小波变换-完美通俗解读
一看就懂的小波变换ppt
8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
小波变换原理
小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。
这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。
小波变换的基本原理是利用小波基函数对信号进行多尺度分析。
小波基函数是一组函数,它们具有有限时间和频率的特性。
通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。
在小波变换中,通常采用离散小波变换(DWT)进行信号分析。
离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。
小波变换的优点之一是可以提供多分辨率的信号分析。
通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。
这对于处理非平稳信号和突发信号非常有用。
小波变换还具有较好的时频局部化性质。
在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。
在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。
小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。
它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。
总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。
它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。
小波变换的原理
小波变换的原理小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。
它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
小波变换的原理传统的信号理论,是建立在Fourier分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题。
小波变换的应用小波是多分辨率理论的分析基础。
而多分辨率理论与多种分辨率下的信号表示和分析有关,其优势很明显--某种分辨率下无法发现的特性在另一个分辨率下将很容易被发现。
从多分辨率的角度来审视小波变换,虽然解释小波变换的方式有很多,但这种方式能简化数学和物理的解释过程。
对于小波的应用很多,我学习的的方向主要是图像处理,所以这里用图像的应用来举例。
对于图像,要知道量化级数决定了图像的分辨率,量化级数越高,图像越是清晰,图像的分辨率就高。
小波变换特征
小波变换特征一、引言小波变换是信号处理领域中的一种重要工具,它能够提供信号的时频分析能力,揭示信号在不同频率和时间尺度上的特性。
由于其独特的性质,小波变换在许多领域都有广泛的应用,如信号处理、图像处理、机器学习等。
本文将重点探讨小波变换的特征,以期为相关研究和应用提供指导。
二、小波变换的定义小波变换是一种时间-频率分析方法,它通过将信号分解成不同频率和时间尺度的分量来描述信号的特性。
在数学上,小波变换可以定义为将一个有限的持续时间函数f(t)转换为一个时间-频率平面上的函数Wf(t,ω),其中t表示时间,ω表示频率。
这个转换是通过一个被称为小波基函数的函数来实现的,该函数在时间和频率域上都具有一定的局部性。
三、小波变换的特征1.多分辨率分析:小波变换具有多分辨率分析的特性,能够将信号分解成不同频率和时间尺度的分量。
这种特性使得小波变换能够适应不同的应用场景,从低频和高频到任意的时间尺度。
2.时频局部性:小波变换在时频平面上具有良好的局部性,能够同时揭示信号在时间和频率两个维度的特性。
这使得小波变换成为处理非平稳信号的有力工具。
3.灵活性:小波变换可以通过选择不同的小波基函数来适应不同的应用需求。
这为研究者提供了更大的灵活性,可以根据实际问题的特点选择合适的小波基函数。
4.反变换:与傅里叶变换一样,小波变换也具有反变换,可以将时频平面上的信息还原成原始的时间域信号。
这使得小波变换成为一种可逆的信号处理方法。
5.高效算法:小波变换可以通过使用快速算法(如快速傅里叶变换FFT)进行计算,大大提高了信号处理的效率。
这使得小波变换在实际应用中具有较高的实用性。
四、应用领域1.信号处理:小波变换在信号处理领域中的应用广泛,包括信号去噪、压缩、滤波等。
通过小波变换的多分辨率分析和时频局部性,可以有效地提取信号中的特征信息,实现信号的处理和分析。
2.图像处理:小波变换在图像处理中也有广泛应用,如图像压缩、去噪、增强等。
(完整版)小波变换去噪基础知识整理
1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
小波变换简介与应用领域概述
小波变换简介与应用领域概述一、引言小波变换是一种在信号处理和图像处理领域广泛应用的数学工具。
它可以将信号在时域和频域之间进行转换,具有较好的时频局部性质。
小波变换的应用领域十分广泛,包括信号处理、图像处理、数据压缩、模式识别等。
本文将对小波变换的基本原理进行简介,并概述其在不同领域的应用。
二、小波变换的基本原理小波变换是一种基于窗函数的信号分析方法。
它将信号分解为一系列不同频率和不同时间位置的小波函数,并计算每个小波函数与信号的内积,得到小波系数。
小波函数具有局部性,能够描述信号在不同时间尺度上的变化情况,因此小波变换可以提供更为准确的时频信息。
小波变换的基本步骤如下:1. 选择合适的小波函数,常用的小波函数有Haar小波、Daubechies小波、Morlet小波等;2. 将信号分解为不同频率和不同时间位置的小波函数;3. 计算每个小波函数与信号的内积,得到小波系数;4. 根据小波系数重构信号。
三、小波变换的应用领域1. 信号处理小波变换在信号处理领域有着广泛的应用。
它可以用于信号去噪、信号分析和信号压缩等方面。
通过小波变换,可以将信号在时域和频域之间进行转换,提取信号的时频特征,从而实现对信号的分析和处理。
2. 图像处理小波变换在图像处理中也起到了重要的作用。
通过小波变换,可以将图像分解为不同尺度和不同方向的小波系数,从而实现图像的多尺度分析和特征提取。
小波变换还可以用于图像去噪、图像压缩和图像增强等方面。
3. 数据压缩小波变换在数据压缩领域有着广泛的应用。
它可以将信号或图像的冗余信息去除,从而实现对数据的高效压缩。
小波变换可以提供较好的时频局部性质,能够更好地描述信号或图像的特征,因此在数据压缩中具有一定的优势。
4. 模式识别小波变换在模式识别中也有着重要的应用。
通过小波变换,可以提取图像或信号的特征向量,用于模式的分类和识别。
小波变换能够提供较好的时频局部性质,能够更准确地描述图像或信号的特征,因此在模式识别中具有一定的优势。
小波变换分析范文
小波变换分析范文小波变换(Wavelet Transform,WT)是一种时频分析方法,对信号进行多尺度分析。
它与傅里叶变换不同,不仅能够提供频域信息,还能够提供时间信息。
小波变换能够在不同时间尺度下分析信号的频率成分,具有很强的局部性和稳定性。
本文将介绍小波变换的原理、应用场景和相关算法。
小波变换的基本原理是将信号与一组小波基函数进行卷积计算,通过改变小波基函数的尺度和形状,可以实现对不同频率成分的局部分析。
小波基函数是一组局部化函数,具有有限持续性,且没有周期性,因此能够更好地适应信号的局部特征。
小波基函数常用的有哈尔小波、Daubechies 小波、Morlet小波等。
小波变换相比傅里叶变换具有以下优势:1.时间和频率的局部性:小波变换能够同时提供时间和频率信息,可以更准确地描述信号的瞬态特征。
傅里叶变换将信号映射到频域,无法提供时间信息,而小波变换通过改变小波基函数的尺度,可以在不同时间尺度下分析信号的频率成分。
2.多尺度分析:小波变换是一种多尺度分析方法,通过改变小波基函数的尺度,可以对信号的不同频率成分进行分析。
傅里叶变换只能提供全局频率信息,无法区分不同频率的瞬态成分。
3.离散性:小波变换可以对离散信号进行处理,能够在有限的时间和频率分辨率内对信号进行分析。
傅里叶变换是对连续信号进行处理的,需要对信号进行采样和插值,会引入采样和重建误差。
小波变换在信号处理领域有广泛的应用,包括图像压缩、信号降噪、语音识别、地震勘探等。
其中,小波变换在图像压缩中的应用较为广泛。
传统的图像压缩方法如JPEG采用离散余弦变换(DCT),但其对图像的瞬态特征不敏感。
而小波变换能够更好地提取图像的局部特征,可以实现更高的压缩比和更好的重构质量。
小波变换的具体实现有多种算法,包括离散小波变换(DWT)、连续小波变换(CWT)和快速小波变换(FWT)等。
离散小波变换是最常用的小波变换算法,通过一系列卷积和下采样操作实现小波系数的计算。
小波变换详解
基于小波变换的人脸识别近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。
小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。
具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。
4.1 小波变换的研究背景法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。
傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。
在早期的信号处理领域,傅立叶变换具有重要的影响和地位。
定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下:()()dt e t f F t j ωω-⎰∞-∞+= (4-1) 傅立叶变换的逆变换为:()()ωωπωd e F t f t j ⎰+∞∞-=21 (4-2)从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。
可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。
尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。
但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。
浅析小波变换
三 移动小波,重复步骤一和二,一直遍历整个 数据;
四 对小波进行缩放,重复步骤一到三;
五 在所有小波尺度下,重复上述步骤.
2、小波尺度和信号频率的关系
大尺度
小尺度
信号的低频
信号的高频
离散小波变(DWT)
一、DWT的由来
(Inverse Discrete Wavelet Transform, IDWT)。
H′
H′ S L′
L′
小波重构算法示意图
(1) 重构近似信号与细节信号
由小波分解的近似系数和细节系数可以重构出原
始信号。
同样,可由近似系数和细节系数分别重构出信号
的近似值或细节值,这时只要近似系数或细节系数置
为零即可。
(t ) e
t 2 / 2 i0t
e
ˆ ( ) 2 e( 0 )
2
/2
Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。
g t
2
1
1/ 4
e
t2 2 2
1, 5
Gabor 小波 Morlet小波
图 多级信号分解示意图 (a) 信号分解; (b) 小波分树; (c)小波分解树
在使用滤波器对真实的数字信号进行变换时, 得到的数据将是原始数据的两倍。
根据耐奎斯特(Nyquist)采样定理就提出了降采样的方 法,即在每个通道中每两个样本数据取一个,得到的 离散小波变换的系数(coefficient)分别用cD和cA表示
号可用A1+D1=S重构出来。对应于信号的多层小波分
小波变换原理
小波变换原理小波变换(WaveletTransform,简称WT)是一种用于数字信号处理的实用技术,它是在1980年代由Yves Meyer等人提出的。
它是一种基于振动信号的就地分析方法,它允许将一个信号分解成多个不同尺度上的分量,该分量描述了信号的不同特性。
小波变换的基本概念是将源信号分解成低频与高频成分的线性变换,也就是将源信号分解为几个子信号,这几个子信号的能量衰减速度明显不同,从而减少了信号的复杂性,使信号的处理变得更容易。
波变换的正变换(Analysis)逆变换(Synthesis)的原理基本类似于傅立叶变换,在经过变换后,信号可以通过多维度,从而更加清晰地表示它的特性。
小波变换由一组小波函数组成,这些小波函数是根据条件确定的,由一系列称为基带小波函数的可以拓展组合而成。
小波函数具有多种特性,它们可以有不同的时频特性,它们可以有不同的宽度和峰值,从而允许不同的尺度和信号特性。
此外,小波变换也可以用来实现数字信号的时域处理和频域处理,从而可以提取信号的实时特征,增强仅在部分局部中存在的细节信息,从而更好地提取和处理信号。
小波变换可以用于图像处理、语音信号处理,以及不同类型的数据压缩。
近些年,小波变换得到了越来越多的应用,已经成为了许多研究的重要基础。
例如,在脑电信号分析中,小波变换可以用来发现脑电记录的一些有趣的特征;在图像处理中,小波变换可以用来估计传输的损失;在语音信号处理中,小波变换可以用来消除噪声等等。
小波变换有许多优势,如抗噪性强,它可以控制噪声影响,保持信号的质量。
另外,它可以节约计算时间,具有快速计算的特性,而且可以实现多维特征提取,可以节省存储空间,具有很高的算法效率。
总之,小波变换是一种非常有用的信号处理技术,它的出现推动了信号处理领域的发展,为许多应用领域带来了许多优点,具有广泛的应用前景。
小波变换简介PPT课件
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
10
幅度
频率
时间窗
时间
时域加窗分析
时间
时频平面划分示意图
11
窗口傅立叶变换
12
窗口傅立叶变换
另一个缺点是:无论怎样离散化,都不能 使Gabor变换成为一组正交基;
而傅立叶变换经离散化后可得到按正交函 数展开的傅立叶级数。
13
1909: Alfred Haar
Alfred Haar对在函数空间中寻找一个与傅立叶类似 的基非常感兴趣。1909年他发现并使用了小波, 后来被命名为哈尔小波(Haar wavelets)
C 0
Wf
(a,b)a,b(t)dbda2a
a,b(t)
1 (t b)
aa
28
小波系数的意义
Wf (a,b)表示信号与尺度为a小波的相关程 度。小波系数越大,二者越相似。
F() f(t)ejtdt
W f(a,b)f(t) a,b(t)dt
29
连续小波变换的简单步骤
选择尺度为a确定的小波,与信号开始的 一段比较;
A = appcoef2(C,S,'wname',N)
量化 小波变换
量化小波变换小波变换(Wavelet Transform)是一种在信号处理和图像处理领域广泛应用的数学工具,它能够将原始信号或图像分解成不同频率的小波系数,并且可以通过逆变换将小波系数恢复为原始信号或图像。
本文将介绍小波变换的基本原理、应用领域以及量化小波变换的方法。
一、小波变换的基本原理小波变换是一种将信号分解成不同频率的小波基函数的过程。
与傅里叶变换不同的是,小波变换可以处理非平稳信号,即信号的频率特性随时间变化。
小波基函数是一组由原始小波函数平移和缩放得到的函数,它们具有不同的频率和时域特性。
小波变换通过将信号与这些小波基函数进行内积运算,得到不同频率的小波系数。
小波系数的绝对值大小表示了信号在不同频率上的能量分布。
二、小波变换的应用领域小波变换在信号处理和图像处理领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、信号压缩、信号分析等方面。
在图像处理中,小波变换可以用于图像去噪、图像压缩、边缘检测等方面。
此外,小波变换还可以应用于音频处理、视频处理、生物医学信号处理等领域。
三、量化小波变换的方法量化是数字信号处理中的一个重要步骤,它将连续的信号转换为离散的数值表示。
在小波变换中,量化可以用于将小波系数表示为有限精度的数值。
常见的小波系数量化方法包括均匀量化和非均匀量化。
1. 均匀量化均匀量化是将小波系数按照固定的间隔划分为离散的数值。
这种方法简单直观,但会导致信息的丢失。
为了减少量化误差,可以使用更小的间隔进行量化,但这会增加数据的存储和处理量。
2. 非均匀量化非均匀量化是根据小波系数的能量分布进行量化。
常见的方法有自适应量化和熵编码。
自适应量化根据小波系数的能量分布调整量化步长,以保留较大能量的系数,减小较小能量的系数。
熵编码则通过编码器将较大能量的系数用较少的比特表示,将较小能量的系数用较多的比特表示,以提高编码效率。
四、小波变换的优势和局限性小波变换相比其他变换方法具有以下优势:1. 可以处理非平稳信号,适用于时间-频率分析。
小波变换-完美通俗解读汇报
小波变换和motion信号处理(一)这是《小波变换和motion信号处理》系列的第一篇,基础普及。
第二篇我准备写深入小波的东西,第三篇讲解应用。
记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。
当然后来也退学了,不过这是后话。
当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。
我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。
当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。
对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。
后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。
比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。
但这些年,小波在信号分析中的逐渐兴盛和普及。
这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。
后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。
看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。
同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。
牢骚就不继续发挥了。
在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。
如果不做特殊说明,均以离散小波为例子。
考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。
小波变换分解层数
小波变换分解层数一、什么是小波变换小波变换(Wavelet Transform)是一种用于信号分析和处理的数学工具,它可以将信号分解成不同尺度的频率成分。
与傅里叶变换相比,小波变换不仅可以提供频域信息,还可以提供时域信息。
小波变换的基本思想是将信号与一系列母小波进行卷积,通过不同尺度和位置的卷积运算,得到信号在不同频率范围内的分解系数。
通过对这些分解系数的分析,可以提取出信号中的重要特征,并进行相应的信号处理。
二、小波变换的分解层数在进行小波变换时,我们可以选择不同的分解层数。
分解层数是指通过一系列的低通和高通滤波器对信号进行递归分解的次数。
较高的分解层数可以提供更详细的频域和时域信息,但也会导致分解系数的数量增加和计算复杂度的增加。
因此,在选择分解层数时需要综合考虑信号的特性和分析的需求。
一般来说,较低的分解层数适用于分析高频成分占主导的信号,如尖峰信号或高频振动信号。
较高的分解层数则适用于分析低频成分占主导的信号,如低频振动信号或长期趋势信号。
三、选择合适的分解层数的依据选择合适的分解层数的依据主要有以下几点:1. 信号的频率范围当信号的频率范围较大时,我们可以选择较高的分解层数,以便更好地捕捉信号的细节特征。
如果信号的频率范围较窄,则可以选择较低的分解层数,以减少计算量。
2. 信号的长度当信号的长度较长时,较高的分解层数可以提供更详细的时域信息。
如果信号的长度较短,则可以选择较低的分解层数。
3. 分析的目的根据分析的目的选择合适的分解层数也是非常重要的。
如果我们关注信号的整体趋势和大致特征,则较低的分解层数足够;如果我们关注信号的细节和局部特征,则需要选择较高的分解层数。
4. 计算效率较高的分解层数会导致分解系数的数量增加,从而增加计算的复杂度。
如果对计算效率要求较高,可以选择较低的分解层数。
四、小波变换分解层数的影响选择合适的分解层数对于小波变换的结果具有重要影响。
不同的分解层数会得到不同精度的频域和时域信息,从而影响到对信号的分析和处理。
小波变换_完美通俗解读
小波变换完美通俗解读要讲小波变换,我们必须了解傅立叶变换。
要了解傅立叶变换,我们先要弄清楚什么是”变换“。
很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。
变换的是什么东西呢?是基,也就是basis。
如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。
那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。
小波变换自然也不例外的和basis有关了。
再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。
既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。
一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。
比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。
而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。
总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。
好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。
当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。
接下来先看看,傅立叶变换是在干嘛。
傅立叶级数最早是Joseph Fourier这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。
小波变换基本方法
小波变换基本方法小波变换是一种时频分析方法,它将信号分解为不同频率的组成部分。
它有很多基本方法,以下是其中几种常用的方法。
1.离散小波变换(DWT):离散小波变换是小波变换最常用的方法之一、它将信号分解为不同的频带。
首先,信号经过低通滤波器和高通滤波器,并下采样。
然后,重复这个过程,直到得到所需的频带数。
这样就得到了信号在不同频带上的分解系数。
这种方法的好处是可以高效地处理长时间序列信号。
2.连续小波变换(CWT):连续小波变换是在时间和尺度两个域上进行分析的方法。
它使用小波函数和尺度来描述信号的局部变化。
CWT得到的结果是连续的,可以提供非常详细的时频信息。
然而,CWT的计算复杂度较高,不适用于处理长时间序列信号。
3.基于小波包的变换:小波包变换是一种对信号进行更细粒度分解的方法。
它通过在每个频带上进行进一步的分解,得到更详细的时频信息。
小波包变换比DWT提供更多的频带选择,因此可以更准确地描述信号的时频特征。
4.奇异谱分析(SSA):奇异谱分析是一种基于小波变换的信号分析方法,它主要用于非平稳信号的时频分析。
它通过将信号分解成一组奇异函数,然后通过对奇异函数进行小波变换得到奇异谱。
奇异谱可以用于描述信号在频域上的变化。
5.小波包压缩:小波包压缩是一种利用小波变换进行信号压缩的方法。
它通过选择一个适当的小波基函数和分解层次来减少信号的冗余信息。
小波包压缩可以用于信号压缩、特征提取和数据降维等应用。
以上是小波变换的几种基本方法,每种方法都有其适用的领域和特点。
在实际应用中,可以根据需求选择合适的方法来进行信号分析和处理。
小波变换原理
小波变换原理
小波变换是一种有用的数字图像处理方法,可以将图像的信号分解为几个不同的小部分,使得处理变得更容易、更简单。
小波变换原理是指将图像信号分解为若干可分解的子信号,并通过分析这些子信号来获取有关图像特征的信息。
小波变换原理的基本概念是将图像分解为“系数”和“尺度”,
即将图像分解为不同的尺度空间,每个空间中的像素信号表示为系数和尺度之间的关系。
小波变换是一种矩阵分解技术,利用图像的小波变换系数将图像的像素信号分为多个彼此具有相似特征的图像尺度,这样就可以建立一个有效的图像像素空间,用于分解和重构图像信号。
小波变换是一种非线性技术,可以实现数字图像处理中常用的空间域,空间频率域,时域,时频域等图像域的转换,从而实现图像处理功能。
通常情况下,小波变换采用一组正交函数构成变换系数,比如Haar,Symmlet,Coiflet和Biorthogonal等,将图像信号分解为一系列子信号。
此外,小波变换还包括从子信号重构图像信号的过程,使用正交函数来实现。
小波变换的优点是可以有效的提取图像信号中的属性,例如低频信号,以及高频信号,从而进行更精细的图像分析、提取、滤波、压缩等。
同时,小波变换也可以有效的减少图像信号的噪声,实现图像去噪,这对于图像分析和提取有重要意义。
总之,小波变换原理是将图像信号分解为若干可分解的子信号,利用正交函数构成的变换系数将图像的像素信号分为多个彼此具有
相似特征的图像尺度,从而提取图像信号中的特征,进行更精细的图像分析、提取、滤波、压缩等。
小波变换是一种有效的数字图像处理方法,可以有效进行图像处理,有助于人们更加深入的理解图像,提高图像分析的效率。
小波变换算法
小波变换算法
1 小波变换算法
小波变换是一种常用的幅度频谱分析和信号处理算法,源自端口
分析理论,常用于多种信号和图像处理应用程序中,例如语音增强、
图像压缩、网络数据检测等。
小波变换算法的核心思想是将信号的不同特征分解成一系列的子带,并分别进行处理。
这样可以使用功率谱分析将输入信号或图像中
的高频成分(如噪声)完全分离出来,从而获得高信噪比的图像。
此外,小波算法可以对图像采样和量化进行压缩,提高图像压缩效率。
由于小波变换算法可以将信号分解成子带,它使得信号处理更加
灵活,噪声消除和图像压缩更加精确。
特别是,当分块差补法或在线
算法(允许输入一部分图像或信号,以求出整个图像)结合小波变换时,将影响很大。
此外,小波变换算法还可以改善图像质量,提高图
像的空间信息和视觉效果。
除此之外,小波变换算法可以在多媒体应用程序中应用。
特别是,在视频处理和图像处理中,小波变换可以用来提高处理效率,减少处
理时间和计算复杂度,提高图像质量。
总而言之,小波变换算法为信号处理和图像处理及其相关应用提
供了一种有效而高效的解决方案,让信号和图像处理更加灵活,异常
噪声更容易消除,图像压缩效率更高,图像质量得以改善。
小波变换 原理
小波变换原理
小波变换是一种数学工具,通过将信号分解成一系列基于不同尺
度和频率的小波,以提取信号的时域和频域信息。
与傅里叶变换不同,小波变换的基函数具有有限长度,因此不仅能捕捉信号的时间变化,
也能对信号的瞬时特征进行分析。
小波变换的原理可以用以下的步骤描述:
1. 将原始信号表示为一组离散的数据点,称为离散时间序列。
2. 选择适当的小波作为基函数,将离散时间序列进行小波分解,
得到一组小波系数。
3. 根据小波系数,可以重构原始信号并提取不同尺度和频率的信息。
小波变换可以用来处理不同类型的信号,例如语音、图像、视频
以及生物医学信号等。
在这些应用中,小波变换可以通过提取信号的
特征来实现信号的分析和处理。
例如,在音频处理中,小波变换可以
用来将语音信号分为不同的频带,并对这些频带进行更精细的处理;
在图像处理中,小波变换可以用来分析图像的纹理和形态,并提取出
不同频率的图像细节。
除了常见的小波变换之外,还有一些其他类型的小波变换,例如
小波包变换和连续小波变换。
这些方法在应用中有各自的优势和适用性。
小波变换作为一种通用的信号分析和处理工具,在许多实际应用中发挥了重要作用。
通过深入理解小波变换的原理和应用,可以更加有效地处理和分析各种类型的信号,提高信号处理的准确性和效率。
小波变换原理
小波变换原理
小波变换是一种多用途的数学工具,自20世纪80年代以来已被广泛应用于数字图像处理领域。
小波变换把一个原始信号分解成多组低频信号和高频信号,通过分析低频信号来推断信号的趋势,考虑高频信号来掌握信号的细节,从而更好地提取信号中有价值的信息。
小波变换是一种类似滤波的多尺度变换技术,它是在时间上对信号的分解,即结合滤波和重构的形式来分析信号的多尺度特性,这样就可以在时间和频率范围内把信号分解成层次结构。
小波变换有两种基本模式:分解型和完全型。
分解型小波变换以采样频率为基础,把信号分解为几种不同尺度的波形,比如高频离散小波变换(DWT)或高斯小波变换(GWT)。
完全型小波变换是通过不同尺度的小波基函数进行分析的,比如曲线匹配和多项式建模技术。
小波变换的一个重要应用就是图像压缩。
图像压缩技术通常有两种应用模式:无损和有损。
无损图像压缩是指在压缩过程中不会出现失真,而有损图像压缩就是指在压缩过程中可能会出现一定程度的失真。
小波变换无损图像压缩技术采用分层多尺度分解的方法,通过把图像分解成多组低频和高频信号,只保留部分低频信号,忽略掉大部分高频信号,这样可以实现图像的压缩。
此外,小波变换还广泛应用于计算机视觉领域,可用于图像去噪处理、边缘检测和形态学处理等,可以帮助计算机识别图像中的目标对象,当然,小波变换也可以应用于其他领域,如声学、天气预报等。
综上所述,小波变换是一种强大的数学工具,可以帮助我们更好
地分析和处理信号,从而提取有价值的信息。
它在图像处理中的应用越来越广泛,还可以用于计算机视觉和其他领域,受到了广泛的关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换和motion信号处理(一)这是《小波变换和motion信号处理》系列的第一篇,基础普及。
第二篇我准备写深入小波的东西,第三篇讲解应用。
记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。
当然后来也退学了,不过这是后话。
当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。
我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。
当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。
对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。
后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。
比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。
但这些年,小波在信号分析中的逐渐兴盛和普及。
这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。
后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。
看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。
同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。
牢骚就不继续发挥了。
在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。
如果不做特殊说明,均以离散小波为例子。
考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。
有些必要的公式是不能少的,但我尽量少用公式,多用图。
另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。
我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。
我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。
最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。
要讲小波变换,我们必须了解傅立叶变换。
要了解傅立叶变换,我们先要弄清楚什么是”变换“。
很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。
变换的是什么东西呢?是基,也就是basis。
如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。
那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。
小波变换自然也不例外的和basis 有关了。
再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。
既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。
一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。
比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。
而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。
总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。
好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。
当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。
接下来先看看,傅立叶变换是在干嘛。
傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。
这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function 了,而对应的标量就是实数或者复数。
在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。
你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。
唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。
好,具体来说,那就是现在我们有一个函数,f(x)。
我们希望将它写成一些cos函数和一些sin函数的形式,像这样again,这是一个无限循环的函数。
其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。
傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。
为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的积为0。
那对于function basis呢?function basis 怎么求积呢?现在先复习一下vector正交的定义。
我们说两个vector v,w如果正交的话,应符合:那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求积,就是把他们相同位置上对应的点的乘积做一个累加。
那移过来,就是对每一个x 点,对应的f和g做乘积,再累加。
不过问题是,f和g都是无限函数阿,x又是一个连续的值。
怎么办呢?向量是离散的,所以累加,函数是连续的,那就是…….积分!我们知道函数积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。
证明过程这里就不展开了。
好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。
我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0, a1, a2这些系数该怎么确定呢?好,比如我这里准备求a1了。
我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的积,即:然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的积都是0!所有就简化为这样,a1就求解出来了。
到这里,你就看出正交的奇妙性了吧:) 好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。
傅立叶所用的function basis是专门挑选的,是正交的,是利于计算coefficients 的。
但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。
有了傅立叶变换的基础,接下来,我们就看看什么是小波变换。
首先来说说什么是小波。
所谓波,就是在时间域或者空间域的震荡方程,比如正弦波,就是一种波。
什么是波分析?针对波的分析拉(囧)。
并不是说小波分析才属于波分析,傅立叶分析也是波分析,因为正弦波也是一种波嘛。
那什么是小波呢?这个”小“,是针对傅立叶波而言的。
傅立叶所用的波是什么?正弦波,这玩意以有着无穷的能量,同样的幅度在整个无穷大区间里面振荡,像下面这样:那小波是什么呢?是一种能量在时域非常集中的波。
它的能量是有限的,而且集中在某一点附近。
比如下面这样:这种小波有什么好处呢?它对于分析瞬时时变信号非常有用。
它有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅立叶变换不能解决的许多困难问题。
恩,以上就是通常情况下你能在国上搜到的小波变换文章告诉你的。
但为什么呢?这是我希望在这个系列文章中讲清楚的。
不过在这篇文章里,我先点到为止,把小波变换的重要特性以及优点cover了,在下一篇文章中再具体推导这些特性。
小波变换的本质和傅立叶变换类似,也是用精心挑选的basis来表示信号方程。
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个scaling function,中文是尺度函数,也被成为父小波。
任何小波变换的basis函数,其实就是对这个母小波和父小波缩放和平移后的集合。
下面这附图就是某种小波的示意图:从这里看出,这里的缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
这样的好处是,小波的basis函数既有高频又有低频,同时还覆盖了时域。
对于这点,我们会在之后详细阐述。
小波展开的形式通常都是这样(注意,这个只是近似表达,严谨的展开形式请参考第二篇):其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
小波级数通常有很多种,但是都符合下面这些特性:1. 小波变换对不管是一维还是高维的大部分信号都能cover很好。
这个和傅立叶级数有很大区别。
后者最擅长的是把一维的,类三角波连续变量函数信号映射到一维系数序列上,但对于突变信号或任何高维的非三角波信号则几乎无能为力。
2. 围绕小波级数的展开能够在时域和频域上同时定位信号,也就是说,信号的大部分能量都能由非常少的展开系数,比如a_{j,k},决定。
这个特性是得益于小波变换是二维变换。
我们从两者展开的表达式就可以看出来,傅立叶级数是,而小波级数是。
3. 从信号算出展开系数a需要很方便。
普遍情况下,小波变换的复杂度是O(Nlog(N)),和FFT相当。
有不少很快的变换甚至可以达到O(N),也就是说,计算复杂度和信号长度是线性的关系。