FSAE赛车进气系统改进设计
FSAE方程式赛车进气系统设计
FSAE 方程式赛车进气系统设计Design on intake system of FSAE racing car汤 沛1,2,倪骁骅1,赵雪晶1,刘 锐2,魏民祥2TANG Pei 1,2, NI Xiao-hua 1, ZHAO Xue-jing 1, LIU Rui 2, WEI Min-xiang 2(1.盐城工学院 汽车学院,盐城 210016;2.南京航空航天大学 能源与动力学院,南京 210016)摘 要:研究分析S.FSAE方程式赛车进气总管的渐缩角与扩张角、稳压腔的容积大小以及进气歧管的内径与长度对充气效率的影响关系。
结合CATIA软件绘图、FLUENT软件对赛车进气系统进行流场分析,运用GT-POWER软件仿真试验得出优化数据。
分析结果得出进气总管的渐缩角为18°、扩张角为6°、进气歧管的长度为180mm、稳压腔体积为2.9L时进气效果最优。
关键词:FSAE方程式赛车;进气系统;优化设计中图分类号:TK413 文献标识码:A 文章编号:1009-0134(2016)11-0033-04收稿日期:2016-09-09基金项目:江苏省普通高校研究生科研创新计划(KYLX-0244)作者简介:汤沛(1981 -),男,江苏盐城人,博士研究生,主要从事发动机仿真设计工作。
0 引言自2010年第一届中国FSC 比赛以来,中国FSC 始终致力于培养国内优秀汽车人才,考验未来一批汽车人的各方面能力。
中国FSC 比赛规定赛事所用发动机排量小于600cc ,且在进气系统的进气总管处设有20mm 的限流阀;同时也规定出进气顺序为:空滤—节气门—总管(内设限流阀)—稳压腔—歧管—发动机。
在以上这些限制条件下,设计出的赛车要取得更好的成绩,并能使发动机工况处于最佳状态,这就要求进气系统做出更合理的设计,并尽可能提高充气效率。
本次的研究目的主要是对进气系统进行优化设计,并验证优化结果。
FSAE赛车发动机进气系统优化设计
元分析、 F l u e n t 软件仿真分析 . 对进 气系统做 了结构和力学性能方面的优化。
[ 关键词 ]F S A E赛车 ; 进气 系统; 仿 真; 优化 [ 中图分类号]T K 4 1 3 . 4 4 [ 文献标志码]A [ 文章编号 ]1 6 7 3 — 3 1 4 2 ( 2 0 1 3 ) 0 9 — 0 0 2 0 — 0 5
t h e i n t a k e s y s t e m a n d t h e p a r a me t e r s o f t h e r e l e v a n t p a r t s ,e n g i n e mo d e l w a s c o n s t uc r t e d a n d s i mu l a t e d o n G T — p o we r s o f t w a r e t o d e t e r mi n e t w o p a r a me t e r s o f t h e l e n g t h o f t h e a i r i n t a k e ma n i f o l d a n d t h e v o l u me f o t h e p r e s s u r e s t a b i l i z i n g c a v i t y . T h e 3 D mo d e l o f t h e i n t a k e s y s t e m wa s b u i l t a n d t h e f i n i t e e l e me n t a n ly a s i s w a s d o n e b a s e d o n CA TI A s o f t wa r e . S i mu l a t i o n f o a i r l f o w i f e l d w a s c o n d u c t e d o n t h e b a s i s o f F l u e n t s o f t wa r e . T h e r e f o r e,t h e g e o me t r y a n d me c h a n i c a l p e r f o ma r n c e s we r e o p t i mi z e d or f t h e i n t a k e s y s t e m o f t h e F S AE c a r .
毕业设计(论文)-fsae进气系统设计与分析[管理资料]
目录摘要 (1)ABSTRACT (2)0 引言 (4)1 绪论 (4)大学生方程式汽车大赛简介 (4)汽车发动机进气系统的简介 (6)定义 (6)基本构成 (6)进气形式 (7)汽车发动机进气系统发展趋势 (8)FSAE赛车进气系统与量产车比较 (11)FSAE规则对进气系统限制 (11)FSAE赛车进气系统主要构成 (13)国内外FSAE赛车进气系统现状与发展 (14)2 进气系统方案设计 (16)进气系统设计流程 (16)确定进气形式 (18)确定进气系统材料与制造工艺 (21)节气门体类型选择 (23)3 设定进气系统各部件基本参数 (25)系统参数 (25)空气滤清器 (25)限流阀开口 (26)限流阀 (26)限流阀扩散器 (27)稳压腔 (27)进气道 (29)进气管方案一 (29)进气管方案二 (30)进气管方案三 (30)方案的论证与选择 (31)利用赫尔姆霍兹(Helmholtz)进气谐振原理验算 (33)4 进气系统做流体动力学分析 (35)分析软件介绍 (35)模型网格划分与边界条件初步定义 (37)整体分析 (38)进气管方案二整体分析 (38)进气管方案三整体分析 (40)确定进气系统方案 (42)扩散器理想锥角的CFD模拟 (42)6°锥角扩散器分析 (42)7°锥角扩散器分析 (44)8°锥角扩散器分析 (46)扩散器对比论证 (47)燃油雾化效果模拟 (48)5 进气系统制造工艺及装配 (48)零件制造 (48)装配与安装 (50)6 结论与展望 (52)结论 (52)展望 (53)参考文献 (53)译文 (53)原文说明 (71)摘要本毕业设计课题来自我校第二届FSAE赛车项目课题。
FSAE赛事中文名称为大学生方程式赛,是上世纪70年代由美国汽车工程师协会发起,三十一年以来发展至世界各地,致力于培养汽车方向的大学生各方面综合能力。
FSAE赛车发动机进气系统设计
收 稿 日 期 =2017-02-16 作 者 简 介 :郑 颖 ,主 要 研 究 方 向 :汽 车 工 程 。
( 2 ) 进 气 歧 管 长 度 和 稳 压 腔 的 体 积 。 根 据 公 式 (1 )计 算 进
气歧管的长度。
L= 3 0 a/(nq)
⑴
L a a 其 中 , 表 示 要 计 算 的 进 气 歧 管 的 长 度 ; 为 声 速 ,取 =
自 身 结 构 储 存 一 定 量 的 空 气 来 减 缓 抢 气 ,从 而 改 善 发 动 机 进
气系统的综合进气性能。
1 采 用 稳 压 腔 的 赛 车 进 气 系 统 C A TIA 模型
( 1 ) 结 构 选 择 。由 于 汽 车 的 行 驶 方 向 总 是 逆 着 空 气 的 流 动 方 向 ,所 以 进 气 系 统 最 前 端 的 撞 风 量 较 大 ,针 对 这 一 问 题 ,本 次 设 计 的 赛 车 进 气 系 统 采 用 对 称 式 的 进 气 管 结 构 ,这 种 布 置 形 式 有 利 于 各 缸 的 进 气 平 衡 ,改 善 进 气 歧 管 上 喷 油 器 的 喷 油 效 果 ,并 在 一 定 程 度 上 减 少 了 回 火 等 不 良 现 象 的 发 生 ;同 时 , 这 种 形 式 的 进 气 管 与 进 气 歧 管 上 没 有 凹 面 ,受 力 均 匀 ,增 加 了 稳压腔的刚度。
率 和 限 制 车 速 ,并 且 要 求 限 流 阀 必 须 设 置 于 发 动 机 节 气 门 和
进 气 门 之 间 。但 加 装 限 流 阀 相 当 于 增 加 了 进 气 的 阻 力 ,即 改 变
了 原 来 发 动 机 的 输 出 性 能 ;另 外 ,赛 车 发 动 机 一 般 为 多 缸 结
大学生方程式赛车设计与分析(完成)
上海工程技术大学毕业设计(毕业论文)任务书学院汽车工程学院专业机械设计制造及其自动化(汽车工程)(中美合作)班级学号062110316学生彭涛指导教师李传昌题目方程式赛车发动机进气系统设计与分析任务规定进行日期自2014 年2 月17 日起,至2014 年6 月20 日止目录摘要 (4)关键词 (4)Abstract (5)Key words (5)引言 (5)绪论 (6)1.1 课题研究背景和意义 (6)1.2 汽车发动机进气系统的简介 (7)1.2.1 进气系统定义 (7)1.2.2 基本构成 (7)1.3 汽车发动机进气系统发展趋势 (7)1.4 进气限流情况下提高进气效率技术的研究现状 (8)1.5 研究内容 (8)1.6 进气系统系统概述 (9)1.6.1 进气系统结构参数对充气效率的影响 (9)1.6.2 进气管长度对充气效率的影响 (9)1.6.3 FSAE规则对进气系统限制 (10)1.6.4 赛车进气系统主要构成 (11)2 进气系统方案设计 (11)2.1 进气系统设计流程 (11)2.2 确定进气系统材料与制造工艺 (13)2.3 节气门体类型选择 (14)3 设定进气系统各部件基本参数 (15)3.1 系统参数 (15)3.2 空气滤清器 (15)3.3 限流阀开口 (16)3.4 限流阀 (16)3.5 限流阀扩散器 (17)3.6 稳压腔 (17)3.7 进气道 (18)3.8设计要求 (18)3.8.1 进气方案 (18)3.8.2 进气管形式 (19)4 各部件基本参数设计 (21)4.1 节气门口径 (21)4.2 进气总管长度 (21)4.3 稳压腔体积 (22)4.4 进气歧管长度 (22)5 流场分析 (22)5.1 分析软件介绍 (22)5.2 模型网格划分与边界条件初定义 (23)5.2.1 进气总管分析 (23)5.2.2 稳压腔分析 (25)5.2.3 进气歧管长度分析验证 (29)6 进气系统装配 (29)7 结论与展望 (31)参考文献 (32)大学生方程式赛车进气系统设计与分析车辆工程专业彭涛指导教师李传昌摘要:本设计是针对我院2014年FSAE赛车发动机进气系统的优化设计与仿真研究。
FSAE赛车发动机进排气系统优化设计
·2019 中国汽车工程学会年会优秀论文(选登)·
FSAE 赛车发动机进排气系统优化设计*
芮宏斌 张帅帅 史洋鹏 蔡斌 郑文哲
(西安理工大学 机械与精密仪器工程学院,西安 710048)
【引用】芮宏斌,张帅帅,史洋鹏,等. FSAE 赛车发动机进排气系统优化设计[J].汽车文摘,2019(10):34-39. 【Citation】Rui H., Zhang S., Shi Y., et al. Optimization of Engine Intake and Exhaust System in A FSAE Racing Car[J]. Automotive Di⁃ gest (Chinese), 2019(10):34-39.
Key words: FSAE, Engine intake and exhaust system, Simulation, Optimization
0 引言
发动机的进排气系统设计对车辆动力性、燃油经 济性评价指标—功率和油耗的影响较大[1]。中国大学 生方程式汽车大赛(FSAE)按赛事规则[2]要求,发动机 进气系统用限流阀的安装直径为 20 mm,这种进气系 统布置结构对发动机的动力性有较大影响,会导致赛 车在动态项目中发动机低速时扭矩和高速时功率的
【摘要】为提高 FSAE(Formula SAE)赛车的性能,对其发动机进排气系统进行数值仿真,获得优化设计方案。利用 FLU⁃ ENT 对限流阀流场进行计算,得到流量损失最小的入口和出口锥角。运用 GT-Power 软件建立发动机仿真分析模型,通过 实测外特性曲线比对验证模型的准确性;以发动机进排气系统结构尺寸作为单一变量,分析发动机进排气歧管几何参数对 发动机动力性能的影响规律,根据所得参数提出优化设计方案。通过对比分析可知优化后发动机的功率、最大扭矩均有较 大的提升,同时峰值扭矩的输出转速区域加宽,输出更加平稳,最大扭矩增加 11.6%。另外,峰值功率对应的转速点向高转 速移动,弥补了安装进气限流阀对发动机动力性能下降的影响,达到了设计要求。
FSAE赛车进气系统流场分析及优化
FSAE赛车进气系统流场分析及优化作者:库亚斌来源:《汽车科技》2017年第04期摘要:本文研究的对象是FSAE赛车的进气系统,研究主要参考目标为学校车队的赛车进气系统。
首先运用了理论分析方法查阅相关文献资料,初步建立三维模型,进行仿真分析。
然后运用单一变量分析的方法,对模型各部分参数进行仿真优化,求解出进气系统各部分的最优尺寸。
使用的工具是常用的三维软件CATIA。
对进气系统内气体的流动过程进行分析优化所使用软件为常用的有限元分析软件ANSYS Fluent。
经过分析优化得出了较为理想的FSAE赛车进气系统的流线分布图。
关键词:进气系统;流场分析;FSAE;20mm限流阀中图分类号:U464.234 文献标识码:A 文章编号:1005-2550(2017)04-0055-06Abstract: The object is FSAE car's intake system, the main reference target university research team racing intake system. First, the theoretical analysis method using access to relevant documents, the initial establishment of three-dimensional model, simulation analysis. Then use the method of univariate analysis of the various parts of the model parameters of simulation and optimization, solving the optimal size of the various parts of the intake system. Tool is commonly used three-dimensional software CATIA. Process flow within the intake system of the gas is analyzed to optimize the software commonly used finite element analysis software ANSYS FLUENT use. After analysis and optimization come to the ideal racing intake system FSAE streamline distribution.Key Words: Air intake system; The flow field analysis; FSAE; 20 mm flow-limiting valves引言大学生方程式汽车大赛(简称“FASE”)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。
大学生FSAE赛车发动机进气系统设计
大学生FSAE赛车发动机进气系统设计贺彤阳;何山;黎杰;肖国权;雷雄【摘要】利用AVL BOOST建立FSAE赛车发动机工作循环的一维模型,对其进行分析优化,确定合适的进气歧管长度、谐振腔容积等几何尺寸,并借助三维建模软件Inventor对进气系统各个部件进行建模.【期刊名称】《机械工程师》【年(卷),期】2012(000)011【总页数】4页(P20-23)【关键词】中国大学生方程式汽车大赛;发动机进气系统;BOOST【作者】贺彤阳;何山;黎杰;肖国权;雷雄【作者单位】华南理工大学机械与汽车工程学院,广州510641;华南理工大学机械与汽车工程学院,广州510641;华南理工大学机械与汽车工程学院,广州510641;华南理工大学机械与汽车工程学院,广州510641;华南理工大学机械与汽车工程学院,广州510641【正文语种】中文【中图分类】U464.1341 引言中国大学生方程式汽车大赛是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。
各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节的比赛。
发动机供给系统设计作为发动机的主要设计任务,主要包括进气系统、排气系统和供油系统设计。
发动机供给系统,特别是进气系统对于发动机性能有着非常重要的影响。
通过借鉴国外车队的经验,并进行分析对比,发现Honda 的发动机比较适合FSAE 比赛,所以决定选用Honda CBR 600 RR 这款高性能的摩托赛车发动机。
据了解,这款发动机在FSAE 赛车上的使用频率相当高,因为它的各项性能指标都非常适合这项比赛[1],但是发动机原来的进气系统和大赛规则要求[2]的结果相差很大,必须重新设计进气系统,而不能使用发动机原装的进气系统。
2 进气系统布置对于汽油机而言,进气量的多少直接决定发动机性能的高低[3]。
FSAE大学生方程式赛车发动机缸盖及配气机构设计
FSAE大学生方程式赛车发动机缸盖及配气机构设计摘要以FSAE大学生方程式赛车中最常用的HONDA CBR600-F4i发动机为例,探讨了该型号发动机中缸盖及配气机构的结构,并计算缸盖总体尺寸,凸轮型线方程式,并校核气门弹簧力。
气缸盖是提高整机性能的重要结构件之一,是发动机技术竞争的焦点。
气缸盖的气门排列方式与气道结构形式影响进气充量和气流在气缸内的运动,从而影响了燃烧效率,对整机的动力性、经济性以及排放都有直接的影响;配气机构的形式影响充气系数和整机噪声等;缸盖燃烧室决定了影响整机动力性能的压缩比ε,影响HC排放的F/V和对挤流起决定性作用的挤气面积以及挤气间隙,所以燃烧室对整机动力性、经济性、排放等都有重要的影响;气缸盖是整机热负荷与热应力最大的部件之一,热负荷过高将不利于发动机寿命以及可靠性的提高。
在实际中要特别防止发动机的局部过热,因而对缸盖必须要有充分的冷却。
关键词FSAE;发动机;缸盖;气门AbstractIn this paper, Formula in FSAE college students the most commonly used HONDA CBR600 - F4i engine as an example, discusses the model of Cylinder head and gas distribution agencies, and calculate overall size of cylinder head, equation of CAM contour line, and check valve spring force. Cylinder head is one of the core parts that affect the performance of the engine. It is the the focus of the competition. The disposal of the valves and intake manifold structure not only affect fresh air charge but airflow in the cylinder, which immediately affect combustion efficiency and the performance of dynamic, economic and emission. The structure of the air distributing institution has influence on charging efficiency and the noise of engine. The combustion chamber affects compression scale which has great influence on dynamical performance; F/V which affects the exhaust of HC; Squash area and clearance which have great influence on the intensity of squash. So, combustion chamber has great influence on dynamical performance, economical performance, emission and so on. Cylinder head is one of the highest temperature parts. Higher heat stress will lower the engine’s useful life and security. In practical, it is important to avoid local overheating. To full cool to cylinder head is necessary.Key words:FSAE; Engine; Cylinder head; The valve目录摘要 (1)Abstract (1)1 绪论 (1)1.1 FSAE大学生方程式大赛 (1)1.1.1 赛事起源 (1)1.1.2 赛事简介 (1)1.1.3 FSAE大赛的意义 (2)1.2 论文的研究背景及意义 (2)1.3 论文研究的主要内容 (3)2 发动机 (3)2.1 发动机的发展历程 (3)2.2 我国发动机发展现状 (4)2.3 提高发动机动力性的途径 (6)2.3.1 涡轮增压技术 (6)2.3.2 燃油直喷技术 (6)2.3.3 分层燃烧技术 (8)2.3.4 连续可变气门正时机构 (8)3 气缸盖 (8)3.1 气缸盖的工况及设计要求 (8)3.2 气缸盖的材料 (9)3.3 气缸盖结构形式的选择 (9)3.4 进排气道的布置 (10)3.5 气缸盖螺栓的布置 (11)4 气缸盖罩4.1进气门室罩4.2排气门室罩4.3盖板5配气机构 (13)5.1 配气机构的作用及要求 (13)5.1.1 配气机构的功用 (13)5.1.2 配气机构的要求 (13)5.2 配气机构采用的新技术 (14)5.2.1 顶置凸轮轴技术 (14)5.2.2 多气门技术 (14)5.2.3 可变气门正时配气机构(VV A) (15)5.3 总布置设计 (15)5.3.1 气门的布置形式 (15)5.3.1.1 气门顶置式配气机构 (15)5.3.1.2 凸轮轴的布置形式 (15)5.3.1.3 凸轮轴的传动方式 (16)5.3.1.4 每缸气门数及其排列方式 (16)5.3.1.5 气门间隙 (16)5.3.2 配气定时工作原理 (16)6配气机构的零件和组件 (17)6.1 气门 (17)6.2 凸轮型线设计 (19)6.2.1 简介 (19)6.2.2 缓冲段设计 (19)6.2.3 工作段设计 (20)6.3 气门弹簧设计 (23)6.3.1 气门弹簧特性的确定 (23)6.3.2 气门弹簧基本尺寸的确定 (23)6.3.2 弹簧的疲劳强度校核 (24)6.3.3 弹簧的振动校核 (24)参考文献 (28)设计总结 (28)致谢 (27)附录1附录21 绪论1.1 FSAE大学生方程式大赛1.1.1 赛事起源FSAE方程式(Formula SAE)系列赛源于1978年。
FASE方程式赛车进气系统设计说明书
进气系统设计说明书前言第一章设计要求1.1 FSEA关于进气系统的主要要求第二章进气方案2.1 进气系统基本结构2.2 进气形式2.3 进气管形式2.3.1 方案一2.3.2 方案二2.3.3 方案三第三章各部件基本参数设计3.1 节气门口径3.2 进气总管长度3.3 稳压腔体积3.4 进气歧管长度第四章流场分析4.1 分析软件介绍4.2 模型网格划分与边界条件初定义4.3 进气总管分析4.4 稳压腔分析4.5进气歧管长度分析验证第五章加工装配5.1 加工装配前言本设计课题来自我校中国大学生方程式汽车大赛项目课题。
该赛事意在培养汽车工程方向及相关专业的在校大学生、研究生的创新力,团队协作能力。
在为期8-12个月的时间里完成一辆小型方程式赛车的设计与制造,并成功完成比赛。
该赛事从2010年在中国开始举办,我校成功完成了2011赛季。
本文结合了2011年宁远车队的设计经验,完成了2012赛季的进气系统的设计与优化。
第一章设计要求1.1 FSAE规则对进气系统的限制○1进气系统必须不能超出外框○2节气门必须为机械控制○3进气歧管必须用支架或机械固定○4为限制发动机功率,一个内部截面为圆形的限流阀必须安装在进气系统的节气门与发动机之间,并且所有发动机的进气气流都应流经此限流阀(最大直径20mm,且截面不能发生变化)第二章进气方案2.1 进气系统基本结构进气系统包含了空滤器、节气门、进气总管、进气歧管、进气门。
由于规则的限制,进气系统的设计主要体现在进气总管和进气歧管上,这两部分需要加工制作。
2.2 进气形式进气方式主要分为三大类:○1自然进气:引擎的运作在气缸内产生的负压,将外部的空气吸入气缸内。
这是汽车最传统进气方式,动力输出平稳,维护简单,但在高转速下乏力。
○2涡轮增压:涡轮增压器的两侧涡轮叶片连接发动机的进气管和排气管,在引擎运作的情况下,利用排出的废气推动排气涡轮叶片,从而带动进气涡轮叶片吸入空气,利用离心增压原理达到增压的效果。
基于FSAE亚翔LD450发动机进气的优化
基于FSAE亚翔LD450发动机进气的优化摘要:为了满足FSAE赛事对于发动机性能的需求,本文针对如何基于民用发动机的基础上,通过对进气系统的优化和改造来实现动力性能的提升。
过使用GT-POWER软件建立进气歧管的长度模型,并通过流体力学分析理论,使用FLUENT计算软件对完整的进气系统部件进行流场分析,通过比较不同的进气稳压腔容积和进气歧管长度下对于进气效率的影响,最终基于最佳点建立最优的模型。
同时如何在保证最佳的进气设计走形时还能保持对其他赛车部分不产生运动干涉。
关键词:运动干涉、稳压腔容积、进气歧管长度、FSAE中图分类号:文献标识码:AYa Xiang LD450 optimization FSAE engine intake based Abstract: In order to meet the needs of FSAE race for engine performance, this paper how the engine based on a civil basis, through the intake system optimization and transformation to achieve dynamic performance improvement. By using GT-POWER model software to establish the length of the intake manifold, and by hydrodynamic theory, calculated using the FLUENT software to complete intake system components flow field analysis, by comparing different intake and intake chamber volume regulator under the length of the intakemanifold effects of the gas efficiency, and ultimately the best model based on the best spot to build. How can maintain while in other parts of the car is not in motion to intervene in the design to ensure the best out of shape when the intake.Key words:Movement interference、he regulator chamber volume、the length of the intake manifold、FSAE1.引言FSAE大学生方程式赛车比赛现今成为各大高校中最受欢迎的赛事之一,其中发动机性能的优劣往往是成败关键的主要因素之一。
FSAE赛车空气动力学套件优化设计
文章编号: 1009 − 444X (2021)01 − 0053 − 08FSAE 赛车空气动力学套件优化设计李嘉寅 ,刘宁宁 ,沈钰豪 ,谭博文 ,陈 焕 ,薛雨晴 ,黄碧雄(上海工程技术大学 机械与汽车工程学院,上海 201620)摘要:空气动力学作为赛车的关键领域,很大程度影响着赛车各方面性能. 在满足中国大学生方程式汽车大赛(Formular Student China ,FSC )规则(2019赛季)的前提下,提出一种赛车空气动力学套件的改进优化方案. 使用数值累进法和控制变量法的优化方法,并通过计算流体动力学(Computational Fluid Dynamics, CFD )进行仿真,设计完成一套性能优异的空气动力学套件.与2018赛季车辆相比,该设计使赛车的负升力和的升阻比分别提高81%和91%,极大提升了整车的动力学性能.关键词:大学生方程式汽车大赛;空气动力学;计算流体动力学中图分类号: TH 122 文献标志码: ADesign and Optimization of AerodynamicsParts on a FSAE VehicleLI Jiayin ,LIU Ningning ,SHEN Yuhao ,TAN Bowen ,CHEN Huan ,XUE Yuqing ,HUANG Bixiong( School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China )Abstract :Aerodynamics, as a significant field of racing car, largely affects all aspects of racing performance.The aerodynamics properties of the new season was redesigned on the premise of meeting the rules of Formula Student China (FSC) in season 2019. By using numerical progressive methods and control variate method to optimize, and carrying computational fluid dynamics (CFD) to simulate, a set of aerodynamics parts with outstanding performance was designed and completed. The results show that compared to the season 2018, the new design not only increases the downforce and lift-to-drag ratio of the racing car respectively by 81% and 91%, but also greatly improves its kinetic performance.Key words :formula society of automotive engineers (FSAE);aerodynamics ;computational fluid dynamics (CFD)大学生方程式赛车大赛(Formula Society of Automotive Engineers ,FSAE) 由国际汽车工程师学会(Society of Automotive Engineers (SAE)International)于1978年开办,在当今世界内被视作大学生的“F1方程式赛车”,该赛事不只是单纯的竞速比赛,更是一项考察车辆性能设计的比赛.参赛者需要根据比赛规则在规定时间内设计制作一辆性能优异的方程式赛车.收稿日期: 2019 − 04 − 18基金项目: 上海市大学生创新创业活动计划资助项目(E3-0800-18-01205)作者简介: 李嘉寅(1998 − ),男,在读本科生,研究方向为车辆工程. E-mail :****************通信作者: 刘宁宁(1987 − ),男,实验师,硕士,研究方向为车辆NVH 测控技术. E-mail :****************第 35 卷 第 1 期上 海 工 程 技 术 大 学 学 报Vol. 35 No. 12021 年 3 月JOURNAL OF SHANGHAI UNIVERSITY OF ENGINEERING SCIENCEMar. 2021赛车同其他车辆一样,是一种高度复杂的空气动力学装置. 由于其较小的离地间隙,导致周围的气流更加复杂,使得赛车在行驶中产生更多的阻力和紊流. 在悬架、轮胎、动力方面已经改进的情况下,良好的空气动力学套件(以下简称空套)则可以极大提高赛车性能. 其主要目标是在引进较小阻力的前提下提供较高的下压力来增加汽车的抓地力,产生牵引力. 空气动力学下压力作为赛车性能中最重要的因素之一,在制动、转向、加速度等方面有着无可比拟的作用[1].由于气动力不同于惯性力,空套可以在较小质量增加(套件的自重)的条件下,极大增加机械抓地力,从而提高轮胎的工作效率,获得更好的路面附着条件. 目前,国外的空气动力学套件设计已步入研究整车流场平衡的阶段,而国内的相关研究虽起步较早,但近几年发展缓慢,绝大部分对空套的设计研究仍只停留在简单的翼型选择和最大限度榨取总气动负升力(即下压力)上,很少关注气动平衡对车辆动力学以及赛车底盘调教策略产生的影响.上海工程技术大学锐狮电动方程式赛车队于2017年首次引入空气动力学套件,并完成整套设计、加工、装配流程. 本文基于往届赛车的设计基础,对组合翼各翼片攻角进行优化,并将研究重点深化至气动平衡上,在设计之初就将各套件之间的影响考虑在内,以期解决前后下压力的分配不合理、上游套件对下游套件影响过大等问题.1 研究方法赛车空气动力学套件最基础和主要的组成部分是翼型. 翼型参数包括弦长、倾角、攻角、展宽比、前后缘半径等. 考虑设计成本因素,优化攻角远比从数不尽的翼型库中挑选最合适的翼型有效率得多. 良好的攻角设计组合不仅可以提供较大的下压力,而且不会产生过多阻力. FSAE赛车多采用组合翼来提高翼片获取下压力的上限,组合翼中各个翼片存在相对几何关系:主翼攻角、襟翼相对攻角、缝道(Gap)水平距离、缝道竖直距离.然而在实际设计中,这些相对几何关系都较为复杂,与最后产生的下压力并不呈现明确的线性关系,这使得设计变成多变量问题.计算流体力学(Computational Fluid Dynamics,CFD)有限元分析方法能够执行CAD模型的理论测试计算. 虽然其精度比不上风洞试验,但却克服了后者的局限性. 目前,CFD可以分析从层流到湍流、定常到非定常、不可压到可压、无黏到有黏的几乎所有的流动现象[2]. 一般来讲,物体表面流体的未知量包括:流体在X、Y、Z方向上的速度、流体密度、温度和压强. 一般在赛车空气动力学中,密度和温度视为常量. 本质上,CFD通常是计算物体表面流速的改变. 本文将主要对各套件的组合翼攻角等进行优化设计分析,从而获得一套性能优异的空气动力学套件.2 模型建立及前处理2.1 三维模型2018赛季整车CAD模型如图1所示. 本研究在其设计基础上保留优良翼型及整体布置思路,然后在理论研究基础上,对空气动力学套件进行概念设计和优化选型;之后利用CATIA软件进行设计建模,前翼主翼选取升力系数和最大厚度较为均衡的AH 79-100B为翼型,通过宏命令精确导入到CATIA中. 为增大底板气流流量并减少底部能量的损失,主翼采用抬高前翼中部的变截面设计,建模使用多截面曲面功能一次成型. 襟翼的设计尽量在不损失前翼下压力的前提下减小近车身侧的弦长并提升内侧翼型的攻角,以达到将外侧气流抽吸至内侧的目的,在CATIA中同样采用变截面曲面来实现建模. 2019赛季整车CAD模型如图2所示.图 1 2018赛季整车CAD模型Fig. 1 CAD model of whole vehicle in season 2018考虑到CFD分析的时间效率,对车身及车体外部的驾驶员头盔和轮胎进行简化处理. 本文主要针对空气动力学套件进行设计分析,通过对阻· 54 ·上海工程技术大学学报第 35 卷塞比的计算得出计算域的大小:计算域长度为尾翼的10倍,高度为翼面半宽的5倍,以此保证不会出现回流,进而确保分析精度[3].2.2 控制方程和湍流模型结合赛事实际行驶工况,赛车车速一般为60 km/h ,空气密度变化不大,可以近似看成是常数,因此尾翼周围空气为不可压缩流体[4]. 根据雷诺理论,流动属于湍流,因而赛车空气动力学套件气动力的模拟属于求解湍流流动问题,采用的控制方程为三维不可压缩的雷诺平均连续方程和雷诺平均N-S 方程,即u ′i u ′j 式中:u i 为略去平均符号的雷诺平均速度分量;ρ为密度;p 为压强;、为脉动速度;σij 为应力张量分量.湍流模型采用Realizable k -ε模型[5],该模型有利于代表各种不同尺度涡间能量谱的传递,可以有效用于不同类型的流动模拟. 该模型包括湍流动能(k )方程和湍流耗散率(ε)方程. 关于k 的湍流动能方程为关于ε的湍流耗散方程为其中式中:μt 为湍流黏度;v 为运动黏度;ρ为密度;G k 为平均速度梯度引起的湍动能的生成项;G b 为浮力引起的湍动能的生成项;Y M 为可压缩湍流对总体耗散率的脉动膨胀的贡献项;C 2、C 1ε和C 3ε为常数;σk 与σε为关于k 与ε的湍流普朗特数;S k 与S ε为CFD 用户自定义源项;S 为平均应变率张量模量. 由于Realizable k -ε在湍流黏度计算中引入旋转和曲率有关的内容,并且ε方程的第3项不具有奇异性,这与Standard k -ε模型和RNG k -ε模型有很大区别[6].在CFD 模拟中对尾翼,前翼等空气动力学套件附近的流动特征、下压力和升阻比进行分析. 然后在完成优化的基础上进行整合计算,得到整车分析数据. 根据整车分析结果确定最终方案,并且将最终优化方案用于实车制造并进行实车性能测试.2.3 模型前处理使用STAR-CCM+完成计算域和网格的绘制,分析尾翼的计算域网格如图3所示.图 2 2019赛季整车CAD 模型Fig. 2 CAD model of whole vehicle in season 2019(a) 外部YZ X图 3 计算域网格Fig. 3 Computational domain grid第 1 期李嘉寅 等:FSAE 赛车空气动力学套件优化设计· 55 ·网格大小的计算根据边界层计算器输入Y+=30,得出雷诺数Re=1×106. 下边界层总厚度d为0.021 6 m,计算得到外部体网格的单元格目标大小约为0.1 m. 由于不同的流动问题数值解法不同,需要的网格形式有一定的区别,但生成网格的方法基本一致. 网格可以分为结构网格(Structured Grid)和非结构网格(Unstructured Grid)两大类. 结构网格在空间上比较规范,网格往往是成行成列分布的,行线和列线明显;而非结构网格在空间分布上没有明显的行线和列线. 外流场计算常用的体网格类型有四面体网格(Tetrahedral Mesh)、Trimmed网格、多面体网格(Polyhedral Mesh)和边界层网格(Prism Mesh)[6].考虑到赛车造型复杂,使用非结构性网格,网格中的每个元素都可以是二维多边形或者三维多面体,其中最常见的是二维三角形以及三维四面体. 这里使用STAR-CCM+中多面体网格,其结合了四面体网格划分速度快和六面体网格精度高的特点,单个网格可同时与相邻的12或14个网格进行交互,这也极大减少了网格的数量,加快了计算效率,通常多面体网格的收敛速度比四面体要快接近一倍,比六面体也要快40%.2.4 边界条件参考文献[7],边界类型有进口(Inlet),出口(Outlet)、对称面(Symmetry)和壁面(Wall). 进口设置为速度进口(Velocity inlet),速度进口湍流强度为0.5%,湍流速率=4×计算域面积/计算域周长,流速u为16.67 m / s,出口设置为压力出口(Pressure outlet),压力出口的湍流强度设置为0.5%,湍流速率=4×计算域面积/计算域周长. 为使仿真更贴近实际,地面设置为滑移壁面,滑移速度为16.67 m / s,车轮设置为旋转壁面,在地面上做纯滚动. 介质设定为空气.3 CFD优化分析3.1 前翼优化设计前翼是安装于赛车前部的空气动力学装置,为赛车前部提供下压力. 同时,前翼能够很大程度上影响前轮的升阻系数,其能够引导赛车前方的气流绕过前轮从而减少前轮大量的阻力.由于FSAE赛规中有前翼外侧离地250 mm的限制,从赛车的正投影面来看,前翼并无法完全遮挡前轮,所以需要特殊的设计来尽量引导气流绕过前轮. 就整车流场的层面而言,前翼所产生的升流会影响下游组件的工作效率,而前翼作为产生下压力的组件,这种影响不可避免,故设计中应在不过多减少下压力的情况下尽可能减小前翼的升流,前翼的下压力分配对于拥有不同转向特性的赛车也有所不同.2019年的新赛车采用前翼主要起引流作用并减少对下游组件干扰从而使侧翼下压力最大化的设计思路,同时通过尽可能多的外洗气流减少前轮迎风阻力并增加前翼的效能,设计效果如图4所示. 通过对变截面翼型的利用,减小前翼近车身侧的弦长和攻角从而减少前翼的上升气流对于下游组件的影响[6]. 该翼型还能有效增加前翼的外洗效应,减小轮胎的阻力.图 4 2019赛季赛车前翼Fig. 4 Front wing of season 2019前翼部分迹线图如图5所示. 图中深蓝色区域为前翼下翼面的低压区,由于三维流场中水平方向也存在压力流动,即翼尖涡效应,所以低压区并没有遍布整个下翼面. 为降低前翼对尾翼的影响,其攻角和弦长的减小必然会造成前翼下压力的减小,为弥补下压力的损失,主翼上安装竖直的旗翼,同时竖直旗翼能够进一步强化前翼端板对于该整体区域的气流外洗,起到减少前轮阻力,增强前翼的抽吸能力,从而在不改变弦长和攻角的情况下起到进一步提高前翼升力系数的作用.设计中为尽可能减小前翼对下游组件的影响,前翼中央采用负攻角并上抬翼面以减小前翼中部静压的大小,改善前翼对下游气流的损耗. 赛车前翼压力云图如图6所示. 从图中可以看出,中部静压明显小于侧边. 在CFD软件中,将迎风速度设置为16.67 m / s,得到2个版本赛车前翼的相关结果见表1. 与2018年赛车相比,2019年赛车前翼的下压力和对前轮的影响有相当程度的提高.· 56 ·上海工程技术大学学报第 35 卷1.713X Y Z7.44513.17818.91124.64330.376−1 200−868−536−204128460速度 / (m·s −1)压力系数图 5 赛车前翼部分迹线图Fig. 5 Part of track diagram of front wingXY Z −1 200−868−536−204128460压力系数图 6 赛车前翼压力云图Fig. 6 Pressure contour of front wing表 1 前翼分析数据表Table 1 Front wing analysis data table赛车版本负升力 / N 前轮迎风阻力 / N2018年120902019年210153.2 侧翼及扩散器优化设计侧面扩散器和尾部扩散器现已成为FSAE 赛车产生较大下压力的关键元素,其本身产生的阻力较小,在地面效应的影响下对整车的下压力提升有着至关重要的作用,且这部分设计在FSAE 中有很多应用前景,侧翼的添加,减少了扩散器壁面上气流的分离,提升临界扩散角的大小,能够有效提升侧面扩散器产生下压力的能力. 侧翼及扩散器的设计效果如图7所示. 侧翼最大程度上利用侧面空间,最大化扩散角的值,同时尽可能扩大扩散器入口的大小以获得更多气流的加速. 同时后轮附近的侧翼能够有效抑制后轮生成的乱流,减少后轮的阻力.3.3 尾翼优化设计尾翼一般使用组合翼的设计方案,通过各翼之间的引流可以让襟翼在较大的攻角下不会轻易失速,同时组合翼之间的位置调整也可以减少能量损失. 2019赛季赛车尾翼主要以获得最大的下压力作为主要目的,并具有对其他部件影响不敏感的特性. 因此通STAR-CCM+仿真试验了不同的翼型,相对攻角及间隙来确定组合翼之间的最优相对位置[8],同时在分析中加入头枕及头盔模型使其更加接近尾翼真实的工况. 最终设计效果如图8所示.图 8 2019赛季尾翼Fig. 8 Rear wing in season 2019在尾翼翼型方面,主翼选取弯度较大且升力系数在低速时较大的CH10. 襟翼在弯度不同的翼型中通过控制变量试验得到;出于对节省计算资源的考虑,且尾翼试验流动复杂程度低,故使用1/2尾翼模型完成CFD 仿真,实际下压力为表格数据的2倍,仿真数据见表2.表 2 翼型分析数据表Table 2 Airfoil analysis data table翼型负升力(相同攻角和来流速度) / NS1223278.8Clark-Y132.8综上选用S1223作为襟翼的翼型. 考虑到CFD 分析效率及问题导向,在保证复合实际工况的条图 7 侧翼及扩散器Fig. 7 Sidepods and diffuser第 1 期李嘉寅 等:FSAE 赛车空气动力学套件优化设计· 57 ·件下对分析对象进行简化,即取含头盔、座枕在内的尾翼区域局部模型进行分析,分析结果如图9和图10所示. 从图9可见,端板的保压效果非常可观,也从侧面反映了上下翼面的压力分布.−1 350−980−610−204130500压力系数XYZ图 9 尾翼局域分析压力云图Fig. 9 Local analysis pressure contour of rear wingX YZ −1 200−880−560−24080400压力系数图 10 压力云图截面图Fig. 10 Cross section of pressure contour同理,选取最佳的相对攻角. 假设主翼与第1片襟翼的相对攻角为∠1,第1片与第2片襟翼的相对攻角为∠2,仿真数据见表3. 使用1/2尾翼作为仿真对象,从表中可见,负升力为实际的一半.表 3 组合攻角分析数据表Table 3 Angle of attack analysis data ofmultiple-element wings序号∠1 / (°)∠2 / (°)负升力 / N 13236139.623336140.233436141.443437142.253438142.863439142.0由分析结果,最后选用34°、38°的相对攻角,1/2组合翼的负升力达到142.8 N ,即整体在16.67 m / s迎风速度下压力为285.6 N. 为增加扩散器的抽吸能力,提升扩散角的大小,在端板底端安装梁翼(Beam wing ),将尾翼整体的环量下移,在尽量不影响组合翼本身下压力的前提下,加强尾翼与扩散器的互相作用,提升整车的空气动力学效应. 本文中梁翼由于尺寸过小,并未起到较大的作用. 若想获得更好的效果,可以设计弦长更大的梁翼,但仍要考虑其对尾翼主翼下翼面压力分布的影响.从图10可知,驾驶员的头盔与头枕也对尾翼产生了些许影响,主翼前缘下部的低压区域呈现不自然的向后扭曲. 由于头枕位置和人机由总布置所定,并不能做太大变化,只能通过对尾翼的调整来尽可能地减小影响. 结合图10及空气动力学湍流理论可知,流体绕一定攻角的翼型流动时,会在翼型前缘背风面某处脱体,形成顺时针旋转的前缘涡,同时在后部尖缘处形成逆时针旋转的后缘涡,前缘涡与后缘涡之间存在剪切层. 随着前缘涡与后缘涡的发展和相互作用,翼体绕流的流态呈周期性变化,这一点在尾翼表现尤为明显. 为避免边界层分离,可以在后期引进被动流动控制技术,例如涡流发生器改善局部的流体状态.3.4 端板优化设计端板作为赛车中不可或缺的一部分,不只是用来隐藏翼型轮廓或作为赞助商标牌. 它最重要的一点是可以确保翼片不会出现较大的负升力损失,同时减少阻力. 如果没有端板,由于上翼型上下表面压差,空气会从高压侧迁移到低压侧造成压力损失[9]. 在端板布置方面,由于翼型上方静压升高比翼型下方静压降低要小得多,因此,机翼的影响在其下方比在其上方延伸得更远,这意味着需要在翼片的下方有更大的端板面积.前翼端板首要的目的是为了稳定压差进行保压,由于前翼安装位置的特殊性,其受到地面效应影响,所以端板保压作用好坏直接决定了前翼升力系数的大小,因此端板上安置有不同种类的保压条. 由前翼的CFD 仿真可得,在无保压组件的情况下,前翼负升力为189 N ;在有保压组件的情况下,前翼负升力为210 N ,提高将近11.11%的负升力. 同时前翼端板除了稳定压差外还需要拥有良好的引流特性,引导流向前轮的气流使其偏转到外侧或底部,从而达到减小前轮阻力的效果.尾翼端板同样可以通过一些附加组件或细节修改来加强其性能,2019与2018赛季赛车尾翼端· 58 ·上 海 工 程 技 术 大 学 学 报第 35 卷板都加装了前缘缺口,如图11所示. 与前翼端板类似,尾翼端板的作用之一便是保压,而前缘缺口削减了端板的面积,从而降低了保压效果,并使得下压力小幅减少;但在侧风偏航车况下,前缘开口能成为来流进入尾翼的通道,缓解此工况下尾翼下压力由于来流不足而降低的问题,减小其空气动力学敏感度,增强了稳定性.X YZ−1 200−880−560−24080400压力系数图 11 2019赛季赛车尾翼端板压力云图Fig. 11 Pressure contour of rear wing’send plate in season 2019扩展来讲,理想的尾翼板大小取决于翼型的下压力水平,下压力较低的尾翼组合产生较小的压力变化,故对周围空气压力影响延伸的距离较小,可以使用较小的端板,反之亦然. 故2019年赛车的尾翼端板长度相较2018年的尾翼端板延长约30%.4 整车结果分析与对比图12为整车迹线图,由图可知,整车流线型良好,仅在车轮后方及车身尾部形成较大涡流. 前翼有明显外洗,中部上洗较少,符合预期设计,可有效降低前轮产生的紊流并增强前翼的抽吸作用,保证侧面扩散器有更多高能气流进入,且可看出相比尾翼影响不大. 3层尾翼的设计使气流能够更加贴合后方翼型,长端板保证了尾翼的保压效果,做到了先期预期能达到的最大下压力.2019年赛车在装配优化设计的空气动力学套件后,空气动力学指标都有较大提升,见表4. 首先负升力升高至原来的181%,增加明显,但是2019年赛车的阻力系数也增加33.66%,这是由于负升力的升高会导致压差阻力的升高,也可以说是获取下压力的代价之一. 升阻比是反映赛车空气动力学效率的一个重要指标,通过比较2版赛车可以发现,2019年赛车拥有更高效率的空气动力学套件,迎风面积的骤减也是其获得高效率的原因之一. 通过对赛车总布置以及造型的优化,相比2018年赛车,2019年赛车可有效减少过去只增加外形阻力的“无用”区域,并将它们转变为带有翼的空套部件区域.表 4 整车分析数据表Table 4 Vehicle analysis data sheet赛车版本负升力 / N阻力系数升阻比迎风面积 / m2 2018年380.1 1.01 1.45 1.3122019年686.5 1.35 2.77 1.046在气动平衡方面,2018年赛车未做出相关优化,风压中心(前后气动力平衡轴)相比重心位置(车长45∶55位置处)严重靠前,即前翼下压力占比过大. 2019年赛车对此进行了考量,最终的设计方案中,通过CFD软件去计算整车相对于过重心点水平轴气动力矩(C m)来判断风压中心距离重心的远近,最终经过软件计算所得气动力矩仅为10 N·m,可将其视为与重心基本重合.由此可见,通过正确的优化方法和设计思路来引导设计,最终能收获一套高性能的大学生方程式赛车的空套优化方案.5 结语本文分别对各空气动力学套件进行优化设计,并最终通过整车分析进行方案的验证. 结果表明:2019年赛车在负升力和升阻比的设计上进一XYZ6.11212.22418.53724.44930.561−1 000−750−500−2500250速度 / (m·s−1)压力系数图 12 整车迹线图Fig. 12 Full vehicle track diagram第 1 期李嘉寅等:FSAE赛车空气动力学套件优化设计· 59 ·步优化,负升力提升达到2018年的181%;前翼的外洗效应可以有效减少前轮紊流,并且能够显著提升前翼的升阻比和下压力;尾翼端板、相对攻角和间隙是影响其下压力的3个显著要素;侧翼和扩散器能对赛车的下压力提升起很大的作用,并同时提升前翼和尾翼的工作效率.2019年赛车的空气动力学套件的优化使得负升力和升阻比相比2018年赛车有较大的进步,对赛车性能有显著的提升,对赛车后续的设计优化具有指导实践意义.参考文献:MCBEATH S. Competition car aerodynamics [M ] . 3rdEdition. England: Veloce Publishing Limited, 2017: 8.[1]傅立敏. 汽车设计与空气动力学[M ] . 北京. 机械工业出[2]版社, 2010: 1−25;.吕立坤. 扰流板对轿车气动特性改善的数值仿真[D ] . 长春: 吉林大学, 2006.[3]王福军. 计算流体动力学分析[M ] . 北京: 清华大学出版社, 2004: 185−253.[4]WILCOX D C. Turbulence modeling for CFD [M ] . 2ndEdition. La Canada: DCW Industries, 1998: 174.[5]孙文. 基于CFD 的低速赛车前后翼设计[D ] . 长沙: 湖南大学, 2016.[6]杨炜, 谢睿轩, 曹子浩, 等. 大学生方程式赛车空气动力学套件改进[J ] . 中国科技论文,2018,13(17):2050 − 2054.[7]邓召文, 王兵. FSC 赛车空气套件CFD 优化设计[J ] . 汽车实用技术,2014(3):22 − 27.[8]曾飞云. 万得FSC 赛车空气动力学特性研究[D ] . 锦州:辽宁工业大学, 2014.[9](编辑:韩琳)• 科研快讯 •我校李文尧副教授带领的先进储能与传感材料团队在国内主办的中科院一区期刊Green Energy & Environment 上发表了以“Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions”为题的研究成果.20世纪以来,国内经济的快速发展和能源消耗,迫切需要大力发展清洁可再生的清洁能源推动未来经济发展,氢能作为一种可再生能源,成为未来能源发展的重要角色之一. 电解水析氢是氢能获取的主要途径,在这项研究工作中,该团队利用过渡金属掺杂和调控策略合成一种Co-Mo-P 化合物(非均相Co x Mo 1−x P 纳米阵列),发现通过掺杂形成的包含两种掺杂的化合物的金属磷化物和金属氧化物的纳米片层,以不完全磷化的状态和掺杂的氧化物共存的形式能有效提升电催化剂析氢能力,同时可通过调控不同金属的掺杂比例来优化催化性能. 发现Co 、Mo 金属掺杂的结构有效降低电解水析氢(阴极端)和析氧(阳极端)的电位. 最终,获得材料作为析氢催化剂获得的过电位只有51.2 mV (10 mA•cm −2时). 同时,作为另一极电催化析氧催化剂也获得了较低的过电位353 mV (10 mA•cm −2时). 此外,在20 h 稳定性测试过程中性能基本不变,并且作为电解水的阴阳极,获得的全水解的过电位只有1.603 V (10 mA•cm −2时),是性能优异的双功能催化剂. 该项工作得到国家自然科学基金、上海市“晨光计划”、中央高校创新基金以及英国工程和自然科学研究委员会基金的支持.· 60 ·上 海 工 程 技 术 大 学 学 报第 35 卷。
大学生方程式赛车气动性优化设计毕设论文
河北工业大学毕业论文作者:学号:110322学院:系(专业):车辆工程题目:大学生方程式赛车气动性优化设计指导者:讲师(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2015年 05月 21 日目录1.绪论 (1)1.1课题研究的背景及意义 (1)1.2车身气动性研究现状 (2)1.3研究内容 (3)1.3.1 使用UG对车身进行建模 (5)1.3.2 前期处理 (6)1.3.3 边界条件设定 (6)1.3.4 FLUENT计算结果 (6)2.赛车空气动力学特性 (6)2.1负升力产生原理 (8)2.2空气动力学附加装置 (8)2.2.1前负升力翼 (9)2.2.2后负升力翼 (10)3 空气动力组件与车身的CAD初步模型................... 错误!未定义书签。
4 空气动力组件与车身的前期处理 (13)4.1 模型检查 (15)4.2 设置网格参数 (16)4.3 网格划分并检查质量 (17)5 空气动力组件与车身的流体分析 (17)5.1边界条件 (18)5.2 外流场分析 (19)结论 (24)参考文献 (24)致谢 (27)1. 绪论1.1课题研究的背景及意义车身流体力学是车体与周围空气相对运动的研究时产生的相互作用和运动。
气动性的优劣直接影响汽车上的经济性,动力性能,乘坐舒适性和操纵稳定性。
汽车气动性的优化设计是目前汽车车身设计的一个重要方向,这直接影响的汽车的性能。
大学方程式赛车的研究,国内车队,空已经有了一定的研究基础,气动性的优化设计已经被各个车队所重视。
在日后更高规格的比赛中气动性的优化设计已经成了必不可少的一部分,大学方程式是一场内场场地比赛,其对轮胎和场地的要求较高,在比赛的第一部分要求讲解赛车的设计理念与过程,并展示仿真分析;在比赛的第二部分就是要展示汽车的整体性能在赛制要求下以最快的速度完成比赛,方程式赛车为了跑的更快展示更大的功率就要以牺牲车重为代价,这是增加空气动力学套件就可以解决车重过轻的问题。
FSAE发动机进排气系统简介及改进分析-推荐下载
FSAE发动机进排气系统简介及改进分析FSAE进气系统简介进进气系统是发动机的重要组成部分,它的布置形式和结构参数对发动机的充气效率、进气阻力、进气均匀性、缸内混合气运动和燃烧过程有着重要的影响,从而影响发动机的动力性、经济性和排放特性。
因此,进气系统的设计已成为发动机研发的关键技术之一,它在发动机产品的研发过程中,占有重要的地位。
对FSAE赛车来说显得更为重要。
FSAE赛车进气系统包括空气滤清器、节气门、限流阀、进气道、稳压腔、进气歧管,每个结构都有其特定的功能。
进气量控制喷油量,ECU判定喷油量的多少的重要信息来自进气管空气流量传感器,进多少气就喷多少油,有多少混合油气就释放多大的动力。
因此引擎运转时,每一循环所能获得的空气量多少,是决定引擎动力大小的基本因素。
FSAE规则规定发动机必须为排量在610cc以下的活塞式四冲程发动机,且为限制发动机功率,一个内部截为圆形最大直径为20.0mm的限流阀必须安装在节气门与发动机之间,发动机的所有进气气流都必须流经此限流阀,所以我们必须重视限流阀的设计。
因此,如何在限制条件下创新、严谨、细心的制作进气系统,让发动机的性能更充分地发挥才是最大的挑战。
此外为了充分展示我们的能力,还应考虑其可靠性、燃油经济性、美学、成本、可维护性、工艺性等。
效益最大化才能是最大的赢家。
为了更合理的设计进气系统,所以我们必须充分了解各个结构及其功能,了解进气系统中的各种现象并加以运用或减小其不利影响。
空气在进入汽缸的过程中会应紊流而产生进气阻力。
所以首先应减小由紊流产生的阻力。
如图由于进气道内产生了旋涡,形成像障碍物一样的缩流使气流远离管壁边缘,而致使气流截面变小。
所以应避免进气管陡变的情况。
在下图中,由于采用了逐渐增加限流器后部的直径的设计,所以有效的避免了在节流喉管尾流出产生进气涡流。
进气总管连接各进气歧管的管路被设计为喇叭口型。
对于此类方案,为防止紊流的发生,喇叭口的角度应设计为十五度以下。
FSAE赛车进气系统改进设计
FSAE赛车进气系统改进设计
许建民;刘金武;李晓宇
【期刊名称】《厦门理工学院学报》
【年(卷),期】2009(17)4
【摘要】通过对限流阀安装在进气系统不同位置对发动机的影响进行了详细分析,得出一种限流阀最优安装位置,即在节气门阀体和喷油嘴之间.并利用CFD软件FLUENT对其谐振腔进行了流体动力学分析.研究表明:进气系统的改进对发动机的动力性、排放性以及噪音方面有非常大的改善.
【总页数】5页(P43-47)
【作者】许建民;刘金武;李晓宇
【作者单位】厦门理工学院机械工程系,福建,厦门,361024;厦门理工学院机械工程系,福建,厦门,361024;厦门理工学院机械工程系,福建,厦门,361024
【正文语种】中文
【中图分类】U464.134+.4;U469.6+96
【相关文献】
1.FSAE赛车发动机进气系统设计与流场分析 [J], 施佳辉;王东方;王燕;鲁宜文
2.FSAE赛车发动机进气系统设计 [J], 郑颖;弋驰;
3.FSAE赛车发动机进气系统设计与流场分析 [J], 施佳辉;王东方;王燕;鲁宜文;
4.FSAE赛车发动机进气系统设计 [J], 郑颖;弋驰
5.基于CFD数值模拟的FSAE赛车发动机进气系统改进分析 [J], 张振越;郑再象;杨超;王凯强;景陶敬
因版权原因,仅展示原文概要,查看原文内容请购买。
FSAE赛车发动机进排气管分析_彭才望
赛车发动机进排气管分析彭才望!阳林!贺绍华!王行"广东工业大学机电工程学院!广东广州软件建立赛车发动机系统仿真模型!计算发动机在不同转速下的性能!分析进排气管长度对发动机性能的影响$结果表明!进气管长度对发动机充气效率%扭矩%功率的影响比排气管更显著!合理设计进排气管长度是优化进排气系统的有效方法$关键词!汽车赛车&发动机&进气管&排气管&文章编号!限流阀必须设置在发动机节气门和进气门中间!这将导致低速时发动机扭矩较小,高速时充量系数不高"因此!提高发动机低速时的扭矩和高速时的功率显得尤为重要"该文对一款排量为的型汽油机进行优化改进设计!改善其动力性!从而提高赛车的竞争力节气门限流阀图限流阀安装位置赛车设计及制造中必须力求降低成本!并严格遵守比赛规则!这就限定了对发动机缸体#缸盖的改动"因此!决定通过优化发动机的进排气管长度来改善其动力性"该文运用建立发动机仿真模型!通过计算!优化进排气管长度!提高发动机的充量系数#扭矩和功率!从而改进设计进排气系统来提高发动机的动力性"介绍是一款包涵内燃机两大机构和五大系统的基于一维气体动力学原理的计算软件!被称为$虚拟发动机%!是目前国内外高等院校进行研究的模拟仿真工具"H;*TO[PL可模拟多种类发动机!也可用于预测发动机的多种性能!如进排气管的空气流速和流量#进排气系统的温度和压力#功率#扭矩及<ZJ排放#催化剂化学反应等"H;*TO[PL是基于面向对象的交互式界面!从模型图的建立#运行到数据的后处理!其操作简便#高效"其界面如图+所示"图#",3045678软件界面+"仿真模型的建立H;*TO[PL采用模块式结构建立发动机不同工况时的模型模块用方框表示#用圆形来连接各个元件$各元件的结构!运行参数在相对应的元件模块和连接件模块中进行定义$8IU%##型发动机的主要参数如表"所示$利用H;*TO[PL软件建立发动机模型#主要建立缸体!进气和排气个模块$图为发动机整机模型#主要由管路和接头前后连接组成$表!"(-9%’’型发动机部分参数项目参数值项目参数值缸数!吸气方式自然吸气缸径%@@" %(额定功率%RY" -#’(冲程%@@" !+’-最大扭矩压缩比空气滤清器进气管接头输入端口进气阀容积腔进气管接头节流阀进气口输出端口排气管接头排气口排气阀气缸辅助添加口发动机!(’为连接元件!! " ! " ! " ! " !" !" !"!图&"发动机模型0"进气管长度对发动机性能的影响进气系统结构对发动机的动力性能有较大影响$根据27)9赛事规则#必须在发动机节气门和进气门之间安装直径为+#@@的限流阀$发动机进气系统主要包括进气管和进气道两部分#而进气管的形状包括长度!曲率和内径个方面$下面主要从进气管长度方面进行分析$中低速范围内进气管长度会影响发动机的充量系数#在发动机高速状态下#利用惯性增压效应#进气管长度越长#管内流速越高#吸入气缸的新鲜气体越多$因为波动效应#局部的损失量会增加#并且对发动机的有效功率输出有较大影响$因此#在其他结构因素不变的情况下#运用软件模拟不同进气管长度对发动机充气效率!扭矩!功率的影响结果如图所示从图可以看出(在汽油机内径!曲率等参数不变的前提下#进气管长度变化对发动机中!高转转速进气管长度对发动机充气效率的影响进气管长度对发动机扭矩的影响转速!!""#$%进气管长度对发动机功率的影响速的动力性能及充气效率影响很大#且随着长度的增加#其影响越明显$发动机一定时#发动机转矩和充量系数成正相关$因此#由于原发动机的高速谐振点所对应的发动机转速较高#适当加长进气管长度#对改善发动机中!高转速的动力性能作用比较大$故在不影响发动机整体布置的前提下应适当加长进气管长度$!"排气管长度对发动机性能的影响发动机排气管长度影响排气管道的压力波#适+#"""""公"路"与"汽"运"""""!"#$%&’("1)*+,-,+"./")001"2&+",3(""""""第-期+#"+年&月"当改变排气管的长度!可充分利用压力波的动态效应使发动机的残余废气系数降低"充量系数提高!从而有效地提高发动机的输出功率!达到提升动力的目的#但目前要使发动机具有良好的排气动力效应!一般很难靠经验设计#运用H;*TO[PL!在不改变汽油机其他结构参数的前提下!分析排气管长度对发动机充气效率"扭矩和功率的影响!结果如图(!&所示#转速!!""#$%&’#()*+()*,()*-()*(()../).+/).,/).-/)./充气效率0 /// - /// 1 /// , /// 2 /// + /// 3 ///原长度加长2!加长4/!加长42!图*"排气管长度对发动机充气效率的影响转速!!""#$%#扭矩!!(")#* +,, - ,,, . +++ / +++ 0 +++ 1 +++ 2 +++ ’30’.+’.0’/+’/0’0+’00’1+’10原长度加长0!加长’+!加长’0!图."排气管长度对发动机扭矩的影响转速!!""#$%&’#()功率!*+( ))) , ))) - ))) . ))) / ))) 0 ))) 1 )))2)3).)/)0)1)4)6))原长度加长/!加长6)!加长6/!图/"排气管长度对发动机功率的影响从图(!&可以看出$相同转速下!排气管长度变化对发动机性能的影响不是很明显!其影响程度没有同等条件下进气管的影响大#因此!进气管参数设定以后!单一改变排气管长度不会明显提高发动机的动力性#排气管长度与发动机的充气效率" 功率和扭矩的正负相关系数不大!故对原机的排气系统可以不作大范围的改进#-"结语该文运用H;*TO[PL软件对赛车发动机模型进行计算!在发动机其他结构参数不变的情况下!找到最佳进排气管长度!对发动机系统进行合理有效的改进!为27)9赛车设计提供一定参考#利用所建立的8IU%##汽油机H;*TO[PL仿真模型!可分析进排气管长度对发动机充气效率"扭矩"功率的影响及影响规律#但发动机进排气结构参数多!必须做到多种参数相结合优化分析!以达到更合理的效果!解决27)9赛车比赛中高速功率和充气效率低"低速转矩小的问题#"。
2011吉林大学FSAE设计报告
车架人机工程设计 整个车架设计以驾驶员为核心,主要的
目标是提高空间利用效率,并保证一定的舒
适性。通过进行搭建模型和使用 CATIA 软件 进行分析,结合转向、悬挂、制动等方面的 安装件尺寸,确定车体中前部尺寸、各总成 的安装位置和驾驶员姿势,并进行驾驶员双 眼视区校核、伸及区域校核和干涉分析,上 下视野达到 50°,伸及区域可达 1m³以上, 最后对驾驶员姿势进行评价,驾驶员身体各 部位姿势得分均在 90 以上,再考虑实际坐 姿完成车辆的总布置。 车架结构设计 材料的选择
运用 CATIA 进行车架和座椅的设计,根 据不同车手的身材和体型,合理布置方向盘
和踏板的位置,并根据人机工程学原理对设
计方案进行评定。
空气动力性 利用空气动力学套件提升下
压力,通过流体软件仿真和翼型优化,获得
最优的升阻比:
通过 Fluent 软件仿真分析前后定风翼 的下压力效果,选定最优的翼型参数,并综
设计方案
制动结构设计 合理分配前后轮制动力大小,保证四个
车轮可以同时抱死。采用前后两套独立制动 回路,以保证制动系统的可靠性和足够的制 动效能。自行设计制动踏板,降低高度的同 时,获得较合适的杠杆比,并降低了成本。 制造零件用有限元软件优化分析,实现轻量 化。 制动结构参数
FSAE赛车发动机系统设计分析_张波
提供足够 高 的 击 穿 电 压 ( > 28KV) 和 足 够 高 的 点 国第八名。最终燃油经济性成绩排名为全国 25 名。
火能量按工作顺序定时作用于火花塞,产生火花, 以上事实说明我们的一些改装措施是非常有必要
点燃混合气。其中高压导线担负着传输由高压线 的,系统的设计也是比较可靠的。
圈所发出的高电压到火花塞的任务。然而一组优 良的高压导线必须具备最少的电流损耗及避免高
摘 要: 我们都知道在调试和改装发动机的同时,汽车的动力性和燃油经济性一贯是大家研究 的重点。但在某种意义上大家会想方设法地去提高发动机的动力加速性能,却很大程度上增加 了油耗。针对这一技术上的矛盾,我们尝试在发动机进气和点火系统上做出一些小的改动,从而 能够适应国内大学生方程式赛车在国际上的成熟化。 关键词: FSC; 限流阀; 进气系统; 点火系统. 中图分类号: U46 文献标识码: A 文章编号: 708-4738( 2014) 01-0106-02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17卷 第4期厦门理工学院学报Vol .17 No .4 2009年12月Journal of Xia men University of Technol ogyDec .2009 [收稿日期]2009-09-01 [修回日期]2009-10-16[基金项目]厦门市科技计划项目(3502Z20073030)[作者简介]许建民(1981-),男,湖南邵阳人,助教,硕士,从事汽车节能与排放控制研究.FS AE 赛车进气系统改进设计许建民,刘金武,李晓宇(厦门理工学院机械工程系,福建厦门361024)[摘 要]通过对限流阀安装在进气系统不同位置对发动机的影响进行了详细分析,得出一种限流阀最优安装位置,即在节气门阀体和喷油嘴之间.并利用CF D 软件F LUE NT 对其谐振腔进行了流体动力学分析.研究表明:进气系统的改进对发动机的动力性、排放性以及噪音方面有非常大的改善.[关键词]FS AE 赛车;进气系统;谐振腔;CAE[中图分类号]U4641134+14;U46916+96[文献标志码]A [文章编号]1008-3804(2009)04-043-05FS AE 方程式赛事是由美国汽车工程师协会主办的挑战本科生、研究生团队构思、设计、制作和驾驶小型方程式赛车的国际性赛事.FS AE 方程式比赛内容是设计、制造和论证一辆用于业余比赛的小型赛车.该车必须在加速性,制动性和操稳性等方面表现出色,而且成本低廉(要求原型车实际耗资应低于215万美元)、易于维修、可靠性好.同时还需考虑其美观舒适性和零部件的通用性等因素.空气或混合气导入发动机汽缸的零部件集合体称为发动机进气系统.汽油机进气系统包含了空气滤清器、谐振腔、进气歧管、节气门等机构.空气经空气滤清器过滤掉杂质后,流过空气流量计和谐振腔,经由进气道进入进气歧管,与喷油嘴喷出的汽油混合后形成混合气,混合气通过发动机进气门进入发动机燃烧室燃烧产生动力.FS AE 赛车规则基本要点是发动机的所有的进气都要通过限流阀,并且限流阀必须位于发动机节气门和发动机进气门之间.在保证上述比赛规则的前提下,通过改进设计进气系统来提高发动机的动力性、改善其排放性和噪音.1 限流阀安装位置对比分析111 方案Ⅰ中限流阀安装位置分析依据规则要求,目前FS AE 赛车进气顺序从外到内依次是:空气滤清器-谐振腔-橡胶弯管-节气门阀体(包括节气门和喷油嘴)-限流阀-发动机橡胶管-进气门.如图1.该方案限流阀安装在喷油嘴之后,发动机运转时汽油会喷到限流阀上,导致燃油雾化效果急剧变差,而且由于限流阀处在进气系统的最后阶段,这样会导致混合气在进入发动机前体积突变,从而产生不规则的压力波.通过安装上限流阀和卸掉限流阀时的发动机性能对比试验,发现限流阀使发动机动力性能急剧下降.基于方案Ⅰ的发动机(嘉陵JH600,发动机排量600mL )最高转速可达到5000r/m in .厦门理工学院学报2009年112 方案Ⅱ中限流阀安装位置分析方案Ⅱ的进气道的布置顺序依次是:空气滤清器-谐振腔-节气门-橡胶弯管-限流阀-喷油嘴-发动机橡胶管-进气门.见图2所示.该方案将节气门和限流阀同时外移.不改变原喷油嘴,则喷油顺畅,雾化效果比方案Ⅰ要好.但是首先将节气门和喷油嘴分开难度较大,而且改变了节气门位置传感器和进气压力传感器与喷油嘴的位置,节气门与喷油嘴的重新匹配比较困难,喷油雾化效果同样受到很大影响.基于方案Ⅱ的发动机(嘉陵JH600,发动机排量600mL )最高转速可达到6200r/m in .113 方案Ⅲ中限流阀安装位置分析方案Ⅲ的进气道布置顺序依次为:空气滤清器-谐振腔-橡胶弯管-堵上喷油孔的节气门阀体-限流阀-喷油嘴-发动机橡胶管-进气门,如图3所示.该方案在不拆分节气门阀体的前提下,在基本不改变节气门位置传感器和进气压力传感器与喷油嘴之间的位置的前提下,将原喷油嘴堵住,重新加工制作一喷油嘴.由于喷油点位置和角度不变,因此不影响喷油效果,而且限流阀紧跟喷油阀之前,则进气在限流阀处管径缩小,进气速度增大,改善燃油的雾化.通过发动机试验发现发动机的动力性和排放性都有极大的改善.基于方案Ⅲ的发动机(嘉陵JH600,发动机排量600mL )最高转速可达到7100r/m in .比较方案Ⅰ到方案Ⅲ可以发现:当限流阀安装在节气门阀体和喷油嘴之间时,发动机的动力性最好,即方案Ⅲ是最优方案,可以作为设计参考.2 谐振腔CF D 仿真分析211 谐振腔CAE 分析方法仿真的目的是在保证谐振腔容积的前提下尽量减少压力损失,使进气流畅.谐振进气系统通过在进气道上增加谐振腔,调整发动机的固有频率,使得发动机在一定转速范围内获得更大的进气量,以达到改善发动机效率的目的.进气道的设计要求最大限度的提高进气量,保证发动机的进气需求,提高进气效率.采用CF D 软件F LUENT 对进气系统中影响较大的谐振腔进行仿真分析,通过对不同锥角谐振腔的流场分析,得出一种最优的谐振腔.Fluent 软件是个工程运用的CF D 软件,针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度方面达到最佳[1-2].可以计算流场、传热和化学反应.对二维流动模型,可以生成三角形和矩形网格;对于三维流动模型,则可生成四面体、六面体、三角柱和金字塔等网格;结合具体计算,还可生成混合网格,其自适应功能,能对网格进行细分或粗化,或生成不连续网格、可变网格和滑动网格.F LUE NT 软件在我国已经获得较好的应用.・44・ 第4期许建民,等:FS AE 赛车进气系统改进设计212 谐振腔CAE 分析步骤21211 利用G AMB I T 建立计算区域和指定边界条件类型在G AB I T 中创建谐振腔模型,并设定边界条件进行网格划分,谐振腔边界分为进气边界、出气边界、两边wall 边界.为了保证分析精度,此次采用2003200网格截面进行分析.网格划分后,将文件保存为网格mesh 文件.21212 利用F LUENT求解器求解将划分好的模型导入fluent 中进行分析.读入网格文件,检查是否有单元格出错情况.选定的计算模型为流场和温度场,设置标准k -e 湍流模型.定义流体的物理属性,设置进气口和出气口边界条件[3-5].根据本次赛车进气量计算出进气流速为10m /s,进气入口温度为290K .最后显示计算结果.213 谐振腔CAE 分析结果对谐振腔提出了3种几何方案,采用F LU 2E NT 软件进行流体动力学分析,分析方案如表1,表1中所用的参数如图4,分析结果如下.表1 谐振腔流体动力学分析方案参数对比Ta b 11 Pa ram e te rs o f fl u i d m echa n i c ana l ys is f o r re so nat o rD 1/mmD 2/mmD 3/mmL 1/mmL 2/mmα/(°)β/(°)方案Ⅰ62122502002009090方案Ⅱ62122501802108080方案Ⅲ62122501482303060图5是方案Ⅰ的速度场CAE 分析结果.在图5中,外围深色区域为低速区,速度约为0,即为进气死角,中间深色区域为高速区,速度为13m /s,从图5可以看出低速区出现在谐振腔中间外围区域,速度约为0,高速区出现在出口区域,速度为13m /s .整体看来,整个谐振腔中心区域进气速度相对外围区域明显高很多.图6是方案Ⅰ的温度场CAE 分析结果.在图6中,外围深色区域为低温区,温度约为292K,中间深色区域为高温区,温度为310K,从图6可以看出低温区出现在谐振腔入口,温度约为290K,高温区出现在谐振腔外围区域,温度为310K .整体看来,谐振腔外围区域温度明显高于中心区域温度,而且温度场分布很不均匀.・54・厦门理工学院学报2009年图7是方案Ⅱ的速度场CAE 分析结果.在图7中,外围深色区域为低速区,速度约为0,中间深色区域为高速区,速度为14m /s,从图7可以看出低速区出现在谐振腔中间外围区域,速度约为0,高速区出现在出口区域,速度为14m /s .整体看来,从进口到腔体,速度逐渐下降,再从腔体到出口,速度大幅增加.总体上比方案Ⅰ变化比较均匀.图8是方案Ⅱ的温度场CAE 分析结果.在图8中,外围深色区域为低温区,温度约为295K,中间深色区域为高温区,温度为305K,从图8可以看出低温区出现在谐振腔入口,温度约为292K,高温区出现在出口区域,温度为305K .整体看来,从进口经过腔体到出口,温度逐渐增加.总体上温度与轴线基本对称.以下是根据锥角90°和锥角80°谐振腔的流场分析而得出的比较理想谐振腔形状.这样不仅可以充分利用谐振容积,还能最大限度地降低进气阻力,从而提高发动机进气效率.图9是方案Ⅲ的速度场CAE 分析结果.在图9中,外围深色区域为低速区,速度约为0,中间深色区域为高速区,速度为16m /s,从图13可以看出低速区出现在谐振腔中间外围区域,速度约为0,,速度为16m /s .整体看来,从进口到腔体,速度逐渐下降,再从腔体到出口,速度大幅增加.总体上变化比较均匀.图10为方案Ⅲ的温度场CAE 分析结果,从图10可以看出低温区出现在谐振腔入口,温度约为295K,高温区出现在出口中心区域,温度为302K .整体看来,从进口经过腔体到出口,温度逐渐提高.可见总体上温度与轴线对称.比较方案Ⅰ到方案Ⅲ可以发现:在可以满足发动机对谐振腔体积要求的前提下,方案Ⅲ的速度场、温度场分布均匀,进气阻力最小,可以作为设计参考.・64・ 第4期许建民,等:FS AE 赛车进气系统改进设计3 结语1)通过对限流阀安装在进气系统不同位置对发动机的影响进行了理论分析,得出限流阀安装在节气门阀体和喷油嘴之间时,发动机的动力性最好.2)通过对不同锥角谐振腔仿真温度场、速度场的对比,可以得出:谐振腔两端减小锥角会缩小进气死角,同时进气流速降低较少,进气温度变化不大,改善发动机的进气.通过整车试验证明改进后的进气系统在动力性、排放性以及噪音方面有非常大的改善.[参考文献][1]王瑞金,张凯,王刚,等.Fluent 技术基础与应用实例[M ].北京:清华大学出版社,2007:33237.[2]周龙保.内燃机学[M ].北京:机械工业出版社,1998:56258.[3]王晗,蔡忆昔,毛笑平.发动机进气系统不均匀性的三维数值模拟[J ].小型内燃机与摩托车,2007,36(3):15217.[4]罗马吉,陈国华,蒋炎坤,等.进气管内三维稳态流动特性的数值分析[J ].小型内燃机与摩托车,2001,30(2):124.[5]夏兴兰,杨雄,朱忠伟,等.数值模拟方法在柴油机进气道改进中的应用[J ].内燃机学报,2002,20(5):22224.Enhanced I n t ake System D esi gn of FSAE Race CarXU J ian 2m in,L I U J in 2wu,L I Xiao 2yu(Depart m ent of Mechanical Engineering,Xiamen University of Technol ogy,Xia men 361024,China )Abstract:A detailed analysis was made t o see how engine was affected by varied positi ons of thr ottle valve on the intake syste m ,which resulted in an op ti m al thr ottle valve positi on bet w een the thr ottle valve p late and nozzle .A CF D Fluent based fluid mechanic analysis was done on its res onat or that indicated that the en 2hanced intake system contributed remarkably t o the dyna m ics,release efficiency and noise reducti on of the en 2gine .Key words:FS AE race car;intake syste m;res onat or;CAE・74・。