5.1 相交线1

合集下载

51相交线PPT课件

51相交线PPT课件

C
C
C
A
BA
B
A
B
2. 学校要测出一块三角形空地的面积,以便计算绿
化成本,现在已经测量出 AC = 5 cm,还要测量出哪些
量,才能计算三角形的面积?
B
解:根据三角形的面积公式,
只要测量出点 B 到线段 AC 的距 C
AD
离即可计算三角形的面积. 我们作出点 B 到 AC 的垂线
段 BD,再测量出 BD 的长度即可.
D
A
1
4
2
3O
B
C
例题
1. 如图,直线 a, b 相交,∠1 = 40º,求∠2 , ∠3,
∠4 的度数.
b
解: 由邻补角的定义,可得 ∠2 = 180º- ∠1 = 180º- 40º= 140º; a
12 43
由对顶角相等,可得
∠3 = ∠1 = 40º,∠4 = ∠2 = 140º.
2. ∠1 = 90º时,∠2, ∠3, ∠4 的度数各是多少?
= 90º,则称为 AB 与 CD 垂直,记作 AB⊥CD,交点 O
叫做垂足. A
CO
D
A D
O
C
B
B
1. 经过直线 l 上一点 A 画 l 的垂线,这样的垂线能 画出几条?
2. 经过直线 l 外一点 B 画 l 的垂线,这样的 垂线能画出几条?
结论:在同一平面内,过一点有 且只有一条直线与已知直线垂直.
∠AOE 的对顶角.
如图所示,∠BOF 是∠AOE 的对顶角.
小结
1. 对顶角的概念及性质; 2. 邻补角的概念及性质; 3. 利用对顶角以及邻补角的数量关系解决相关问题.
5.1.2 垂 线

人教版七年级数学下册5.1.1《相交线》教案

人教版七年级数学下册5.1.1《相交线》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。

《5.1.1 相交线》教学设计

《5.1.1 相交线》教学设计

《5.1.1 相交线》教学设计一、教材内容分析本节课是人教版七年级下第五章第一节第一课时相交线。

在七年级上册,我们已经初步接触简单的平面几何图形,重点研究了线段和角,知道了互余、互补的角,等角的补角(余角)相等,能画出图形思考问题,初步掌握思考几何问题的方法,学会初步几何推理的方法。

在此基础上进一步研究平面内两条相交直线形成的4个角的位置和数量关系,为今后学习几何奠定了基础。

同时也为证明几何题提供了示范作用,本节课对于进一步培养学生的识图能力具有推动作用。

二、学生情况分析1、学生已经初步学习了角的相关内容和一些性质。

2、本课的教学对象是七年级的学生,思维活跃,模仿能力强。

三、教学目标(一)知识与技能1.理解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角。

2.掌握“对顶角相等”的性质。

3.理解“对顶角相等”的初步的几何推理(二)能力目标1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念2.通过分析具体图形得到对顶角,邻补角的概念,发展学生的抽象概括能力(三)情感目标1.通过相交线中有关角的探究,使学生初步认识数学与现实生活的密切联系2.通过师生的共同活动,促使学生在学习活动中培养良好的情感,形成合作交流、主动,参与的意识。

四、教学重点、难点重点:邻补角、对顶角的概念,“对顶角相等‘的性质.难点:“对顶角相等”的性质的探索过程.五、教学方法在教学中我采用启发式,引导学生思考,探究,交流,讲练结合。

教学手段则采用多媒体辅助教学。

六、教学过程(一)创设情境,引入课题教师演示以第五章章首图片为主体的课件.引导学生欣赏图片,找出图片中的相交线,平行线师:虽然图中的桥,电线等都是有限长的,但当我们把它们看成直线时,这些直线有些是相交线,有些是平行线,相交线、平行线都有许多重要性质,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.今天我们先研究直线相交的问题。

从而引入本节课题.(设计意图:让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线,平行线的几何图形。

5.1.1相交线(同步课件)-2023-2024学年七年级数学下册同步精品课堂(人教版) (1)

5.1.1相交线(同步课件)-2023-2024学年七年级数学下册同步精品课堂(人教版) (1)
2
谢谢聆听
人教版数学七年级下册
4
能不能说一说理由呢?
C
B
探究新知
人教版数学七年级下册
已知:直线 AB 与 CD 相交于 O 点. A
D
求证:∠1=∠2.
3 1O 2
4
证明:∵直线 AB 与 CD 相交于 O 点,C
B
∴∠1+∠3=180°, ∠2+∠3=180°, 平角的定义 ∴∠1=∠2. 等量代换 同理可得∠3=∠4.
例题讲解
人教版数学七年级下册
人教版数学七年级下册
第5.1.1 相交线
学习目标
人教版数学七年级下册
1.理解邻补角与对顶角的概念; 2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角 的计算及解决简单实际问题.
情境引入 观察下列图片,你能从中找出2条直线吗?
人教版数学七年级下册
情境引入
人教版数学七年级下册
解:根据题意,∠1与∠3是邻补角,
a
∴∠1+∠3=180°, ∵2∠3=3∠1, ∴∠3=108°,∠1=72°
3 1
2 b
根据对顶角性质,得
∠2=∠3=108°.
拓展训练
人教版数学七年级下册
2.观察下列各图,寻找对顶角(不含平角)
Hale Waihona Puke A Ca OD
b
DG
c E
A
O
BA
O
BC
CF
D B
H
⑴ 如图a,图中共有 2 对对顶角;
解:(1)35°,145°,145° (2)均为90° (3)65°, 115°, 65° (4)(180-m)°, m°, (180-m)°

5.1.1相交线 课件

5.1.1相交线 课件

与直线条数之间的关系;
(5)根据探究结果,试求2 016条直线相交于一点时,所构成对顶角的对数.
图5-1-1-17
5.1.1 相交线
解析 (1)2.(2)6.(3)12. (4)根据计算,可以发现:2=1×2,6=2×3,12=3×4,……,即对顶角的对数与直 线条数的对应关系是:对顶角的对数=(直线条数-1)×直线条数,因此,当n 条直线相交于一点时,所构成的对顶角的对数是(n-1)×n. (5)2 016条直线相交于一点时,所构成的对顶角的对数是(2 016-1)×2 016= 2 015×2 016=4 062 240.
(∠AOC+∠COE)=
1 2
×180°=90°.
5.1.1 相交线
知识点二 对顶角及其性质 5.(2014贵州铜仁中考)下列图形中,∠1与∠2是对顶角的是 ( )
答案 C 根据对顶角的定义,有公共顶点,且一个角的两边是另一个角 两边的反向延长线,这样的两个角是对顶角,所以本题中只有选项C符合.
5.1.1 相交线
拓展延伸
(1)邻补角是成对出现的,单独的一个角不能称为邻补角. (2)邻补角既包含位置关系,又包含数量关系.“邻”指的是位置相邻,“补”指的是两个角的 和是180°. (3)两条直线相交形成四对邻补角. (4)一个角的邻补角有两个,但一个角的补角可以有很多个,邻补角是补角的一种特殊情况.
温馨提示 互为邻补角的两个角一定互补,但互补的两个角不一定是邻补角.
5.1.1 相交线
1.下列图形中∠1和∠2是对顶角的是 ( )
答案 D 互为对顶角的两个角有公共顶点,且一个角的两边分别是另 一个角两边的反向延长线.满足条件的只有D.
5.1.1 相交线
一、选择题 1.(2015广西贺州中考,2,★☆☆)如图5-1-1-13,下列各组角中,是对顶角的 一组是 ( )

人教版数学七年级下册5-1-1 相交线 教案

人教版数学七年级下册5-1-1  相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。

新人教版七年级下册数学第五章5.1.1 相交线教案

新人教版七年级下册数学第五章5.1.1 相交线教案

第五章相交线与平行线5.1 相交线教学目标1.理解对顶角和邻补角的概念,能在图形中辨认.2.理解对顶角相等,并能运用它解决一些问题.3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力.教学重点邻补角、对顶角的概念,对顶角性质与应用. 教学难点理解对顶角相等的性质.教学过程(师生活动)激趣导入先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.预习定标1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1

人教版初中数学七年级下册5.1.1《相交线》教案

人教版初中数学七年级下册5.1.1《相交线》教案
五、教学反思
在今天的课堂上,我们探讨了相交线的概念和性质,以及它们在实际生活中的应用。我注意到,学生在理解同位角、内错角、同旁内角这些概念时,起初有些混淆。我通过反复举例和直观演示,帮助他们逐步理清了这些角的区别和联系。这也提醒我,对于这类几何基础概念的教学,直观性和重复性是非常重要的。
我尝试了一种新的教学方法,让学生在小组讨论中解决实际问题,感觉效果还不错。学生们积极参与,讨论热烈,通过合作探究,他们不仅加深了对相交线性质的理解,还学会了如何将这些知识应用到解决具体问题中。这一点让我感到很欣慰,也证明了实践活动在数学教学中的价值。
人教版初中数学七年级下册5.1.1《相交线》教案
一、教学内容
人教版初中数学七年级下册5.1.1《相交线》教案:
1.理解相交线的概念,掌握两条直线相交形成的四个角及其分类。
2.学习同位角、内错角、同旁内角的概念,并能够识别和判条直线是否垂直。
4.探索并掌握垂直的性质及其应用,如:垂直线段最短、直角三角形的性质等。
4.强化学生的数学建模能力,将相交线的性质应用于解决实际问题,培养运用数学知识解决现实问题的能力。
5.培养学生的数学运算能力,通过几何作图和计算,巩固基本的几何变换和代数运算技能。
三、教学难点与重点
1.教学重点
-两条直线相交形成的四个角的识别及其分类,特别是同位角、内错角、同旁内角的定义和特点。
-垂直的概念及其判断方法,理解两条直线垂直的条件。
-掌握垂直性质及其在实际问题中的应用,如直角三角形的性质和垂线段最短原理。
-通过几何作图和计算,运用相交线和垂直的知识解决具体问题。
举例解释:
-在讲解同位角、内错角、同旁内角时,重点强调它们在两条相交直线上的位置关系和数量关系,通过直观图示和实际操作加深学生理解。

人教版数学七年级下册5.1 相交线 第1课时 相交线 同步练习

人教版数学七年级下册5.1 相交线 第1课时 相交线 同步练习

5.1 相交线第1课时相交线基础训练知识点1 邻补角1.识别邻补角应同时满足以下三条:①有公共_____________;②有一条公共边;③两角的另一边_____________. 2·1·c·n·j·y2.邻补角是指()A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.下列选项中,∠1与∠2互为邻补角的是()4.如图,∠1的邻补角是()A.∠BOCB.∠BOE和∠AOFC.∠AOFD.∠BOC和∠AOF5.如图,∠α的度数等于()A.135°B.125°C.115°D.105°知识点2 对顶角及其性质6.识别对顶角应同时满足:①有公共___________;②两个角的两边___________.7.如图,小强和小丽一起玩跷跷板,横板AB绕O上下转动,当小强从A到A'的位置时,∠AOA'=45°,则∠BOB'的度数为___________,理由是___________.8.如图,直线AB,CD相交于点O,则∠1∠2,根据的是;∠2+∠3=,根据的是.9.下列选项中,∠1与∠2是对顶角的是()10.如图,直线AB,CD交于点O,下列说法中,错误的是()A.∠AOC与∠BOD是对顶角B.∠AOE与∠BOE是邻补角C.∠DOE与∠BOC是对顶角D.∠AOD与∠BOC都是∠AOC的邻补角11.如图,三条直线交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°12.下列语句正确的是()A.顶点相对的两个角是对顶角B.有公共顶点并且相等的两个角是对顶角C.两条直线相交,有公共顶点的两个角是对顶角D.两条直线相交,有公共顶点且没有公共边的两个角是对顶角易错点邻补角与补角区别不清13.如图,点O是直线AB上的任意一点,OC,OD,OE是过点O的三条射线,若∠AOD=∠COE=90°,则下列说法:①与∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC互为补角的角有两个.其中正确的是()A.②③B.①②C.③④D.①④易错点2 对对顶角的定义理解不透而产生错误14.下列说法正确的有()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个提升训练考查角度1 利用对顶角的性质求角15.如图,直线AB,CD,EF相交于点O,如果∠AOC=65°,∠DOF=50°.(1)求∠BOE的度数;(2)通过计算∠AOF的度数,你发现射线OA有什么特殊性吗?考查角度2 利用邻补角及对顶角的性质求角(方程思想)16.补全解答过程:如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:由∠EOC∶∠EOD=2∶3,设∠EOC=2x°,则∠EOD=3x°.因为∠EOC+∠____________=180°(____________),所以2x+3x=180,解得x=36.所以∠EOC=72°.因为OA平分∠EOC(已知),所以∠AOC=错误!未找到引用源。

5.1 相交线(第1课时)--

5.1 相交线(第1课时)--

归纳小结
角的 名称 对 顶 角 邻 补 角 特 征 性 质 相同点 不同点
①两条直线相 对顶 ①都是两条 ①有无公共 交形成的角; 交形成的角; 直线相交而 边 有公共顶点; ②有公共顶点 角相 成的角; 成的角; ②两直线相 等 ③没有公共边 交时, ②都有一个 交时, ①两条直线相 对顶角只 公共顶点; 公共顶点; 交而成; 交而成; 邻补 有两对 有公共顶点; ②有公共顶点 角互 ③都是成对 邻补角有 ③有一条公共 四对 出现的 补 边
作业:P9/1,2 , 作业 P10/7,8 ,

有一个公共点的两条直线形成相交直线. 有一个公共点的两条直线形成相交直线. 问题:两条相交直线.形成的小于平角的角 问题:两条相交直线. 有几个? 有几个? 请你画出任意两条相交直线. 请你画出任意两条相交直线.看看这 四个角有什么关系? 四个角有什么关系?
任意画两条相交直线, 任意画两条相交直线,在形成的四个 如图) 两两相配共组成几对角? 角(如图)中,两两相配共组成几对角?各 对角存在怎样的位置关系? 对角存在怎样的位置关系?
达标测试
E 三,填空(每空3分) 填空(每空 分 1 G 如图1,直线AB, 交 于点 如图 ,直线 ,CD交EF于点 A B 2 G,H,∠2=∠3,∠1=70度.求 , , ∠ , 度 的度数. ∠4的度数. 的度数 3 H D ∵∠2=∠ 解:∵∠ ∠ 1 (对顶角相等) C 4 已知 ) ∠1=70 °( 图1 ∴∠2= ° 等量代换) ∴∠ 70° 等量代换) ( F 又∵ ∠2=∠3(已知) ∠ 已知) ∴∠3= ∴∠ 70 ° 等量代换) ( 的定义) ∴∠4=180°—∠ 3 = 110 °邻补角 的定义) ∴∠ ° ∠ ( E D 四,解答题 A 直线AB, 交于点 交于点O, 是 直线 ,CD交于点 ,OE是 ∠AOD的平分线,已知∠AOC=50° 的平分线,已知∠ ° 的平分线 O C 的度数. 求∠DOE的度数. 的度数 B 图2

《5.1相交线》练习题

《5.1相交线》练习题

(D)(C)(B)(A)22211121《5.1相交线》练习题一1、下列各图中,∠1和∠2是对顶角的是( )2、已知直线AB 、CD 相交于点O ,则与∠AOC 互补的角有 ( ) A 、1个 B 、2个 C 、3个 D 、4个3、如图,三条直线两两相交,其中对顶角共有 ( ) A 、3对 B 、4对 C 、5对 D 、6对4、如图,直线AB 、CD 交于点O ,OE 、OF 是过O 点的两条射线,其中构成对顶角的是 ( )A 、∠AOF 与 ∠DOEB 、∠EOF 与∠BOEC 、∠BOC 与∠AOD D 、∠COF 与∠BOD5、下列说法错误的是 ( )A 、对顶角的平分线成一个平角B 、对顶角相等C 、相等的角是对顶角D 、对顶角的余角相等 6、如图,直线AB 与CD 相交于点O ,∠AOD+∠BOC=236度,则∠AOC 的度数为 ( )A 、72度B 、62度C 、124度D 、144度 7、如图,点A 到直线CD 的距离是指哪条线段长 ( )A 、ACB 、CDC 、AD D 、BD 8、在“同一平面内,过一点有且只有一条直线与已知直线垂直”中这一点的位置 ( )A 、在直线的上方B 、在直线的下方C 、在直线上D 、可以任意位置9、下列说法中正确的个数有 ( ) (1)直线外一点与直线上各点连接的所有线中垂线段最短。

(2)画一条直线的垂线段可以画无数条。

(3)在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直。

(4)从直线外一点到这条直线的垂线段叫做点到直线的距离。

A 、1个 B 、2个 C 、3个 D 、4个10、如图2-27,∠BAC 和∠ACD 是( )A .同位角B .同旁内角C .内错角D .以上结论都不对O F E D CBA ODCBADABC11、如图2-28,∠1与∠2不能构成同位角的图形是 ( )12、如图2-29,图中共有同旁内角 对A .2B .3C .4D .513、如图2-30,与∠1构成同位角的共有 ( )A .1个B .2个C .3个D .4个 14、如图2-31,下列判断正确的是 [ ]A .4对同位角,4对内错角,2对同旁内角B .4对同位角、4对内错角,4对同旁内角C .6对同位角,4对内错角,4对同旁内角D .6对同位角,4对内错角,2对同旁内角15、如图,直线AB 、CD 相交于点O ,若∠AOC=50度,则∠BOC= ,∠AOD= ∠BOD= 。

最新人教版七年级数学下册各章节知识点归纳

最新人教版七年级数学下册各章节知识点归纳

最新⼈教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线与平⾏线5.1 相交线⼀、相交线两条直线相交,形成4个⾓。

1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。

性质是对顶⾓相等。

①邻补⾓:两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线。

具有这种关系的两个⾓,互为邻补⾓。

如:∠1、∠2。

②对顶⾓:两个⾓有⼀个公共顶点,并且⼀个⾓的两条边,分别是另⼀个⾓的两条边的反向延长线,具有这种关系的两个⾓,互为对顶⾓。

如:∠1、∠3。

③对顶⾓相等。

⼆、垂线1.垂直:如果两条直线相交成直⾓,那么这两条直线互相垂直。

2.垂线:垂直是相交的⼀种特殊情形,两条直线垂直,其中⼀条直线叫做另⼀条直线的垂线。

3.垂⾜:两条垂线的交点叫垂⾜。

4.垂线特点:过⼀点有且只有⼀条直线与已知直线垂直。

5.点到直线的距离:直线外⼀点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外⼀点与直线上各点的所有线段中,垂线段最短。

三、同位⾓、内错⾓、同旁内⾓两条直线被第三条直线所截形成8个⾓。

1.同位⾓:(在两条直线的同⼀旁,第三条直线的同⼀侧)在两条直线的上⽅,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同位⾓。

如:∠1和∠5。

2.内错⾓:(在两条直线内部,位于第三条直线两侧)在两条直线之间,⼜在直线EF的两侧,具有这种位置关系的两个⾓叫内错⾓。

如:∠3和∠5。

3.同旁内⾓:(在两条直线内部,位于第三条直线同侧)在两条直线之间,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同旁内⾓。

如:∠3和∠6。

5.2 平⾏线及其判定(⼀) 平⾏线1.平⾏:两条直线不相交。

互相平⾏的两条直线,互为平⾏线。

a∥b(在同⼀平⾯内,不相交的两条直线叫做平⾏线。

)2.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。

重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。

线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。

⑶直相交形成的四角中,每一角的角有,而角只有一。

两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。

条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。

:垂段最短。

连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。

过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。

线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。

5.1.1 相交线(第1课时)--

5.1.1 相交线(第1课时)--
对顶角相等 ) B ∵∠DOB=∠ AOC ,( 解:∵∠ ∠ ∠AOC =80°(已知) ° 已知) ∴∠DOB= 80 °(等量代换) 等量代换) ∴∠ ∵∠1=30°( 已知 ) 又∵∠ ° ° ° = ∴∠2=∠ ∠ ∴∠ ∠ DOB -∠ 1 = 80° 30° 50 °
练习与反馈
9,如图1,直线 ,CD交EF于点 E1 G ,如图 ,直线AB, 交 于点 B G,H,∠2=∠3,∠1=70度. A , , ∠ , 度 2 的度数. 求∠4的度数. 的度数 3 H ∵∠2=∠ 解:∵∠ ∠ 1 ( 对顶角相等 ) D C 已知 ) 4 ∠1=70 °( ∴∠2= ° 等量代换) ∴∠ 70° 等量代换) ( 图1 F ∠ 已知) 又∵ ∠2=∠3(已知) ∴∠3= ∴∠ 70 ° 等量代换) ( 的定义) ∴∠4=180°—∠ 3 =110 ° 邻补角 的定义) ( ∴∠ ° ∠
b a 1 2 4 3
练习与反馈
× × × √
2,右图是对顶角量角器,你能说出 ,右图是对顶角量角器 你能说出 用它测量角的原理吗? 用它测量角的原理吗? 答:对顶角相等. 对顶角相等.
练习与反馈
互为邻补角, 3,如图1,∠2与∠3互为邻补角, 如图 , ∠1=∠2,则∠1与∠3的关系 1=∠2, 为 互补 . 4,如图2,三条直线a,b,c相交于 如图2 三条直线a 点O,则∠1+∠2+∠3= 1800 . 1+∠2+∠3=
A O
D
C
B
如果两条直线有一个公共点,就说这两条直 如果两条直线有一个公共点,就说这两条直 线相交,公共点叫做这两条直线的交点. 叫做这两条直线的交点 线相交,公共点叫做这两条直线的交点.
直线AB, 相交于点 相交于点O 直线 ,CD相交于点

人教版七年级数学下册5.1.1《相交线》说课稿

人教版七年级数学下册5.1.1《相交线》说课稿

人教版七年级数学下册5.1.1《相交线》说课稿一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。

本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

在教材中,通过生动的实例和丰富的图片,引导学生认识相交线,理解相交线的性质,并学会运用相交线解决实际问题。

教材内容由浅入深,循序渐进,既注重了知识的传授,又重视了学生的动手实践和合作交流。

二. 学情分析七年级的学生已经掌握了平行线的知识,对于图形的认知和观察能力有一定的基础。

但是,对于相交线的定义和性质,学生可能还存在一定的模糊认识。

此外,学生的空间想象能力和逻辑思维能力还有待提高。

三. 说教学目标1.知识与技能目标:学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线解决实际问题。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,培养自信心和合作精神。

四. 说教学重难点1.教学重点:相交线的定义、性质和应用。

2.教学难点:相交线的性质的理解和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和启发式教学法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受和动手实践能力。

六. 说教学过程1.导入:通过展示生活中常见的相交线的例子,如交叉的电线、道路等,引导学生思考相交线的特点,激发学生的学习兴趣。

2.新课导入:介绍相交线的定义,引导学生观察和描述相交线的性质。

3.实例分析:通过几何画板展示相交线的性质,让学生直观地感受相交线的特点。

4.小组讨论:学生分组讨论相交线的性质,总结出相交线的性质定理。

5.练习巩固:设计一些相关的练习题,让学生运用所学的知识解决实际问题。

6.课堂小结:引导学生总结本节课所学的知识,巩固对相交线的理解。

5.1.1相交线(共35张ppt)

5.1.1相交线(共35张ppt)

所以 ∠1 =∠3(同角的补角相等).
同理 ∠2 =∠4 .
例 如图,直线 a,b 相交,∠1 = 40°,求 ∠2 ,∠3 ,∠4 的度数.
解:由邻补角定义,可得
∠2 = 180°- ∠1
b
= 180°- 40°
= 140°;
a
由对顶角相等,得
12 43
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
如果把剪子的构造抽象成一个几何图形,会 是什么样的图形?请你在笔记本上画出.
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
C
∠1 与∠2 的顶点所 在的位置有什么特点? A
23
1 4O
B
D
探究
仔细观察你所画的图形,当两条直线相交时, 所形成的四个角中,∠1 与∠2 有怎样的位置关系?
(5)对顶角有__∠__1_和__∠__3_,__∠__2_和__∠__4_,_
_∠__5_和__∠__7_,__∠__6__和__∠__8__.
2.如图,直线AB、CD 相交于点O,∠AOE= 90°,如果∠1=20°,那么∠2=__2_0_°__,∠3= __7_0_°__,∠4=_1_6_0_°__.
(2)当 a 与 b 所成角 α 为 90° 时,其余的
角分别为多少? 均为90°
误区一 不能准确判断对顶角 1.下列图形中,∠1 与∠2 是对顶角的是( )
错解 A或C或D 正解 B
错因分析 不理解互为对顶角的条件:(1)有公 共顶点;(2)角的两边互为反向延长线. A,C 或 D 中的∠1 和∠2 不符合对顶角的条件.判断对顶角 一定要抓住对顶角形成的前提条件是两直线相交.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在本次活动中,教师应关注:
(1)学生画出两条相交线的几何图形,用语言准确描述.
(2)学生能否从角的位置关系上对角进行分类.
(3)学生是否能够正确区分邻补角、对顶角.
(4)学生参与数学学习活动的主动性,敢于发表个人观点.
通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.
通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.
教师具体指导并根据学生情况板书规范的简单说理过程.
本次活动中,教师应关注:
(1)学生对对顶角相等的掌握情况.
(2)学生进行简单说理的准确性、规范性.
(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.
(4)是否能用几何符号语言来表达自己的解题过程.
教师提出问题,并用课件“对顶角量角器”演示度量过程.
第五章
5.1
5.1.1
教学任务分析




知识
技能
1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.
2.知道“对顶角相等”.
3.了解“对顶角相等”的说理过程.
数学
思考
1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.
2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.
活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.
活动4通过解决具体问题加深对对顶角、邻补角的理解.
活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.
课前准备
教具
学具
补充材料
教师用三角板
量角器,三角板
教学过程设计
问题与情境
师生行为
教师提出问题.
学生回答.
在本次活动中,教师应关注:
(1)学生能否借助邻补角互补推导出对顶角相等的性质.
(2)学生能否进行简单说理.
(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.
活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.
学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.
活动3
问题
(1)对顶角有什么大小关系呢?
课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.
(2)你能举出生活中应用对顶角相等的例子吗?
教师提出问题.
学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.
通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.
活动4
问题
(1)直线a、b相交,∠1 = 40°,求∠2、∠3、∠4的度数.
(2)∠1等于90°时,∠2、∠3、∠4等于多少度?
(3)如图是一个对顶角量角器.你能说明它度量角度的原理吗?
教师出示问题.
学生独立思考、独立解题.
活动2
问题
(1)看见一把张开的剪刀,你能联想出什么样的几何图形?
(2)观察这些角有什么位置关系.
教师出示剪刀图片,提出问题.
学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.
教师提出问题.
学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.
活动5
问题
(1)找出图中∠AOE的对顶角及邻补角.若没有请画出.
(2)布置作业:
习题5.1第1题、第2题和第7题.
教师出示问题.
学生讨论,教师帮助学生分析图形与基本图形的区别,引导学生总结对顶角及邻补角的特征、性质、异同点.
在本次活动中,教师应关注:
(1)学生能否根据定义画出∠AOE的对顶角.
(2)学生能否找出图中对顶角、邻补角.
难点
“对顶角相等”的探究过程.
教学流程安排
活动流程图
活动内容和目的
活动1找出图形究对顶角相等
活动4巩固练习
活动5课堂小结
布置作业
活动1观察图片,找出相交线,引入课题.
活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.
第1题学生课下讨论完成,其余各题教师批改总结.
本次活动中,教师应关注:
(1)不同层度学生的本节内容的掌握层次,有针对性地面批、面改形成较规范的说理思想.
(2)对学生普遍存在的知识模糊点,有针对性地讲解.
通过活动5,可以让学生体会多媒体的优势以及对数学知识的应用.
通过一道开放性的习题,由直观的几何图形巩固学生对对顶角及邻补角概念的理解,通过画图提高空间想象能力.这个问题可帮助学生突破本节难点.本问题同时起到对本课的小结作用.
设计意图
活动1
问题
找出图中的相交线、平行线.
教师出示一组图片.
学生观察图片,找相交线、平行线,引出本节课题.
在本次活动中,教师应重点关注:
(1)学生从简单的具体实物抽象出相交线、平行线的能力.
(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.
(3)学生学习数学的兴趣.
让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.
为学生提供个性化发展的空间,及时了解学生的学习效果,使学生养成独立思考、反思学习过程的习惯.
解决
问题
通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.
情感
态度
1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.
2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.
重点
对顶角的概念,“对顶角相等”的性质.
学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.
在本次活动中,教师应关注:
(1)学生能否根据课件演示进行独立思考.
(2)学生在思考后能否形成自己的看法并表达出来.
通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.
问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.
相关文档
最新文档