AC 于点Q ,若AC 分ABP 的面积为1:2两部分,请求出点P 的坐标;(3)在y 轴上是否存在一点N ,使得45BCO BNO ∠+∠=︒,若存在,请求出点N 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2+2x −3与x 轴交于A 、B 两点,且B (1,0).(1)求抛物线的解析式和点A 的坐标;(2)如图1,点P 是直线y =x 上在x 轴上方的动点,当直线y =x 平分∠APB 时,求点P 的坐标;(3)如图2,已知直线y =23x −49分别与x 轴、y 轴交于C 、F 两点,点Q 是直线CF 下方的抛物线上的一个动点,过点Q 作y 轴的平行线,交直线CF 于点D ,点E 在线段CD 的延长线上,连接QE .问:以QD 为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由. 12.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .∠抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ∠连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.13.如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若()1,0A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点D 是该抛物线的顶点,点(),P m n 是第二象限内抛物线上的一个点,分别连接BD 、BC 、BP ,当2PBA CBD ∠=∠时,求m 的值;(3)如图2,BAC ∠的角平分线交y 轴于点M ,过M 点的直线l 与射线AB ,AC 分别交于E ,F ,已知当直线l 绕点M 旋转时,11AE AF+为定值,请直接写出该定值. 14.如图,在平面直角坐标系xOy 中,抛物线1L :2y x bx c =++与x 轴交于(4,0)A -,B 两点,且经过点(1,3)-,点C 是抛物线1L 的顶点,将抛物线1L 向右平移得到抛物线2L ,且点B 在抛物线2L 上.(1)求抛物线1L 的表达式;(2)在抛物线2L 上是否存在一点P ,使得90PAC ∠=︒,若存在,请求出点P 的坐标,若不存在,请说明理由.15.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 16.抛物线2y ax bx c =++的顶点坐标为(1,4),与x 轴交于点,(3,0)A B 两点,与y 轴交于点C ,点M 是抛物线上的动点.(1)求这条抛物线的函数表达式;(2)如图1,若点M 在直线BC 上方抛物线上,连接AM 交BC 于点E ,求MEAE的最大值及此时点M 的坐标;(3)如图2,已知点(0,1)Q ,是否存在点M ,使得1tan 2MBQ ∠=?若存在,求出点M 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于A 、B 两点,直线4y x =+恰好经过B 、C 两点.(1)求二次函数的表达式;(2)点D 为第三象限抛物线上一点,连接BD ,过点O 作OE BD ⊥,垂足为E ,若2OE BE =,求点D 的坐标;(3)设F 是抛物线上的一个动点,连结AC 、AF ,若2BAF ACB ∠=∠,求点F 的坐标.18.抛物线y 1=x 2+(3-m )x +c 与直线l :y 2=kx +b 分别交于点A (-2,0)和点B (m ,n ),当-2≤x ≤4时,y 1≤y 2.(1)求c 和n 的值(用含m 的式子表示);(2)过点P (1,0)作x 轴的垂线,分别交抛物线和直线l 于M ,N 两点,则∠BMN 的面积是否存在最大值或者最小值,若存在,请求出这个值;若不存在,请说明理由;(3)直线x =m +1交抛物线于点C ,过点C 作x 轴的平行线交直线l 于点D ,交抛物线另一点于E ,连接BE ,求∠DBE 的度数.19.如图,抛物线2323y x x -=-+与x 轴交于点A 和点B ,直线:l y kx b =+与抛物线2323y x x -=-+交于点D和点12F n ⎛⎫⎪⎝⎭,,且与y 轴交与点()02E ,.(1)求直线l 的函数表达式;(2)若P 为抛物线上一点,当POE OED =∠∠时,求点P 的坐标. 20.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A 、B 两点,且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一点,2ABD BAC ∠=∠,直接写出点D 的坐标.参考答案1.(1)21322y x x =+- (2)542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)1【分析】(1)将A (1,0)、B (-3,0)代入232y ax bx =+-,即可求解; (2)先求出BG 的解析式为13y x 22=--,然后再进行分类讨论,分别求得点Q 的坐标即可;(3)可知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,分别求出直线AC 及直线BD 的函数关系式,再分为当M 运动到C 点时及当点M 运动到B 点时两种情况进行讨论,求解即可.【解析】(1)∠二次函数232y ax bx =+-的图像经过A (1,0)、B (-3,0), ∠30239302a b a b ⎧+-=⎪⎪⎨⎪--=⎪⎩,解得121a b ⎧=⎪⎨⎪=⎩, ∠二次函数的解析式为213y x x 22=+-; (2)由题可知G 点坐标30,2⎛⎫- ⎪⎝⎭,设直线BG 的解析式为y px q =+,得: 30302k b k b -+=⎧⎪⎨+=-⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∠BG 的解析式为13y x 22=--,∠AQ ∥BG ,直线AQ 的解析式11y x 22=-+,联立直线AQ 与二次函数解析式2112213x 22y x y x ⎧=-+⎪⎪⎨⎪=+-⎪⎩,解得1110x y =⎧⎨=⎩或22452x y =-⎧⎪⎨=⎪⎩此时Q 的坐标为542⎛⎫- ⎪⎝⎭,,∠直线11y x 22=-+与y 轴的交点为K 102⎛⎫⎪⎝⎭,,其关于x 轴的对称点为11K 02⎛⎫- ⎪⎝⎭, 直线1AK 的解析式为:11y x 22=- 与二次函数解析式联立得 2112213x 22y x y x ⎧=-⎪⎪⎨⎪=+-⎪⎩, 解得1110x y =⎧⎨=⎩或22232x y =-⎧⎪⎨=-⎪⎩,此时Q 的坐标为322⎛⎫-- ⎪⎝⎭,, 综上,抛物线上存在点Q 使得∠QAB =∠BAG ,Q 点坐标为542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)如图,易知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,∠PD =PF =12NH ,所以点P 是线段DF 的垂直平分线上的动点, ∠直线AC 的解析式为y =x -1,BD ∥AC , ∠直线BD 的解析式为y =x +3, ∠D (3,6),∠当M 运动到C 点时1H 与点E 重合,1FN AC ⊥,则1FN BD ⊥,又因为∠DEF =90°,DE =EF , ∠四边形1DN FE 为正方形, ∠1P 是线段DF 的中点(3,4);∠当点M 运动到B 点时,22FN FH ⊥,∠四边形DN 1FE 是正方形∠122190N FN BFC N N F BCF ∠=∠∠=∠=︒,,∠21N N F BCF ∽, ∠121CF BC N F N N =, ∠四边形DN 1FE 是正方形,∠11,4N (),∠2112BC CF N N N F ==,∠12N N =∠22,5N (), 同理26,3H (), 所以22N H 的中点2P (4,4),∠134P (,), ∠121PP =【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,会用待定系数法求函数的解析式,会求函数的交点坐标,根据点M 的运动情况确定P 点的轨迹是线段是解题的关键.2.(1)1m =(2)点G 的坐标为17,24⎛⎫-- ⎪⎝⎭(3)见解析【分析】(1)由顶点式求得对称轴,由x =0处函数值求得C 点坐标,根据3OC ON =列方程求解即可;(2)连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由抛物线解析式求得A 、B 、C 坐标,可得∠OBC 、∠CHT 是等腰直角三角形,由BC 和tan tan GBC ACO ∠=∠可得TC ,进而可得T 点坐标,再由B 点坐标可得直线BC 解析式,然后与二次函数解析式联合求得交点坐标即可解答;(3)设点()2111,2P x x x -,()2222,2Q x x x -,由原点可得直线PO 、QO 的解析式,再由y =-2可得点Q '、P '横坐标,由4P Q x x ''⋅=可得()1212230x x x x -++=;设直线PQ 的解析式为y mx n =+,与l '联立可得()220x m x n -+-=,利用根与系数的关系可得122x x m +=+,12x x n =-,代入()1212230x x x x -++=求得21n m =--,于是直线PQ 为()21y m x =--经过定点2,1;(1)解:依题意得:()222y x m m m =----,∠抛物线的对称轴为直线x m =, ∠ON m m ==,在222y x mx m =---中,令0x =,则2y m =--,∠()0,2C m --, ∠22OC m m =--=+,∠3OC ON =,∠23m m +=,解得1m =;(2)解:如图,连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由(1)得1m =,∠抛物线的解析式为2=23y x x --,()0,3C -,3OC =,令0y =,则2230x x --=,解得11x =-,23x =,∠点A 在点B 的左侧,∠()1,0A -,()3,0B ,3OB =,在Rt AOC 中,1tan 3OA ACO OC ∠==, 3OB OC ==,则OBC △是等腰直角三角形,BC =∠OCB =45°,∠TCB =90°,则∠TCH =45°,∠CHT △是等腰直角三角形,∠GBC ACO ∠=∠,∠1tan tan 3GBC ACO ∠=∠=, ∠13CT BC =,1133CT BC ==⨯=∠sin451TH CH ==︒=,∠()1,2T --,由点()1,2T --与点()3,0B ,可求得1322TB y x =-, 联立得2132223y x y x x ⎧=-⎪⎨⎪=--⎩, 解得:1130x y =⎧⎨=⎩,221274x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∠点G 的坐标为17,24⎛⎫-- ⎪⎝⎭;(3)解:如图,将抛物线l 向上平移3个单位后得到抛物线l ':22y x x =-,∠点P 、Q 是抛物线l '上在第一象限内不同的两点,∠设点()2111,2P x x x -,()2222,2Q x x x -,由()2111,2P x x x -,()2222,2Q x x x -分别可求得:()12OP y x x =-,()22OQ y x x =- ∠点P '、Q '在直线=2y -上,∠点12,22P x ⎛⎫--' ⎪-⎝⎭,22,22Q x ⎛⎫--' ⎪-⎝⎭, ∠4P Q x x ''⋅= ∠1222422x x --⋅=--,即()()12221x x --=,整理得()1212230x x x x -++=, 设直线PQ 的解析式为y mx n =+,与l '联立得:22,y x x y mx n⎧=-⎨=+⎩,22x x mx n -=+, 整理得()220x m x n -+-=,由根与系数的关系可得:122x x m +=+,12x x n =-,∠()1212230x x x x -++=,∠()2230n m --++=,∠21n m =--,∠直线PQ 的解析式为21y mx m =--,()21y m x =--,∠当2x =时,1y =-,∠直线PQ 经过定点2,1;【点评】本题考查了一次函数与二次函数的综合,解直角三角形,等腰直角三角形的性质,一元二次方程根与系数的关系;此题综合性较强,正确作出辅助线并掌握函数图象交点坐标的意义是解题关键. 3.(1)244y x x =-+(2)∠32k +,∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒【分析】(1)根据函数图像与x 轴只有一个交点,结合Δ0=求出k 值即可;(2)∠根据题意,求出()2(,2),,(2)2P m mk N m m k m k ++--,利用两点之间距离公式求出PQ ,得出11m ≤∠二次函数综合中的直角三角形分两种情况:当直线2y kx =+与以O 、E 为直径的圆相切时;当圆与直线相交且一个交点为A 时;分情况求解即可.(1)解:二次函数的图像与x 轴只有一个交点,∠22(2)8(2)0k k k ∆=-+=+=,解得2k =-,∠所求抛物线的解析式为244y x x =-+;(2)解:如图所示:∠∠点P 在线段AB 上,且直线AB 解析式为2y kx =+,∠设点M 的横坐标为m ,则()2(,2),,(2)2P m mk N m m k m k ++--,∠22(2)2PN mk m k m k ⎡⎤=+-+--⎣⎦2222m m k =-+++2(1)32m k =--++,把2y kx =+代入2(2)2y x k x k =+--得:2(2)22x k x k kx +--=+,∠222220,(1)2(1)x x k x k ---=-=+,∠0k >,∠2(1)0k +>,∠1x =∠x 的值可以取到1,即11m ≤≤∠m 的值可以取到1,∠当1m =时PN 的最大值为32k +;∠设直线2y kx =+与x 轴、y 轴分别交于点G 、H ,则()22,0,0,2,,2G H OG OH k k ⎛⎫-== ⎪⎝⎭.在Rt GOH 中,由勾股定理得:GH = 令2(2)20y x k x k =+--=,即()(2)0x k x +-=,解得:x k =-或2x =.∠(),0E k -,OE k =.(∠)当直线2y kx =+与以O 、E 为直径的圆相切时,如图∠所示:设直线2y kx =+与以O 、E 为直径的圆相切的切点为Q ,此时90,90GQM EQO ∠∠=︒=︒.设OE 中点为点M ,连接MQ ,如图∠所示,则,0.5MQ GH MQ ME OM k ⊥===.∠22k GM OG OM k =-=-, ∠,90∠=∠∠=∠=︒MGQ HGO MQG HOG , ∠∽MOG HOG , ∠=MQ GM OH GH ,即22222k k k -=, ∠2221618k k k +=-+ ∠2169k =,解得:43k =±, ∠0k >, ∠43k =. (∠)当圆与直线相交且一个交点为A 时,如图∠所示,设另一个交点为Q ,∠OE 是圆的直径,∠90EQO ∠=︒,此时可得:OG OE =, ∠2k k=,解得:k = ∠0k >,∠k =∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒. 【点评】本题考查二次函数综合,涉及到利用判别式求二次函数解析式、二次函数综合中的线段最值问题、二次函数综合中的直角三角形问题,熟练掌握二次函数的图像与性质,并掌握解决相关二次函数综合问题题型的方法技巧是解决问题的关键.4.(1)223y x x =-++ (2)21525()228S m =--+,最大值为258(3)45°【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出a 的值;(2)设M 的坐标为(m ,-m 2+2m +3),然后根据面积关系将∠ABM 的面积进行转化;(3)由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值;可将求d 1+d 2最大值转化为求AC 的最小值.(1)解:令x =0代入y =-3x +3,∠y =3,∠B (0,3),把B (0,3)代入223y ax ax a =--,∠3=-3a ,∠a =-1,∠二次函数解析式为:y =-x 2+2x +3;(2)令y =0代入y =-x 2+2x +3,∠0=-x 2+2x +3,∠x =-1或3,∠抛物线与x 轴的交点横坐标为-1和3,∠M 在抛物线上,且在第一象限内,∠0<m <3,令y =0代入y =-3x +3,∠x =1,∠A的坐标为(1,0),由题意知:M的坐标为(m,-m2+2m+3),S=S四边形OAMB-S△AOB=S△OBM+S△OAM-S△AOB=1 2×m×3+12×1×(-m2+2m+3)-12×1×3=-12(m-52)2+258∠当m=52时,S取得最大值258.(3)由(2)可知:M′的坐标为(52,74);过点M′作直线l1∠l′,过点B作BF∠l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∠∠BFM′=90°,∠点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∠点C在线段BM′上,∠F在优弧BM H'上,∠当F与M′重合时,BF可取得最大值,此时BM′∠l1,∠A(1,0),B(0,3),M′(52,74),∠由勾股定理可求得:AB M B M A''===过点M′作M′G∠AB于点G,设BG =x ,∠由勾股定理可得:M ′B 2-BG 2=M ′A 2-AG 2,∠2285125)1616x x -=-,∠,x =cos BG M BG M B ''∠==, ∠l 1∠l ′,∠∠BCA =90°,∠BAC =45°.【点评】本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.5.(1)213222y x x =--+ (2)∠45;∠存在,D (-2,3)【分析】(1)根据题意得到A (-4,0),C (0,2)代入y =-12x 2+bx +c ,于是得到结论; (2)∠如图1,令y =0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ∠x 轴于M ,过B 作BN ∠x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;∠根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到P A =PC =PB =52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,解直角三角形即可得到结论.(1)解:对于函数:y =12x +2, 令x =0,则y =2,令y =0,则x =-4,∠A (-4,0),C (0,2),∠抛物线y =-12x 2+bx +c 经过A .C 两点, ∠1016422b c c ⎧=-⨯-+⎪⎨⎪=⎩,∠b =-32,c =2, ∠y =-12x 2-32x +2; (2)解:∠如图,令y =0, ∠213x x 2022--+=, ∠14x =-,21x =,∠B (1,0),过D 作DM ∠x 轴交AC 于点M ,过B 作BN ∠x 轴交于AC 于N ,∠DM BN ∥,∠DME BNE ∽△△, ∠DE DM BE BN=, 设()213,222D a a a --+, ∠1,22M a a ⎛⎫+ ⎪⎝⎭, ∠B (1,0), ∠51,2N ⎛⎫ ⎪⎝⎭, ∠()221214225552a a DE DM a BE BN --===-++, ∠-15<0, ∠当a =-2时,DE BE 的最大值是45; ∠∠A (-4,0),B (1,0),C (0,2),∠AC =BC =AB =5,∠222AC BC AB +=,∠∠ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P , ∠3,02P ⎛⎫- ⎪⎝⎭,∠52PA PC PB ===, ∠∠CPO =2∠BAC ,∠()4tan tan 23CPO BAC ∠=∠=, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,如图,∠∠DCF =2∠BAC =∠DGC +∠CDG ,∠∠CDG =∠BAC , ∠1tan tan 2CDG BAC ∠=∠=,即12RC DR =, 令213,222D a a a ⎛⎫--+ ⎪⎝⎭, ∠DR =-a ,21322RC a a =--, ∠2131222a a a --=-,∠10a =(舍去),22a =-,∠2D x =-,3D y =.∠D (-2,3).【点评】本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质等知识点,正确的作出辅助线是解题的关键.6.(1)A (-5,0),B (-1,0);C (-4,-3);D (-3,-4) (2)∠278;∠(0,5)或(32-,74-)【分析】(1)把抛物线解析式化为顶点式即可求出点D 的坐标,令y =0,求出x 的值即可得到A 、B 的坐标,把x =-4代入抛物线解析式求出y 即可求出点C 的坐标;(2)∠先求出直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,则点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),254PF t t =---,再根据=PBC PFC PFB S S S +△△△23527228t ⎛⎫=-++ ⎪⎝⎭,进行求解即可;∠分如图1所示,当点P 在直线BC 上方时,如图2所示,当点P 在直线BC 下方时,两种情况讨论求解即可.(1)解:∠抛物线解析式为()226534y x x x =++=+-,∠抛物线顶点D 的坐标为(-3,-4);令y =0,则2650x x ++=,解得=1x -或5x =-,∠抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),∠点A 的坐标为(-5,0),点B 的坐标为(-1,0);令4x =-,则()()246453y =-+⨯-+=-,∠点C 的坐标为(-4,-3);(2)解:∠设直线BC 的解析式为y kx b =+, ∠043k b k b -+=⎧⎨-+=-⎩, ∠11k b =⎧⎨=⎩, ∠直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,∠点P 的横坐标为t ,∠点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),∠2216554PF t t t t t =+---=---,∠=PBC PFC PFB S S S +△△△()()11=22P C B P PF x x PF x x ⋅-+⋅- ()12B C PF x x =⋅- ()23542t t =-++ 23527228t ⎛⎫=-++ ⎪⎝⎭, ∠当52t =-时,∠PBC 的面积最大,最大为278;∠如图1所示,当点P 在直线BC 上方时,∠∠PCB =∠CBD ,∠PC BD ∥,设直线BD 的解析式为11y k x b =+,∠1111034k b k b -+=⎧⎨-+=-⎩, ∠1122k b =⎧⎨=⎩, ∠直线BD 的解析式为22y x =+,∠可设直线PC 的解析式为22y x b =+,∠()2243b ⨯-+=-,∠25b =,∠直线PC 的解析式为25y x =+,联立22565y x y x x =+⎧⎨=++⎩得240x x +=, 解得0x =或4x =-(舍去),∠5y =,∠点P 的坐标为(0,5);如图2所示,当点P 在直线BC 下方时,设BD 与PC 交于点M ,∠点C 坐标为(-4,-3),点B 坐标为(-1,0),点D 坐标为(-3,-4),∠()()22241318BC =---+-=⎡⎤⎣⎦,()()22231420BD =---+-=⎡⎤⎣⎦,()()22243342CD =---+---=⎡⎤⎡⎤⎣⎦⎣⎦, ∠222BC CD BD +=,∠∠BCD =90°,∠∠BCM +∠DCM =90°,∠CBD +∠CDB =90°,∠∠CBD =∠PCB ,∠MC =MB ,∠MCD =∠MDC ,∠MC =MD ,∠MD =MB ,∠M 为BD 的中点,∠点M 的坐标为(-2,-2),设直线CP 的解析式为23y k x b =+,∠23234322k b k b -+=-⎧⎨-+=-⎩, ∠23121k b ⎧=⎪⎨⎪=-⎩,∠直线CP 的解析式为112y x =-, 联立211265y x y x x ⎧=-⎪⎨⎪=++⎩得2211120x x ++=, 解得32x =-或4x =-(舍去), ∠74y =-, ∠点P 的坐标为(32-,74-); 综上所述,当∠PCB =∠CBD 时,点P 的坐标为(0,5)或(32-,74-);【点评】本题主要考查了二次函数综合,一次函数与几何综合,二次函数的性质,待定系数法求函数解析式,勾股定理的逆定理,等腰三角形的性质与判定等等,正确作出辅助线,利用分类讨论的思想求解是解题的关键.7.(1)y =−x 2+2x +3(2)∠532,39⎛⎫⎪⎝⎭;∠73或5【分析】(1)利用待定系数法即可求解;(2)∠作点A关于直线BC的对称点G,连接CG交抛物线于点F,此时,∠BCF=∠BCA,求得G(3,4),利用待定系数法求得直线CF的解析式为:y=13x+3,联立方程组,即可求解;∠分两种情况讨论,由相似三角形的性质和等腰三角形的性质,可求CF的解析式,联立方程可求解.(1)解:∠B(3,0)在抛物线y=−x2+bx+3上,∠y=−32+3b+3,解得b=2,∠所求函数关系式为y=−x2+2x+3;(2)解:∠作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI∠x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,如图:令x=0,y=3;令y=0,−x2+2x+3=0,解得:x=3或x=-1,∠A(-1,0),B(3,0),C(0,3),∠OB=OC,AB=4,∠△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,∠∠HAB=∠OBC=∠AHI=∠BHI=45°,∠HI= AI=BI=12AB=2,∠H(1,2),∠G(3,4),设直线CG的解析式为:y=kx+3,把G(3,4)代入得:4=3k+3,解得:k=13,∠直线CF的解析式为:y=13x+3,∠223133y x xy x⎧=-++⎪⎨=+⎪⎩,解得:53329xy⎧=⎪⎪⎨⎪=⎪⎩,所以F点的坐标为(53,329);∠当点F在x轴上方时,如图,延长CF交x轴于N,∠点B(3,0),点C(0,3),∠OB=OC=3,∠∠CBO=∠BCO=45°,∠点A(-1,0),∠OA=1,∠∠FCE+∠ACO=45°,∠CBO=∠FCE+∠CNO=45°,∠∠ACO=∠CNO,又∠∠COA=∠CON=90°,∠∠CAO∠∠NCO,∠CO NO AO CO=,∠313NO =,∠ON=9,∠点N(9,0),同理可得直线CF解析式为:y=-13x+3,∠-13x+3=-x2+2x+3,∠x1=0(舍去),x2=73,∠点F的横坐标为73;当点F在x轴下方时,如图,设CF与x轴交于点M,∠∠FCE+∠ACO=45°,∠OCM+∠FCE=45°,∠∠ACO=∠OCM,又∠OC=OC,∠AOC=∠COM,∠∠COM∠∠COA(ASA),∠OA=OM=1,∠点M(1,0),同理直线CF解析式为:y=-3x+3,∠-3x+3=-x2+2x+3,∠x1=0(舍去),x2=5,∠点F的横坐标为5,综上所述:点F的横坐标为5或73.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,全等三角形的判定和性质,两点距离公式,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.8.(1)24y x=-+(2)232,39 P⎛⎫ ⎪⎝⎭(3)∠y x =;∠4【分析】(1)待定系数法求解析式;(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .证明DAB DEB ≌△△,求得点E 的坐标,进而求得直线DE 的解析式为11033y x =+,联立抛物线解析式即可求解; (3)∠根据顺时针旋转90°后点的坐标特征可知对称轴为y x =;∠连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,当GM 最大时,∠GFE面积最大,设()2,4G m m -+,则(),N m m ,根据()12GFE E F S GN x x =⋅-△以及二次函数的性质求得当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭,根据∠的方法求得H 的坐标,根据中点公式求得M 的坐标,根据勾股定理求得GH ,由2GH GM =即可求解.(1)∠2y ax c =+过()2,0A -,()1,3D -∠403a c a c +=⎧⎨+=⎩ 解之得14a c =-⎧⎨=⎩∠抛物线解析式为24y x =-+(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .由24y x =-+,令0y =,得122,2x x =-=,则()2,0BD B D y x x =-,即DF BF =,∠45DBF ∠=︒,∠45DBE ∠=︒又∠DB DB =,BD 平分ADP ,∠DAB DEB ≌△△,∠BA BE =,()2,0B∠()2,4E设直线DE 的解析式为y kx b =+,324k b k b -+=⎧⎨+=⎩解得13103k b ⎧=⎪⎪⎨⎪=⎪⎩∠直线DE 的解析式为11033y x =+ 联立2411033y x y x ⎧=-+⎪⎨=+⎪⎩解得213,3329x x y y ⎧=⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩则232,39P ⎛⎫ ⎪⎝⎭(3)∠直线EF 解析式为y x =.抛物线关于y 轴对称,所以旋转后图形关于x 轴对称, ∠对于抛物线上任意一点(),P a b 关于原点旋转90°后对应点为()1,P b a -在旋转后图形上,()1,P b a -关于x 轴对称的点()2,P b a 在旋转后图形上,∠(),P a b 与()2,P b a 关于y x =对称, ∠图形2关于y x =对称,∠直线EF 解析式为y x =故答案为:y x =∠GH如图,连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,∠当GM 最大时,∠GFE 面积最大,又∠()12GFE E F S GN x x =⋅-△ 设()2,4G m m -+,则(),N m m ∠22117424G N GN y y m m m ⎛⎫=-=-+-=-++ ⎪⎝⎭ ∠当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭由∠可知115,24G ⎛⎫- ⎪⎝⎭关于y x =的对称点H 15142⎛⎫ ⎪⎝⎭,- ∴1313,88M ⎛⎫ ⎪⎝⎭8GM ∴=∠GH 的最大值为:2GH GM ==【点评】本题考查了二次函数的性质,旋转的性质,全等三角形的性质与判定,一次函数与二次函数交点问题,掌握以上知识是解题的关键.9.(1)234y x x =-++(2)1m = (3)227或227【分析】(1)直接利用待定系数法求解即可;(2)先求出直线AB 的解析式为1y x =+,然后证明∠PGQ ∠∠DAQ 得到PG =AD =4,再由点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),得到23414PG m m m =-++--=,由此求解即可;(3)如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,先证明∠HBF =∠HFB =45°,得到HB HF ==,再由(2)得1m =,求得BG =HG =,tan =2HF t FGH HG t=-∠;根据角平分线的定义和性质得到QM QD s ==,∠FGH =∠QKD ,再由111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△,推出()428k t s k -=+,则tan tan 2s t QKQ FGH k t ===-∠∠,可以推出()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,得到()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭,由此即可求出t 的值即可得到答案.(1) 解:∠抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,∠934440a b a b ++=⎧⎨-+=⎩, ∠13a b =-⎧⎨=⎩, ∠抛物线解析式为234y x x =-++;(2)解:设直线AB 的解析式为1y kx b =+,∠11034k b k b -+=⎧⎨+=⎩, ∠11k b =⎧⎨=⎩, ∠直线AB 的解析式为1y x =+,∠PE AD ∥,∠∠PGQ =∠DAQ ,∠GPQ =∠ADQ ,又∠AQ =GQ ,∠∠PGQ ∠∠DAQ (AAS ),∠PG =AD =4,∠点P 的横坐标为m ,∠点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),∠23414PG m m m =-++--=,∠2210m m -+=,解得1m =;(3)解:如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,∠点B 的坐标为(-1,0),点A 的坐标为(3,4),∠BD =AD =4,∠∠ABD =45°,∠FH ∠AB ,∠∠HBF =∠HFB =45°, ∠HB HF ==,由(2)得1m =,∠点G 的坐标为(1,2),∠BE =GE =2,∠BG = ∠HG BG HB =-=, ∠tan =2HF t FGH HG t=-∠; ∠KQ 平分∠FKD ,QM ∠FK ,QD ∠DK ,∠FKD =2∠FGB ,∠QM QD s ==,∠FGH =∠QKD , ∠111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△, ∠()111428222k t s sk -=⨯+, ∠()428k t s k-=+, ∠tan tan 2s t QKQ FGH k t ===-∠∠, ∠4282t t k t-=+-, ∠()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,∠()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭, ∠43222464288256641616464t t t t t t t -+-+-++=, ∠2344322161644642882566464t t t t t t t t -++-+-+=,∠432880240256640t t t t -+-+=,∠43210243280t t t t -+-+=,∠()()2221016143280t t t t t -++-+=,∠()()()()22827220t t t t t --+--=,∠()()32814420t t t t -+--=,∠()()()28122220t t t t t ⎡⎤-++--=⎣⎦,∠()()()()262220t t t t t --+--=⎡⎤⎣⎦,∠()()226220t t t -+-=, ∠点F 在BE 上,∠22BF t BE =≤=,∠1t ≤,∠2620t t -+=,解得3t =-3t =,∠()22262442168442t t t t t t k t t t -+-+-+-=====,∠2DK =,∠点K 的纵坐标为227或227.【点评】本题主要考查了二次函数综合,一次函数与几何综合,勾股定理,解直角三角形,角平分线的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定等等,熟练掌握二次函数的相关知识是解题的关键.10.(1)223y x x =+-(2)(-2,-3)或(-1,-4)(3)(0,2)或(0,-2)【分析】(1)先求出A 、C 的坐标,然后用待定系数法求解即可;(2)先求出直线AC 的解析为3y x =--,根据AC 把△ABP 的面积分成1:2两部分,得到=12APQ ABQ S S △△::,如图所示,过点P 作PD ∠x 轴于D ,过点Q 作DE ∠x 轴于E , 先求出23EQ PD =,设点P 的坐标为(m ,223m m +-),则点D 的纵坐标为224233m m +-,点D 的坐标为(224133m m ---,224233m m +-),然后求出点B 的坐标,从而求出∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,,证明∠BEQ ∠∠BDP ,得到224223313m m m ++=-,据此求解即可; (3)分两种情况当点N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F ,求出直线BC 的解析式为33y x =-,证明HN =HF ,四边形EOFH 是矩形,得到∠EHF =90°,OE =HF ,证明∠NEH ∠∠BFH 得到NE =BF ,设H 坐标为(m ,3m -3),则NE =BF =m -1,OE =3m -3ON =EN +OE =4m -4,CE =3m -3+3=3m ,点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,由222NH CH CN +=,得到()()222221941m m m m m +-++=-,由此求解即可;当点N 在x 轴下方时,利用等腰三角形的性质求解即可.(1)解:∠OA =OC =3,∠点A 的坐标为(-3,0),点C 的坐标为(0,-3), ∠9303b c c -+=⎧⎨=-⎩, ∠23b c =⎧⎨=-⎩, ∠抛物线解析式为223y x x =+-;(2)解:设直线AC 的解析式为1y kx b =+,∠11303k b b -+=⎧⎨=-⎩, ∠113k b =-⎧⎨=-⎩, ∠直线AC 的解析为3y x =--,∠AC 把∠ABP 的面积分成1:2两部分,∠=12APQ ABQ S S △△::或=2APQ ABQ S S △△::1(此种情况不符合题意,舍去),如图所示,过点P 作PD ∠x 轴于D ,过点Q 作QE ∠x 轴于E ,∠=32APB ABQ S S △△::,∠132122AB PD AB EQ ⋅=⋅, ∠23EQ PD =, 设点P 的坐标为(m ,223m m +-),则点Q 的纵坐标为224233m m +-, ∠点Q 的坐标为(224133m m ---,224233m m +-), 令y =0,则2230x x +-=,解得1x =或3x =-,∠点B 的坐标为(1,0), ∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,, ∠PD ∠x 轴,QE ∠x 轴,∠DP QE ∥,∠∠BEQ ∠∠BDP , ∠23BE QE BD PD ==, ∠224223313m m m ++=-, 解得2m =-或1m =-,∠点P 的坐标为(-2,-3)或(-1,-4);(3)解:如图1所示,当N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F , 设直线BC 的解析式为12y k x b =+,∠12203k b b +=⎧⎨=-⎩, ∠1233k b =⎧⎨=-⎩, ∠直线BC 的解析式为33y x =-,∠∠BNO +∠BCO =45°,∠∠NBH =45°,∠∠HNB =45°=∠HBN ,∠HN =HF ,∠EH ∠OE ,FH ∠OF ,OE ∠OF ,∠四边形EOFH 是矩形,∠∠EHF =90°,OE =HF ,∠∠NHE +∠BHE =90°=∠BHF +∠BHE ,∠∠NHE =∠BHF ,又∠∠HEN =∠HFB =90°,∠∠NEH ∠∠BFH (AAS ),∠NE =BF ,设H 坐标为(m ,3m -3),∠NE =BF =m -1,OE =3m -3∠ON =EN +OE =4m -4,CE =3m -3+3=3m ,∠点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,222NH CH CN +=,∠()()222221941m m m m m +-++=-,∠222222191681m m m m m m m +-+++=-+,∠2460m m -=, 解得32m =或0m =(舍去), ∠点N 的坐标为(0,2);如图2所示,当点N 在x 轴下方的1N 点时,由等腰三角形的性质可知当1N B BN =(N 点为图1中的N )时,1BN O BNO =∠∠,∠1OB NN ⊥,∠12ON ON ==,∠点1N 的坐标为(0,-2),综上所述,在y 轴上是否存在一点N (0,2)或(0,-2),使得45BCO BNO ∠+∠=︒.【点评】本题主要考查了二次函数综合,一次函数与几何综合,等腰三角形的性质与判定,全等三角形的性质与判定,三角形外角的性质,相似三角形的性质与判定,勾股定理等等,正确作出辅助线是解题的关键.11.(1)抛物线解析式为y =x 2+2x -3,A 点坐标为(-3,0);(2)P 点坐标为(32,32);(3)以QD 为腰的等腰三角形的面积最大值为5413. 【分析】(1)把B 点坐标代入抛物线解析式可求得a 的值,可求得抛物线解析式,再令y =0,可解得相应方程的根,可求得A 点坐标;(2)当点P 在x 轴上方时,连接AP 交y 轴于点B ′,可证△OBP ∠∠OB ′P ,可求得B ′坐标,利用待定系数法可求得直线AP 的解析式,联立直线y =x ,可求得P 点坐标;(3)过Q 作QH ∠DE 于点H ,由直线CF 的解析式可求得点C 、F 的坐标,结合条件可求得tan∠QDH ,可分别用DQ 表示出QH 和DH 的长,分DQ =DE 和DQ =QE 两种情况,分别用DQ 的长表示出∠QDE 的面积,再设出点Q 的坐标,利用二次函数的性质可求得∠QDE 的面积的最大值.(1)解:把B (1,0)代入y =ax 2+2x -3,可得a +2-3=0,解得a =1,∠抛物线解析式为y =x 2+2x -3,令y =0,可得x 2+2x -3=0,解得x =1或x =-3,∠A 点坐标为(-3,0);(2)解:若y =x 平分∠APB ,则∠APO =∠BPO ,如图1,若P 点在x 轴上方,P A 与y 轴交于点B ′,由于点P 在直线y =x 上,可知∠POB =∠POB ′=45°,在∠BPO 和∠B ′PO 中POB POB OP OP BPO B PO ∠=∠⎧⎪=⎨⎪∠'=∠⎩', ∠∠BPO ∠∠B ′PO (ASA ),∠BO =B ′O =1,设直线AP 解析式为y =kx +b ,把A 、B ′两点坐标代入可得301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩, ∠直线AP 解析式为y =13x +1, 联立113y x y x =⎧⎪⎨=+⎪⎩,解得3232x y ⎧=⎪⎪⎨⎪=⎪⎩, ∠P 点坐标为(32,32); (3)解:如图2,作QH ∠CF ,交CF 于点H ,设抛物线交y 轴于点M .∠CF 为y =23x −49, ∠可求得C (23,0),F (0,-49), ∠tan∠OFC =OC OF =32, ∠DQ ∠y 轴,∠∠QDH =∠MFD =∠OFC ,∠tan∠HDQ =32, 不妨设DQ =t ,DH,HQ, ∠∠QDE 是以DQ 为腰的等腰三角形,∠若DQ =DE ,则S △DEQ =12DE •HQ =12×t2,。

(完整版)初三中考复习二次函数专题练习题含答案

(完整版)初三中考复习二次函数专题练习题含答案

二次函数专题练习题一、选择题1 抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=22.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1 B.2 C.3 D.63.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2 B.4 C.8 D.164. 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-15. 如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( )A.①② B.①④ C.②③ D.③④6. 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )7. 如图,在正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以 1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二、填空题8.若y=(2-m)xm2-3是二次函数,且开口向上,则m的值为.9.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1____y2.(填或“=”)“>”“<”10.已知二次函数y=-2x2-4x+1,当-3≤x≤0时,它的最大值是____,最小值是____.11.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过 4 s落地,则足球距地面的最大高度是____m.12. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.三、解答题13.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.14.用铝合金材料做一个形状如图①所示的矩形窗框,设窗框的一边为x m,窗户的透光面积为y m2,y与x的函数图象如图②所示.(1)观察图象,当x为何值时,窗户的透光面积最大?最大透光面积是多少?(2)要使窗户的透光面积不小于 1 m2,则窗框的一边长x应该在什么范围内取值?15. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李种植水果____亩,小李应得的报酬是____元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W(元),当10<m≤30时,求W与m之间的函数关系式.16. 如图,抛物线y=-12x2+bx+c与x轴分别交于点A(-2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H,当四边形OMHN为矩形时,求点H的坐标.答案:一、1. B2. B3. B4. C5. C6. A7. B二、8. -59. >10. 3 -511. 19.612. (1+2,2)或(1-2,2)三、13. 解:(1)答案不唯一,如y=x2-2x+2(2)∵定点抛物线的顶点坐标为(b,b2+c+1),且-1+2b+c+1=1,∴c=1-2b,∵顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x2+2x14. 解:(1)由图象可知当x=1时,窗户的透光面积最大,最大透光面积是 1.5 m2(2)由题意可设二次函数解析式为y=a(x-1)2+1.5,将(0,0)代入可求a=-1.5,∴解析式为y=-1.5(x-1)2+1.5,令y=1,则-1.5(x-1)2+1.5=1,解得x1=1-33,x2=1+33,由图象可知,当1-33≤x≤1+33时,透光面积不小于 1 m215. (1) 140 2800 10 1500(2) z=120n+300(10<n≤30)(3)当10<m≤30时,y=-2m+180,∵m+n=30,又∵当0≤n<10时,z=150n;当10≤n<20时,z=120n+300,∴当10<m≤20时,10≤n<20,∴W=m(-2m+180)+120n+300=m(-2m+180)+120(30-m)+300=-2m2+60m+3900;当20<m≤30时,0≤n<10,∴W=m(-2m+180)+150n=m(-2m+180)+150(30-m)=-2m2+30m+4500,∴W=-2m2+60m+3900(10<m≤20)-2m2+30m+4500(20<m≤30)16. 解:(1)y=-12x2+x+4(2)根据题意可设ON=OM=t,则MH=-12t2+t+4,∵ON∥MH,∴当ON=MH时,四边形OMHN为矩形,即t=-12t2+t+4,解得t=22或t=-22(不合题意,舍去),把t=22代入y=-12t2+t+4得y=22,∴H(22,22)。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。

中考数学复习《二次函数》练习题含答案

中考数学复习《二次函数》练习题含答案

中考数学复习 二次函数一、选择题1.下列函数中,图象经过原点的是( A )A .y =3xB .y =1-2xC .y =4x D .y =x 2-1【解析】代入原点即可验证.2.将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的解析式为( A )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-53.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( A )A .x 1=0,x 2=4B .x 1=-2,x 2=6C .x 1=32,x 2=52D .x 1=-4,x 2=04.已知二次函数y =a x 2+bx +c 的图象如图所示,则( B )A .b >0,c >0B .b >0,c <0C .b <0,c <0D .b <0,c >05.将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( D )A .b >8B .b >-8C .b ≥8D .b ≥-86.如图,抛物线y =ax 2+bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论:①abc <0;②10a +3b +c >0;③抛物线经过点(4,y 1)与点(-3,y 2),则y 1>y 2;④无论a ,b ,c 取何值,抛物线都经过同一个点(-ca ,0);⑤am 2+bm +a ≥0,其中所有正确的结论是( A )A .②④⑤B .①④⑤C .①②③D .③④⑤ 二、填空题7.已知抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__4__. 【解析】由题意得--b2×2=1,∴b =4.8.已知二次函数的图象开口向上,且顶点在y 轴的负半轴上,请你写出一个满足条件的二次函数的解析式__y =x 2-2__.【解析】答案不唯一,要满足条件a >0,c <0.9.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (-1,p ),B (4,q )两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是__x<-1或x>4__.,第9题图) ,第10题图)10.如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是__y =12(x -2)2+4__.11.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连结AC ,BC ,则tan ∠CAB 的值为__2__.【解析】令y =0,则-x 2-2x +3=0,解得x =-3或1,不妨设A(-3,0),B(1,0),∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C(-1,4),如图所示,作CD ⊥A B 于D.在Rt △ACD 中,tan ∠CAD =CD AD =42=2.12.已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为__34或1__.【解析】依题意知a >0,b2a >0,a +b -2=0,故b >0,且b =2-a ,于是0<a <2,a-b =a -(2-a)=2a -2,∴-2<2a -2<2,又a -b 为整数,∴2a -2=-1,0,1,故a =12,1,32,b =32,1,12,∴ab =34或1. 三、解答题13.已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x 轴的交点A ,B(A 在B 的左侧)的坐标,及△ABC 的面积. 解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1,∴顶点C 的坐标是(2,-1),当x ≤2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大(2)解方程x 2-4x +3=0得x 1=3,x 2=1,即A 点的坐标(1,0),B 点的坐标(3,0).如图,过C 作CD ⊥AB 于D ,∵AB =2,CD =1,∴S △ABC =12AB·CD =12×2×1=114.在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0. (1)若函数y 1的图象经过点(1,-2),求函数y 1的解析式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,因为y 1=x 2-x -a (a +1),所以y 1=x 2-x -2(2)由题意知,函数y 1的图象与x 轴交于点(-a ,0)和(a +1,0),当y 2的图象过点(-a ,0)时,得a 2-b =0;当y 2的图象过点(a +1,0)时,得a 2+a +b =0(3)由题意知,函数y 1的图象的对称轴为直线x =12,所以点Q (1,n )与点(0,n )关于直线x =12对称.因为函数y 1的图象开口向上,所以当m <n 时,0<x 0<115.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边的距离分别为12 m ,32m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?解:(1)根据题意得B (12,34),C (32,34),把B ,C 代入y =ax 2+bx 得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得⎩⎨⎧a =-1,b =2,∴拋物线的函数关系式为y =-x 2+2x ,∴图案最高点到地面的距离=-224×(-1)=1 (2)令y =0,即-x 2+2x =0,∴x 1=0,x 2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案16.如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的解析式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连结CD ,CF ,以CD ,CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.解:(1)把A (0,8),B (-4,0)代入y =-14x 2+bx +c 得⎩⎨⎧c =8,-4-4b +c =0,解得⎩⎨⎧b =1,c =8,∴抛物线的解析式为y =-14x 2+x +8;当y =0时,-14x 2+x +8=0,解得x 1=-4,x 2=8,∴C 点坐标为(8,0)(2)①连结OF ,如图,设F (t ,-14t 2+t +8),∵S四边形OCFD=S △CDF +S △OCD =S △ODF +S△OCF,∴S △CDF =S △ODF +S △OCF -S △OCD =12×4×t +12×8×(-14t 2+t +8)-12×4×8=-t 2+6t+16=-(t -3)2+25,当t =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 的最大值为50 ②∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (t -8,-14t 2+t +12),∵点E 在抛物线上,∴-14(t -8)2+t -8+8=-14t 2+t +12,解得t =7,当t =7时,S △CDF =-(7-3)2+25=9,∴此时S =2S△CDF=18。

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年人教版数学中考复习重难点专练——二次函数的最值一、单选题1.二次函数的最小值是A .1-B .1C .2-D .2 2.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值﹣1,有最大值0C .有最小值﹣1,有最大值3D .有最小值﹣1,无最大值 3.二次函数()215y x =--+,当m x n ≤≤且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( )A .52B .2C .12D .32 4.二次函数y=(x-1)2+2的最小值是( )A .-2B .2C .-1D .1 5.二次函数 22y x x c =--+ 在 32x -≤≤ 的范围内有最小值 5- ,则 c 的值是( )A .6-B .2C .2-D .3 6.二次函数y=x 2﹣8x+1的最小值是( )A .4B .﹣15C .﹣4D .15 7.二次函数y=3(x ﹣1)2+2的最小值是( )A .2B .1C .﹣1D .﹣2 8.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( )A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣39.二次函数223y x mx =+-,当01x ≤≤时,若图象上的点到x 轴距离的最大值为4,则m 的值为( )A .-1或1B .-1或1或3C .1或3D .-1或3 10.已知二次函数y=(x-m+2)(x+m-4)+n ,其中m ,n 为常数,则( )A .m>1,n<0时,二次函数的最小值大于0B .m=1,n>0时,二次函数的最小值大于0C .m<1,n>0时,二次函数的最小值小于0D .m=1,n<0时,二次函数的最小值小于0二、填空题11.二次函数 22y x =-+ 的最大值为 .12.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m= . 13.二次函数y=2x 2﹣2x+6的最小值是 .14.如图,在平面直角坐标系中,点A 、B 的坐标分别为 ()11--, 、 ()21-, ,抛物线 ()20y ax bx c a =++≠ 的顶点P 在线段 AB 上,与x 轴相交于C 、D 两点,设点C 、D 的横坐标分别为 1x 、 2x ,且 12x x < .若 1x 的最小值是 2- ,则 2x 的最大值是 .15.已知二次函数y=x 2﹣2mx (m 为常数),当﹣2≤x≤1时,函数值y 的最小值为﹣2,则m 的值为 .三、解答题16.用总长为60的篱笆围成的矩形场地,矩形面积S 随矩形一边长L 的变化而变化,L 是多少时,场地的面积S 最大?17.已知抛物线l 1的最高点为P (3,4),且经过点A (0,1),求l 1的解析式. 18.如图,二次函数的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.19.四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形的面积最大?20.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】212.【答案】34 13.【答案】9214.【答案】315.【答案】32 或-16.【答案】解:由题意S=,当 时,S 有最大值.17.【答案】解:∵抛物线l 1的最高点为P (3,4),∴设抛物线的解析式为y=a (x ﹣3)2+4,把点(0,1)代入得,1=a (0﹣3)2+4,解得,a=﹣ 13, ∴抛物线的解析式为y=﹣13 (x ﹣3)2+4 18.【答案】(1)(﹣3,4);(2)设PA=t ,OE=l由△DAP=△POE=△DPE=90°得△DAP△△POE∴∴l=﹣∴当t=时,l有最大值即P为AO中点时,OE的最大值为;(3)存在.①点P点在y轴左侧时,P点的坐标为(﹣4,0)由△PAD△△OEG得OE=PA=1∴OP=OA+PA=4∵△ADG△△OEG∴AG:GO=AD:OE=4:1∴AG=,∴重叠部分的面积=;②当P点在y轴右侧时,P点的坐标为(4,0),此时重叠部分的面积为.19.【答案】解:设四边形ABCD的面积为y,AC的长为x,BD的长为(10-x)∴根据题意可得,y=102x x-()=-12x2+5x=-12(x-5)2+12.5根据题意可得,当x=5时,四边形的面积最大此时AC=BD=520.【答案】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为53米。

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)一、单选题1.周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是() A.B.C.D.2.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数y=ax2(a< 0)的图象上,则a的值为()A.−√2B.-1C.−3√24D.−√233.图中是有相同最小值的两条抛物线,则下列关系中正确的是()A.k<n B.h=m C.k+n=0D.h<0,m>04.在平面直角坐标系中二次函数y1=﹣x2+4x 和一次函数y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<45.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1D.有最大值是26.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2A.16B.15C.14D.13 8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>0;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4 10.将抛物线y=x2向右平移1个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=(x+1)2+3B.y=(x+1)2−3C.y=(x−1)2+3D.y=(x−1)2−311.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2;⑤2a﹣b<c.其中正确的结论有()A.1个B.2个C.3个D.4个12.已知抛物线y=x2﹣2bx+4的顶点在x轴上,则b的值一定是()A.1B.2C.﹣2D.2或﹣2二、填空题13.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.14.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为.15.若抛物线y=2(x−3)2−8与x轴的两个交点分别为点A和点B,则线段AB的长为.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点的横坐标为m,则代数式m2﹣m+2016的值为.17.将抛物线y=x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为.18.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式三、综合题19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y 与x之间的函数关系式,并写出自变量x的取值范围.20.已知二次函数的图象以A(−1,4)为顶点,且过点B(2,−5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;21.已知拋物线y=x2+bx+c经过点(−1,8)和(2,−7).(1)试确定b,c的值.(2)直接写出x满足什么条件时y随x的增大而减小.22.已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时求点Q的坐标.23.在平面直角坐标系xOy中抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时请求出k的取值范围.24.如图,平面直角坐标系中以点C(2,√3)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】C12.【答案】D13.【答案】11214.【答案】y=﹣(x﹣2)2+415.【答案】416.【答案】201717.【答案】y=(x−2)2+318.【答案】y=﹣2(x﹣2)2+1或y=2(x﹣2)2+119.【答案】(1)证明:∵矩形MEFN与矩形EBCF面积相等∴ME=BE,MG=GN.∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN∴AM=2ME∴AE=3BE;(2)解:∵篱笆总长为100m∴2AB+GH+3BC=100即2AB+12AB+3BC=100∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2则y=BC⋅AB=x(40−65x)=−65x2+40x∵AB =40−65BC∴B E =10﹣ 310x >0解得x < 1003∴y =65x 2+40x (0<x < 1003 ). 20.【答案】(1)解:由顶点A (−1,4),可设二次函数关系式为y =a (x +1)2+4(a≠0).∵二次函数的图象过点B (2,−5) ∴点B (2,−5)满足二次函数关系式 ∴−5=a (2+1)2+4 解得a =−1.∴二次函数的关系式是y =−(x +1)2+4; (2)解:令x =0,则y =−(0+1)2+4=3 ∴图象与y 轴的交点坐标为(0,3); 令y =0,则0=−(x +1)2+4 解得x 1=−3,x 2=1故图象与x 轴的交点坐标是(−3,0)、(1,0).答:图象与y 轴的交点坐标为(0,3),与x 轴的交点坐标是(−3,0)、(1,0).21.【答案】(1)解:∵抛物线y =x 2+bx +c 经过点(−1,8)和(2,−7)∴{1−b +c =84+2b +c =−7解得{b =−6c =1;(2)解:由(1)可知,抛物线y =x 2−6x −1开口向上,对称轴为直线x =−−62×1=3 故在对称轴左侧,即当x <3时y 随x 的增大而减小.22.【答案】(1)解:对于y =ax 2+bx +5,当x =0时y =5∴C(0,5)∵抛物线y =ax 2+bx +5(a 为常数,a ≠0)交x 轴于点A(−1,0)和点B(5,0)∴{a −b +5=025a +5b +5=0解得{a =−1b =4∴抛物线的解析式为y =−x 2+4x +5;(2)解:∵B(5,0) C(0,5)∴OB =OC连接BC ,设BC 的中点为D∴D(52,52)∴直线OD 的解析式为y =x∵PB =PC∴点P 在直线OD 上 设P(m ,m)∵点P 是抛物线上一点∴m =−m 2+4m +5解得m =3±√292∴点P 的坐标为(3+√292,3+√292)或(3−√292,3−√292);(3)解:由(1)知,抛物线的对称轴为直线x =2 ∵点A 与点B 关于l 对称,点Q 在直线l 上 ∴QA =QB QA +QC =QB +QC∴当B ,C ,Q 三点共线时QB +QC 最小,即QA +QC 最小 设直线BC 的解析式为y =kx +b∴{b =55k +b =5解得{k =−1b =5∴直线BC 的解析式为y =−x +5 把x =2代入y =−x +5得,y =3∴Q(2,3)∴当QA +QC 最小时求点Q 的坐标(2,3).23.【答案】(1)解:∵y =x 2﹣2mx+m 2﹣1=(x ﹣m )2﹣1∴抛物线的顶点坐标为(m ,﹣1)(2)解:由对称性可知,点C 到直线y =﹣1的距离为4 ∴OC =3 ∴m 2﹣1=3 ∵m >0 ∴m =2(3)解:∵m =2,∴抛物线为y =x 2﹣4x+3,当抛物线经过点A (﹣k+4,1)时k =2+ √2 或k =2﹣ √2 ;当抛物线经过点B (1,k ﹣2)时k =2;∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点,则x 2-4x+3=x+k-3∴即x 2-5x+6-k=0的△=0∴25-4(6-k )=0k=-0.25∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点∴2﹣ √2 <k <2或k≥2+ √2 或k=-0.25.24.【答案】(1)解:过点C 作CM△x 轴于点M ,则MA=MB ,连结AC ,如图∵点C 的坐标为(2, √3 ) ∴OM=2 CM= √3 在Rt△ACM 中CA=2 ∴AM= √AC 2−CM 2 =1∴OA=OM ﹣AM=1 OB=OM+BM=3 ∴A 点坐标为(1,0),B 点坐标为(3,0);(2)解:将A (1,0),B (3,0)代入y=x 2+bx+c 得 {1+b +c =09+3b +c =0解得 {b =−4c =3.所以二次函数的解析式为y=x 2﹣4x+3.。

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。

2023年中考数学专题复习:二次函数综合题训练(含答案)

2023年中考数学专题复习:二次函数综合题训练(含答案)
(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案一、单选题1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+73.把二次函数y=x2﹣2x﹣1配方成顶点式为()A.y=(x﹣1)2B.y=(x+1)2﹣2C.y=(x+1)2+1D.y=(x﹣1)2﹣24.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则n≥2+12mD.若x<n时,都有y随着x的增大而减小,则n≤2+12m5.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.-5B.5C.3D.-36.用配方法将y=x2﹣8x+12化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+4B.y=(x﹣4)2﹣4C.y=(x﹣8)2+4D.y=(x﹣8)2﹣47.将二次函数y=x2-4x-1化为y=(x-h)2+k的形式,结果为()A.y=(x+2)2+5B.y=(x+2)2−5C.y=(x−2)2+5D.y=(x−2)2−5 8.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5B.5C.3D.﹣39.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=310.抛物线y=(x−2)2的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)11.下列二次函数中,顶点坐标是(2,-3)的函数解析式为()A.y=(x-2)2+3B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-312.通过配方法将二次函数y=ax2+bx+c(a≠0)化成y=a(x﹣h)2+k的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a二、填空题13.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,那么抛物线y=x 2+bx+c 的顶点坐标为 .14.如图,正方形ABCD 的顶点A ,B 与正方形EFGH 的顶点G ,H 同在一段抛物线上,且抛物线的顶点同时落在CD 和y 轴上,正方形边AB 与EF 同时落在x 轴上,若正方形ABCD 的边长为4,则正方形EFGH 的边长为15.抛物线y=x 2-2x+5化成y=a(x-h)2+k 的形式是 .16.将二次函数y=x 2﹣2x+3写成y=a (x ﹣h )2+k 的形式为 17.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则k=18.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k=三、综合题19.把下列函数化为y=a (x+m )2+k 形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x 2﹣2x+4; (2)y=100﹣5x 2.20.已知二次函数y=x 2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.21.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.如图,在平面直角坐标系xOy中,抛物线y=ax2+(2a﹣ma)x﹣2am(a<0)与x轴分别交于点A、C,顶点坐标为D.(1)当a=﹣1,m=1时.①求点D的坐标;②若F为线段AD上一动点,过点F作FH⊥x轴,垂足为H,交抛物线于点P,当PH+OH的值最大时,求点F的坐标.(2)当m=23时,若另一个抛物线y=ax2﹣(6a+ma)x+6am的顶点为E.试判断直线AD是否经过点E?请说明理由.24.对于二次函数y= 12x2﹣3x+4(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】B10.【答案】A11.【答案】C12.【答案】A13.【答案】( 32,- 14)14.【答案】2 √5﹣215.【答案】y=(x-1)2+416.【答案】y=(x﹣1)2+217.【答案】318.【答案】﹣119.【答案】(1)解:y=x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1(2)解:y=100﹣5x2.顶点坐标是(0,100),对称轴为x=0,最大值为10020.【答案】(1)解:y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1(2)解:开口向上,对称轴是x=3,顶点坐标是(3,﹣1)(3)解:x>3时,y随x的增大而增大;x<3时,y随x增大而减小21.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t2﹣8(t>4)22.【答案】(1)解:∵⊥=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3∴把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.23.【答案】(1)解:①解:当a=-1,m=1时y=−x2−x+2= −(x+12)2+94∴点D的坐标为(−12,94)②∵y=−x2−x+2当y=0时解得:x1=−2∴点A的坐标为(−2,0)设直线AD的表达式为:y=kx+b(k≠0){0=−2k+b94=−12k+b解得{k=32b=3∴直线AD的表达式为:y=32x+3∵F为线段AD上一动点设点F的横坐标为t∵FH⊥x轴,垂足为H,交抛物线于点P∴点P的横坐标也为t,点P的纵坐标为−t2−t+2∴P (t,−t2−t+2),H(t,0)∴PH+OH= −t2−t+2+0−t= −t2−2t+2= −(t+1)2+3∴当t=−1时,PH+OH有最大值当t=−1时,y=32×(−1)+3= 32∴F(−1,3 2)(2)解:∵m= 2 3∴y=ax2+(2a−ma)x−2am= ax2+(2a−23a)x−43a= a(x+23)2−169a∴D (−23,−169a)∵y=ax2−(6a+ma)x+6am= ax2−(6a+23a)x+4a= a(x−103)2−649a∴E (103,−649a)∵y=ax2+(2a−23a)x−43a当y=0时,ax2+(2a−23a)x−43a=0解得x1=−2∴A(-2,0)设直线AD的表达式为:y=mx+n{−2m+n=0−23m+n=−169a解得{m=−43an=−83a∴直线AD的表达式为y=−43ax−83a当x=103,y=−43a⋅103−83a= −649a∴点E在直线AD上∴直线AD经过点E.24.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2)对称轴为:直线x=3(3)解:∵a= 12>0∴函数的最小值为:﹣1 2。

2023年九年级中考数学专题复习:二次函数综合题(角度问题)含答案

2023年九年级中考数学专题复习:二次函数综合题(角度问题)含答案

2023年九年级中考数学专题复习: 二次函数综合题(角度问题)1.已知抛物线2y x bx c =++经过点()1,0A -和点()0,3C -,与x 轴交于另一点B .(1)求抛物线的解析式;(2)点P 为第四象限内抛物线上的点,连接,,CP AP AC ,如图1,当CP AC ⊥时,求P 点坐标;(3)设点M 为抛物线上的一点,若2MAB ACO ∠=∠时,求M 点坐标.2.如图,已知抛物线213y x bx c =-++交x 轴于()30A -,,()4,0B 两点,交y 轴于点C ,点P 是抛物线上一点,连接AC 、BC .(1)求抛物线的表达式;(2)连接OP ,BP ,若2BOP AOC S S =△△,求点P 的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得∠QBA =75°?若存在,直接写出点Q 的坐3.已知抛物线y=ax2+2x+c过A(﹣1,0),C(0,3),交x轴于另一点B.点P是抛物线上一动点(不与点C重合),直线CP交抛物线对称轴于点N.(1)求抛物线的解析式;(2)连接AN,当∠ANC=45°时,求P点的横坐标;(3)如图2,过点N作NM∠y轴于点M,连接AM,当AM+MN+CN的值最小时,直接写出N点的坐标.4.如图,抛物线y=34x2+bx+c交x轴于A,B两点,交轴于点C,点A,B的坐标分别为(-1,0),(4,0).(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求∠CPB的面积最大时点P的坐标;(3)若M是抛物线上一点,且∠MCB=∠ABC,请直接写出点M的坐标.5.如图,抛物线y 14=x 2+bx +c 与直线y 12=-x +3分别交于x 轴,y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为A ,顶点为D ,连接CD 交x 轴于点E .(1)求该抛物线的解析式;(2)点F ,G 是对称轴上两个动点,且FG =2,点F 在点G 的上方,请求出四边形ACFG 的周长的最小值;(3)连接BD ,若P 在y 轴上,且∠PBC =∠DBA +∠DCB ,请直接写出点P 的坐标.6.如图∠,二次函数2y ax bx c =++(a ≠0)的图象经过点A (1-,0),并且与直线122y x =-相交于坐标轴上的B 、C 两点,动点P 在直线BC 下方的二次函数的图象上. (1)求此二次函数的表达式;(2)如图∠,连接PC ,PB ,设∠PCB 的面积为S ,求S 的最大值; (3)如图∠,过点A ,C 作直线,求证AC ∠BC ;(4)如图∠,抛物线上是否存在点Q ,使得∠ABQ =2∠ABC ?若存在,则求出直线BQ 的解析式;若不存在,请说明理由.7.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点(0,2)C .(1)求抛物线的表达式; (2)求证:CAO BCO ∠=∠;(3)若点P 是抛物线上的一点,且PCB ACB BCO ∠+∠=∠,求直线CP 的表达式.8.如图,已知抛物线(2)(4)y a x x =+-(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线34y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与∠ABC 相似,求a 的值;(3)在(1)的条件下,直线BD 上是否存在点E ,使∠AEC =45°?若存在,请直接写出点E 的横坐标;若不存在,请说明理由.9.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D . (1)求抛物线的解析式.(2)如果一个圆经过点O 、点B 、点C 三点,并交于抛物线AC 段于点E ,求∠OEB 的(3)在抛物线的对称轴上是否存在点P ,使∠PCD 为等腰三角形,如果存在,直接写出点P 的坐标,如果不存在,请说明理由.(4)在抛物线的对称轴上是否存在一点P ,使∠APB =∠OCB ?若存在,求出PB 2的值;若不存在,请说明理由.10.在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标;(3)已知E 是x 轴上的点,F 是抛物线上的动点,当B ,C ,E ,F 为顶点的四边形是平行四边形时,求出所有符合条件的E 的坐标.11.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐(3)已知E是x轴上的点,F是抛物线上的动点,当B,C,E,F为顶点的四边形是平行四边形时,求出所有符合条件的E点的坐标,12.如图1,抛物线2=-+与x轴交于A(-2,0)、B(4,0)两点,与y轴交于y ax x c点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD 于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点Q的坐标.13.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,在对称轴上是否存在一点Q,连接PQ,将线段PQ绕点Q顺时针旋转90°,使点P恰好落在抛物线上?若存在,请求出点Q的坐标;若不存在,请14.抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若()1,0A -,()3,0B , ∠求抛物线2y x bx c =-++的解析式;∠Р为抛物线上一点,连接AC 、PC ,若AC PC ⊥,求点P 的坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若290BDA BAD ∠+∠=︒,求点D 的纵坐标.(1)如图1,抛物线21y ax bx =++与x 轴交于点A 和点()3,0B ,对称轴为直线1x =; ∠求抛物线的解析式;∠点P 为抛物线上一动点,PN BC ⊥,垂点为N ,当PCN △与BOC 相似时,直接写出P 点坐标;(2)点D 为抛物线顶点,若抛物线上有且只有一个点Q 的横坐标是纵坐标的2倍,且45DCO ∠=︒,求a 的值.16.如图,点B ,C 分别在x 轴和y 轴的正半轴上,OB ,OC 的长分别为28120x x -+=的两个根()OC OB >,点A 在x 轴的负半轴上,且3OA OC OB ==,连接AC .(1)求过A ,B ,C 三点的抛物线的函数解析式;(2)点P 从点C 出发,以每秒2个单位长度的速度沿CA 运动到点A ,点Q 从点O 出发,以每秒1个单位长度的速度沿OC 运动到点C ,连接PQ ,当点P 到达点A 时,点Q 停止运动,求CPQ S △的最大值;(3)M 是抛物线上一点,是否存在点M ,使得15ACM ∠=︒?若存在,请求出点M 的坐标;若不存在,请说明理由.17.如图,已知二次函数2y x bx c =-++的图象经过点()()1,0,3,0A B -,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为抛物线的顶点,求BCD △的面积;(3)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在,请直接写出点P 的坐标;若不存在,请说明理由.18.已知直线43y x n =-+交x 轴于点A ,交y 轴于点C (0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B (0,-2),点P 为抛物线上一个动点,设P 的横坐标为m (m >0),过点P 作x 轴的垂线PD ,过点B 作BD ∠PD 于点D ,联结PB . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)将△BDP 绕点B 旋转得到△BD P '',且旋转角∠PB P '=∠OAC ,当点P 对应点P '落在y 轴上时,求点P 的坐标.19.如图,顶点为(),P m m (0m >)的二次函数图象与x 轴交于点()2,0A m ,点B 在该图象上,直线OB 交二次函数图象对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、(1)求该二次函数的关系式(用含m 的式子表示).(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ∠连接OP ,当12OP MN =时,请判断NOB 的形状,并说明理由. ∠求证:BNM ONM ∠=∠.20.如图1,已知抛物线21y x =-与x 轴交于A ,B 两点,与y 轴交于点D . (1)求直线BD 的解析式;(2)P 为抛物线上一点,当点Р到直线BD 的距离为P 的坐标; (3)如图2,直线y t =交抛物线与M ,N 两点,C 为抛物线上一点,当90MCN ∠=︒时,请探究点C 到MN 的距离是否为定值.参考答案:1.(1)223y x x =--(2)(73,209-) (3)点M 的坐标为939,416⎛⎫- ⎪⎝⎭或1557,416⎛⎫ ⎪⎝⎭2.(1)211433y x x =-++(2)(﹣5,﹣6)或(6,﹣6)(3)存在,Q 的坐标为(12,(123.(1)2y x 2x 3=-++(2)44(3)(1,32)4.(1)239344y x x =-- (2)92,2P ⎛⎫- ⎪⎝⎭ (3)M 的坐标为()3,3-或531125,749⎛⎫ ⎪⎝⎭5.(1)抛物线的解析式为:21234y x x =-+(2)四边形ACFG 2(3)点P 的坐标为(0,﹣2)或(0,18)6.(1)213222y x x =--;(2)4;(4)存在,41633y x =-和41633y x =-+. 7.(1)215222y x x =-+;(3)直线CP 的解析式为423y x =-+或2y =8.(1):y =14x 2-12x -2;(2)a (3)在直线BD 上不存在点E ,使∠AEC =45°.理由见解析9.(1)y =﹣x 2+2x +3;(2)45°;(3)存在,点P (1,2)、(1,3)、(1,4)、(1,、(1,4;(4)存在,.10.(1)213222y x x =-++;(2)(2,3);(3)()3,2或2⎫-⎪⎪⎝⎭. 11.(1)抛物线得解析式为213222y x x =-++;(2)点D 的坐标为()2,3;(3)E 点的坐标为(2,0)或(52,0)或(52,0)或(-4,0). 12.(1)2142y x x =--,2y x =--;(2)P (0,-4);(3)点Q 的坐标为440(,)39-,20104(,)39. 13.(1)y =x 2-4x +3,顶点(2,-1);(2)(113,169);(3)(2,109)或(2,319) 14.(1)∠2–23y x x =++;∠720(,)39P ;(2)1- 15.(1)∠212133y x x =-++;∠()2,1,1735,416⎛⎫- ⎪⎝⎭,52,3⎛⎫-- ⎪⎝⎭;(2)1916a =或22516a =16.(1)21262y x x =--+;(2(3)存在,M 4⎡-⎢⎣⎦或(4--- 17.(1)2y x 2x 3=-++;(2)3;(3)存在,P 1(2,3),P 2(4,-5) 18.(1)224233y x x =--;(2)72或12;(3)P (258,1132)或(7255,896-) 19.(1)()12y x x m m =--;(2)∠等腰直角三角形20.(1)1y x =-;(2)P ⎝⎭或P ⎝⎭;(3)C 到MN 的距离为定值1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数专题练习题
一、选择题
1 抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=2
2.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )
A.1 B.2 C.3 D.6
3.如图,在平面直角坐标系中,抛物线y=1
2
x2经过平移得到抛物线y=
1
2
x2-2x,其对称轴与
两段抛物线所围成的阴影部分的面积为( )
A.2 B.4 C.8 D.16
4. 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )
A.b2>4ac
B.ax2+bx+c≥-6
C.若点(-2,m),(-5,n)在抛物线上,则m>n
D.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1
5. 如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( )
A.①② B.①④ C.②③ D.③④
6. 如图,一次函数y
1=x与二次函数y
2
=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2
+(b-1)x+c的图象可能是( )
7. 如图,在正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )
二、填空题
8.若y=(2-m)xm2-3是二次函数,且开口向上,
则m的值为.
9.已知点A(x
1,y
1
),B(x
2
,y
2
)在二次函数y=(x-1)2+1的图象上,若x
1
>x
2
>1,则y
1
____y
2
.(填
“>”“<”或“=”)
10.已知二次函数y=-2x2-4x+1,当-3≤x≤0时,它的最大值是____,最小值是____.11.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4 s落地,则足球距地面的最大高度是____m.
12. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.
三、解答题
13.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.
(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;
(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.
14.用铝合金材料做一个形状如图①所示的矩形窗框,设窗框的一边为x m,窗户的透光面积为y m2,y与x的函数图象如图②所示.
(1)观察图象,当x为何值时,窗户的透光面积最大?最大透光面积是多少?
(2)要使窗户的透光面积不小于1 m2,则窗框的一边长x应该在什么范围内取值?
15. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李种植水果____亩,小李应得的报酬是____元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为W(元),当10<m≤30时,求W与m之间的函数关系式.
16. 如图,抛物线y=-1
2
x2+bx+c与x轴分别交于点A(-2,0),B(4,0),与y轴交于点
C,顶点为点P.
(1)求抛物线的解析式;
(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H,当四边形OMHN为矩形时,求点H的坐标.
答案:
一、
1. B
2. B
3. B
4. C
5. C
6. A
7. B
二、
8. -5
9. >
10. 3 -5
11. 19.6
12. (1+2,2)或(1-2,2)
三、
13. 解:(1)答案不唯一,如y =x 2-2x +2
(2)∵定点抛物线的顶点坐标为(b ,b 2+c +1),且-1+2b +c +1=1,∴c =1-2b ,∵顶点纵坐标c +b 2+1=2-2b +b 2=(b -1)2+1,∴当b =1时,c +b 2+1最小,抛物线顶点纵坐标的值最小,此时c =-1,∴抛物线的解析式为y =-x 2+2x
14. 解:(1)由图象可知当x =1时,窗户的透光面积最大,
最大透光面积是1.5 m 2
(2)由题意可设二次函数解析式为y =a(x -1)2+1.5,
将(0,0)代入可求a =-1.5,∴解析式为y =-1.5(x -1)2+1.5,令y =1,则-1.5(x -1)2+1.5=1,解得x 1=1-
33,x 2=1+33, 由图象可知,当1-33≤x≤1+33
时,透光面积不小于1 m 2 15. (1) 140 2800 10 1500
(2) z =120n +300(10<n ≤30)
(3)当10<m ≤30时,y =-2m +180,∵m +n =30,
又∵当0≤n <10时,z =150n ;当10≤n <20时,
z =120n +300,∴当10<m≤20时,10≤n <20,
∴W =m(-2m +180)+120n +300=m(-2m +180)
+120(30-m)+300=-2m 2+60m +3900;
当20<m ≤30时,0≤n <10,∴W =m(-2m +180)+150n =
m(-2m +180)+150(30-m)=-2m 2+30m +4500,
∴W =⎩⎨⎧-2m 2+60m +3900(10<m≤20)-2m 2+30m +4500(20<m≤30)
16. 解:(1)y =-12
x 2+x +4 (2)根据题意可设ON =OM =t ,则MH =-12
t 2+t +4,∵ON ∥MH , ∴当ON =MH 时,四边形OMHN 为矩形,即t =-12
t 2+t +4, 解得t =22或t =-22(不合题意,舍去),
把t =22代入y =-12
t 2+t +4得y =22,∴H(22,22)。

相关文档
最新文档