高等数学第二章复习题及答案 (1)

合集下载

高等数学 第二章 第一节 导数的概念

高等数学 第二章 第一节 导数的概念

第二章 第一节 导数的概念与性质A 组一、选择题1. 设函数f (x )可导,则=--→hx f h x f h )()3(lim【 】A. 3()f x 'B.1()3f x 'C. 3()f x '-D. 1()3f x '- 2. 设函数f (x )可导,则0(1)(1)lim 2x f f x x →--=【 】A. 2(1)f 'B. 1(1)2f ' C. 2(1)f '- D. 1(1)2f '-3. 函数x y =在0=x 处的导数【 】A. 不存在B. 1C. 0D. 1-4. 设函数f (x )可导,则0(2)()limh f x h f x h →+-=【 】A. 2()f x 'B. 1()2f x 'C. 2()f x '-D. 1()2f x '-5. 设y =sinx ,则y (7)|x=0=【 】 A. 1 B. 0 C. -1 D. 2n6. 设函数f (x )可导,则0(4)()lim2h f x h f x h→--=【 】A. -4()f x 'B. 2()f x 'C. -2()f x 'D. 4()f x '7.已知函数()f x 在0x x =的某邻域内有定义,则下列说法正确的是【 】 A. 若()f x 在0x x =连续, 则()f x 在0x x =可导B. 若()f x 在0x x =处有极限, 则()f x 在0x x =连续C. 若()f x 在0x x =连续, 则()f x 在0x x =可微D. 若()f x 在0x x =可导, 则()f x 在0x x =连续8. 设[]2()(0)sin lim 4x f x f x x →-= ,则(0)f '=【 】 A. 3 B. 4 C.43D. 不存在9.设()xf x e =,则0(1)(1)limx f x f x∆→+∆-=∆【 】A. 1B. eC. 2eD. 2e10.设函数()f x 在0x 可导且0()2'=f x ,则000()(2)lim→+--=h f x h f x h h【 】A. -2B. 1C. 6D. 3 12.设()x x x f ln =,且()20='x f ,则()0x f =( )。

高数(上)第二章 复习题(含参考答案)

高数(上)第二章 复习题(含参考答案)

高数上第二章 复习题1. 求下列函数的导数: (1) y =ln(1+x 2); 解 222212211)1(11xx x x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(x a x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(5)xx y 2sin =;解222sin 2cos 212sin 22cos xxx x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =;解2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=;解])(211[1)(12222222222'+++⋅++='++⋅++='x a xa x a x x a x x a x y2222221)]2(211[1x a x x a x a x +=++⋅++=.(8)xx y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x xxx x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ;解222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(10)x x x y tan ln cos 2tan ln ⋅-=; 解)(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解xx x x x x x x x x x e ee e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ; 解1ln +='x y ,11-==''x xy , y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n xn xn . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dxyd .解 方程两边求导数得 y '=e y +x e y y ', ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4.求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d :解t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(t t t t t t dx y d -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dtdh h dt dV ⋅⋅=2312π, dtdVh dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx x x x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2); 解dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(3)2211arctan xx y +-=;解)11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=000 1sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不导数.。

高数 练习与答案 第二章

高数 练习与答案  第二章

第二章 极限与连续例1 对于数列}{n x ,若)(,),(,212∞→→∞→→-k a x k a x k k ,证明 )(,∞→→n a x n 证明:,0>∀ε因为),(,12∞→→-k a x k 所以存在正整数1K ,当1K k >时,有ε<--||12a x k (1)因为),(,2∞→→k a x k 所以存在正整数2K ,当2K k >时,有ε<-||2a x k (2)取}2,12m ax {21K K N -=,则当N n >时,(1)、(2)同时成立。

若1112},12{K K N n k n >-≥>-∈,ε<-||a x n 若222},2{K K N n k n >≥>∈,ε<-||a x n 所以,0>∀ε,N ∃当N n >时,ε<-||a x n 成立, 由定义得 )(,∞→→n a x n 。

例 2 设Λ,,21x x 是使不等式),2,1(,41)1(,101Λ=>-<<+n x x x n n n 成立的任何实数,证明:.21lim =∞→n n x 证明:因为,41)1(,≤-∈∀x x R x 因此,)1()1(1+-<-n n n n x x x x 又由 1<n x 知,,01>-n x 所以,1+<n n x x 故数列}{n x 单调递增维向量有上界1,故n n x ∞→lim 存在。

设,lim a x n n =∞→则由41)1(1>-+n n x x 知,a 必满足,41)1(≥-a a 于是必有,21=a 即.21lim =∞→n n x例3 .][lim nnx n ∞→解:因为,][nx nx nx ≤<-1即,][x nnx n x ≤<-1由夹逼定理可得.][lim x nnx n =∞→例4 .!!limn p np n ∑=∞→1解:因为 ,!)!1(2!)!1()!2)(2(!!1n n n n n n p n np +-<+-+--<<∑=所以 ,!)!(!!11211+-<<∑=n n n p np .!!lim 11=∑=∞→n p np n例5 利用定义证明34lim 5=+→x x 。

高等数学第二章答案

高等数学第二章答案

高等数学第二章答案【篇一:高等数学第二章复习题及答案】>第二章一、填空题f(a?x)?f(a?x)?x?0xf(3?h)?f(3)?2、设f?(3)?2,则lim。

h?0______________2h1、设f(x)在x?a可导,则lim。

3、设f(x)?e,则limh?0?1xf(2?h)?f(2)?。

_____________hcosx?,f?(x0)?2,(0?x0?),则f(x0)?。

_______________________1?sinx2dy?5、已知x2y?y2x?2?0,则当经x=1、y=1时,。

dx_______________4、已知f(x)?6、f(x)?xex,则f???(ln2)?_______________。

__________7、如果y?ax(a?0)是y?x2?1的切线,则a?。

8、若f(x)为奇函数,f?(x0)?1且,则f?(?x0)?9、f(x)?x(x?1)(x?2)?(x?n),则f?(0)?10、y?ln(1?3?x),则y??11、设f?(x0)??1,则limx?0______________________________________________________。

x。

?___________f(x0?2x)?f(x0?x)_________________________12、设x?y?tany,则dy?。

13、设y?y???(0)?。

_______________14、设函数y?f(x)由方程xy?2lnx?y4所确定,则曲线y?f(x)在点(1,1)处的切线方程是______________________。

1???xcos15、f(x)??x??0_______________________x?0x?0。

,其导数在x?0处连续,则?的取值范围是16、知曲线y?x3?3a2x?b与x轴相切,则b2可以通过a表示为二、选择题。

高等数学第二章复习题及答案 (1)

高等数学第二章复习题及答案 (1)

高等数学习题集及解答第二章一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。

2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。

3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。

4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。

5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。

6、()x f x xe =,则_______________(ln 2)f '''=。

7、如果(0)y ax a =>是21y x =+的切线,则__________a =。

8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。

9、()(1)(2)()f x x x x x n =+++,则_________________(0)f '=。

10、ln(13)x y -=+,则____________________y '=。

11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。

12、设tan x y y +=,则_________________________dy =。

13、设lny =_______________(0)y '''=。

14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。

高等数学第2章课后习题及答案

高等数学第2章课后习题及答案

-----高等数学第2章课后习题及答案习题211 设物体绕定轴旋转 在时间间隔 [0 t]内转过的角度为从而转角是 t 的函数(t) 如果旋转是匀速的 那么称为该物体旋转的角速度 如果旋转t是非匀速的 应怎样确定该物体在时刻t 0 的角速度?解 在时间间隔 [t 0 t 0t] 内的平均角速度为(t 0t ) (t 0 )tt故 t 0 时刻的角速度为l i ml i m l i m(tt) (t 0) (t )t 0t 0 tt 0t2 当物体的温度高于周围介质的温度时物体就不断冷却 若物体的温度 T与时间 t 的函数关系为 T T(t) 应怎样确定该物体在时刻t 的冷却速度?解 物体在时间间隔 [t 0 t 0t]内 温度的改变量为T T(tt) T(t)平均冷却速度为T T (t t) T(t) t t故物体在时刻 t 的冷却速度为limT lim T (t t ) T (t ) T (t) t 0t t 0 t 3 设某工厂生产 x 单位产品所花费的成本是 f(x)元 此函数 f(x)称为成本函数成本函数 f(x)的导数 f (x)在经济学中称为边际成本 试说明边际成本 f (x)的实际意义解 f(x x)f(x)表示当产量由 x 改变到 x x 时成本的改变量f (x x) f (x)表示当产量由 x 改变到 x x 时单位产量的成本xf (x)lim 0f (x x) f ( x)表示当产量为 x 时单位产量的成本x x4 设 f(x)10x 2 试按定义 求 f ( 1)解 f ( 1)limf ( 1 x) f ( 1)10( 1x)2 10( 1)2xlimxxx 010 lim0 2 xx 2 10 lim ( 2x) 20xxx 05 证明 (cos x) sin x解 (cosx) limcos(x x) cosxxx2s i nx(x) s i nxlim2 2x 0 xlim [ s i nx(x ) s i n x] s i nx 2 x 0 2x26 下列各题中均假定 f (x 0)存在 按照导数定义观察下列极限指出 A 表示什么(1) lim f ( x 0x) f ( x 0 ) A xx 解 Alim0f (x 0x) f (x 0)xxl i mf ( xx) f (x 0) f ( x 0 )x 0x(2) lim f (x)A 其中 f(0) 0 且 f (0)存在x 0 x解 Alim f ( x) lim f (0 x) f (0) f (0)x 0 x x 0x (3) lim f (x 0 h) f (x 0 h)Ah 0h解A lim f ( x 0 h 0 lim[ f (xh 0limf (xh 0h)f (x 0 h) hh) f ( x 0 )] [ f (x 0 h) f (x 0)]h h) f (x 0)limf (xh) f ( x 0 ) hh 0hf (x 0) [ f (x 0)] 2f (x 0)7 求下列函数的导数(1)y x 4(2) y 3 x 2(3) y x1 6-----(4) y1 x(5) y1x23 5 x(6) y x232(7) y x x解 (1)y (x 4) 4x 4 1 4x 322 1 2 x (2) y (3 x 2 ) ( x 3 )2x 3331 3(3)y (x 1 6) 1 6x 1 6 1 1 6x 0 61 1 x(4) y ( 1) (x 2)x21 121 x 23 2(5) y(1)( x 2 )2x 3x 23 516 16 16 116 11 (6) y (x x) (x 5)x 5 x 555(7) y ( x2 3 x21 111 x ) (x 6) 1 x 6x 5665 68 已知物体的运动规律为 s t 3(m) 求这物体在 t 2 秒 (s)时的速度解 v(s) 3t 2 v|t 2 12(米 /秒)9 如果 f(x)为偶函数且 f(0)存在 证明 f(0)证明 当 f(x)为偶函数时 f( x) f(x)所以f (0) l i mf (x)f (0) l i m f (x) f (0) l i m f ( x) f (0)x 0xx 0x 0x 0x 0从而有 2f (0) 0 即 f (0) 010 求曲线 ysin x 在具有下列横坐标的各点处切线的斜率x 解 因为 y cos x 所以斜率分别为2 1k 1 c o sk 2 cos 13 2f (0)2x311 求曲线 y cos x 上点 ( , 1) 处的切线方程和法线方程式3 2解 ysin x ysin3x3 23故在点 (, 1) 处 切线方程为 y 1 3(x)3 22 23法线方程为 y 1 2(x )23 312 求曲线 y e x在点 (0 1)处的切线方程 解 y e xy |x 0 1 故在 (0 1)处的切线方程为y 1 1 (x 0)即 y x 113 在抛物线 y x 2上取横坐标为 x 1 1 及 x 2 3 的两点 作过这两点的割线问该抛物线上哪一点的切线平行于这条割线?解 yy(3) y(1)9 1 42x 割线斜率为 k132令 2x 4 得 x 2因此抛物线 y x 2 上点 (2 4)处的切线平行于这条割线 14 讨论下列函数在 x 0 处的连续性与可导性(1)y |sin x| (2) yx 2sin 1x 0xx 0解 (1)因为y(0) 0 lim y lim |sin x | lim ( sin x) 0x 0x 0x 0 lim ylim |sin x|lim sin xx 0x 0x所以函数在 x 0 处连续又因为y (0)l i m y( x)y(0) l i m |si nx | |si n0 |l i m s i nx1x 0x 0x 0x 0x 0xy (0) lim y( x) y(0) lim |sin x | |sin0|lim s i nx 1x 0 x 0 x 0x 0 x 0 x而 y (0) y (0) 所以函数在 x 0 处不可导-----解 因为 lim y(x) lim x 2sin10 又 y(0)0 所以函数在 x 0 处连续x 0 x 0x 又因为21 0y(x) y(0)xs i n1 l i mx l i ml i mxs i n 0 x 0xx 0xx 0x所以函数在点 x 0 处可导 且 y (0) 015 设函数 f (x)x 2x 1为了使函数 f(x)在 x 1 处连续且可导a b 应取什ax b x 1么值?解 因为lim f ( x) lim x 21 limf (x) lim (ax b)a b f(1) a bx 1x 1x1x 1所以要使函数在 x1 处连续 必须 a b 1 又因为当 a b1 时f (1)x 2 12l i m1x 1 xf (1) lim ax b 1 lim a( x 1) a b 1 lim a(x 1) ax 1 x 1 x 1 x 1 x 1x 1 所以要使函数在 x 1 处可导 必须 a 2 此时 b 116已知 f (x)x 2x 0求 f (0)及 f(0) 又 f (0)是否存在?x x 0解 因为f(0) lim f (x) f (0)lim x 0x 0 x x 0x f(0) lim f (x) f (0)lim x 2 0xxx 0x 而 f (0) f (0) 所以 f (0)不存在17 已知 f(x)sin x x0 求 f (x)x x解 当 x<0 时 f(x) sin x f (x) cos x 当x>0 时 f(x) x f (x) 11因为 f (0) lim f (x) f (0) lim sin x 0 1x 0 x x 0xf (0) lim f (x)f (0) lim x 0 1所以 f (0) 1 从而x 0x x 0x f (x)cosx x1 x18 证明 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2a 2解 由 xy a 2得 ya 2k ya 2xx 2设 (x 0 y 0)为曲线上任一点则过该点的切线方程为y a2x 0 ) y 02 ( xx 02y x 2令 y 0并注意 x 0y 0a 解得 xx 0 2x 0为切线在 x 轴上的距 a 2令 x 0并注意 x 0y 0 a 2 解得 y a 2y 2 y0 为切线在 y 轴上的距x 0 0此切线与二坐标轴构成的三角形的面积为S1|2x 0 ||2y 0 | 2|x 0 y 0 | 2a 22习题221 推导余切函数及余割函数的导数公式(cot x)csc 2x(csc x)csc xcot x解 (cot x)(cosx )sin x sin x cosx cosxsin xsin 2 x2 21 2s i nx c o s x2 2 c s cxs i nxs i nx( c sxc) ( 1 ) c o xsc s cx c o xt s i nx 2s i n x 2 求下列函数的导数(1) y4 7 2 12x 5 x 4x-----(2) y 5x 3 2x 3e x (3) y 2tan x sec x 1 (4) y sin x cos x (5) y x 2ln x (6) y 3e x cos x(7) yln xxx(8) y e 2 ln 3x(9) y x 2ln x cos x(10) s 1 sint1 cost解 (1) y ( 4 7 2 12)(4x 5 7x 4 2x 112)x 5 x 4 x20x628x52x220282x6x5x2(2) y (5x 32x 3e x ) 15x22xln2 3ex(3) y (2tan x sec x 1)2sec x tan x sec x(2sec x tan x)2sec x (4) y (sin x cos x) (sin x) cos x sin x (cos x)cos x cos x sin x ( sin x) cos 2x(5) y (x 2ln x) 2x ln x x 21 x(2ln x 1)x(6) y (3e x cos x) 3e x cos x 3e x ( sin x) 3e x(cos x sin x)ln x1 x ln x1 ln x(7) y ( ) xx x 2 x 2(8) y ( e x ln 3) e x x 2 e x 2x e x ( x 2)x 2 x 43x(9) y221cos x x 2ln x ( sin x)(x ln x cos x) 2x ln x cos x x x2x ln x cos x x cos x x 2 ln x sin x(10) s (1sin t ) cost(1 cost) (1 sin t)( sin t)1 sin t cost1 cost(1 cost)2(1 cost)23 求下列函数在给定点处的导数(1) y sin x cos x 求 y和 yxx46(2)sin1cos 求d2d4(3) f (x)3 x 2求 f (0)和 f (2)5 x 5解 (1)ycos x sin xyc o s s i n3 1 3 1x22266 6yc o s s i n22 2x2 244 4(2)dsincos1sin1sincosd22d1s i nc o s 1 2 422(1)d4 244 4 2 22 42(3) f (x)32x f (0)3 f (2) 17(5 x)2525154 以初速 v 0 竖直上抛的物体其上升高度 s 与时间 t 的关系是 s v 0t 1gt 22求(1)该物体的速度 v(t)(2)该物体达到最高点的时刻解 (1)v(t) s (t) v 0 gt(2)令 v(t) 0 即 v 0 gt 0 得 t v 0这就是物体达到最高点的时刻g5 求曲线 y 2sin x x 2 上横坐标为 x 0 的点处的切线方程和法线方程 解 因为 y 2cos x 2x y |x 0 2又当 x 0 时 y 0 所以所求的切线方程为y 2x所求的法线方程为-----y 1x即x 2y 0 26求下列函数的导数(1)y (2x 5)4(2)y cos(4 3x)(3) y e 3x 2(4)y ln(1x2)(5)y sin2x(6) y a2x2(7)y tan(x2)(8)y arctan(e x)(9)y(arcsin x)2(10) y lncos x解 (1) y4(2x 5)4 1 (2x5) 4(2x 5)3 2 8(2x 5)3 (2)y sin(4 3x) (4 3x)sin(4 3x) ( 3) 3sin(4 3x)(3) y e 3 x2 ( 3x2 )(4)y1 (1 x2)1x2(5)y 2sin x (sin x) e 3x 2(6x)6xe 3x212x2x1 x2 1 x22sin x cos x sin 2x(6) y [( a21] 1 (a211(a2 x2 ) x2) 2x2) 221 (a2x2 )1x2 ( 2x)x2 2a2 (7) y sec2(x2) (x2)2xsec2(x2)(8) y1x2 (e x)e x2x1(e ) 1 e2 arcsin x (9) y2arcsin x (arcsin x)1x2(10) y1 (cosx)1( sin x) tan xcosx cosx 7 求下列函数的导数(1) y arcsin(1 2x)(2) y11 x 2x(3) y e 2 cos3x(4) y arccos 1x(5) y1 ln x1 ln x (6) y sin 2xx(7) y arcsin x(8) y ln(x a 2 x 2 ) (9) y ln(sec x tan x)(10) y ln(csc x cot x)解 (1) y1(1 2x)21 1 (1 2x)2x x 21 (1 2x) 2(2) y [(111 1 x 2)x 2) 2]1(1 x 2) 2(1213x(1 x 2 ) 2 ( 2x)x 22(1 x 2 ) 1xxxx) cos3xx(3) y (e 2) cos3x e 2(cos3x) e 2(e 2( sin 3x)(3x)21 e xxx2 c o 3sx 3e 2 s i n3x 1e 2( c o3sx6s i n3x)22-----(4) y1 1 (1)1 1 ( 1 )|x|1 (2 x 1 ( ) 2x2x 2x21)xx1(1 l n x) (1 ln x)12(5) yxx(1ln x) 2x(1 ln x)2(6) ycos2x 2 x sin 2x 1 2x cos2x sin2xx2x2(7) y1( x)1111 ( x)21 ( x )22 x 2 x x 2(8) y1x 2 (xa 2x 2 )1x 2 [1 1(a 2 x 2) ]xa 2x a 22 a 2 x 21[112 (2x)]1x a 2 22 a 2x a 2x 2x(9) y1(secx tan x) secxtan x(10) y1(csc x cot x)csc x cot xsecx tan x sec 2x secxsecx tan x cscx cot x csc 2 x cscxcscx cot x8 求下列函数的导数(1) y (arcsin x )22(2) y ln tan x2(3) y 1 ln 2 x(4) y e arctan x(5) y sin nxcos nx(6) y arctanx 1x 1(7) y arcsinxarccosx(8) y=ln[ln(ln x)](9) y1x 1 x 1 x1 x(10) y arcsin1 x1 x解 (1) y2(arcsin x ) (arcsin x)2 22( a r c s xi)n 1( x)2 1 ( x )2 222( a r c s xi) n1 x 12 1 ( ) 222x2a r c s i n24 x 2(2) y1x (tan x) 1 x sec 2 x( x)tan 2 tan2 22 2(3) y(4) y1 2 x 1x s e c2 c s cxt a n 22 1 ln 2 x 2 1 (1 ln 2 x)1 ln2 x1 2ln x ( l nx)12ln x12 1 ln 2x2 1 ln 2xxln xx1 ln2 xearctan x(arctan x)e arctan x1 x) 2( x)1 (-----e a r c t axn11x e a r c t axn1( x)2 2 2 x(1 x)(5) y n sin n 1x (sin x) cos nx sin n x ( sin nx) (nx)n sin n 1x cos x cos nx sin n x ( sin nx) nn sin n 1x (cos x cos nx sin x sin nx) n sin n 1xcos(n 1)x(6) y1( x 1) 1(x 1) ( x 1)11 ( x 1) 2x 11 (x 1)2(x 1)2 1 x 2x 1x 11arccosx 1 arcsin x1 x2 1 x 2(7) y(arccos x)21 a r c c oxs a r c s ixn1 x22( ar c c ox)s2 1 x 2 ( a r c cxo)2s(8) y1 ln(ln x)1ln(ln x)[ln(ln x)] 11(ln x)ln(ln x) ln x 1 1 1 ln x x xln x l n ( lxn)(1 1 )( 1 x1 x) ( 1 x1 x)(1 1)(9) y2 1 x 2 1 x2 1 x 2 1 x( 1 x1 x)211 x 21 x2(10) y1 (1 x) 1 (1 x) (1 x)1 1 x 1 x 1 1 x(1 x)21 x1 x1(1 x) 2x(1 x)9. 设函数 f(x)和 g(x)可导且 f 2(x) g 2(x) 0 试求函数 y f 2 (x) g 2 (x) 的导数解 yf 1[ f 2(x) g2 (x)]22 (x)g 2(x)1[2 f (x) f ( x) 2g(x) g ( x)] 2f 2(x)g2(x)f (x) f (x)g(x)g (x)f 2 (x)g 2 (x)10设 f(x)可导求下列函数 y 的导数dy dx(1) y f(x2)(2)y f(sin2x) f(cos2x)解 (1) y f (x2) (x2)f(x2) 2x 2x f (x2)(2)y f(sin2x) (sin2x) f (cos2x) (cos2x)f(sin2x) 2sin x cos x f (cos2x) 2cosx ( sin x)sin 2x[f (sin2x)f(cos2x)]11求下列函数的导数(1)y ch(sh x )(2)y sh x e ch x(3)y th(ln x)(4)y sh3x ch2x(5)y th(1 x2)(6)y arch(x2 1)(7)y arch(e2x)(8)y arctan(th x)(9)y ln chx12 x 2ch(10)y ch2( x 1) x 1解 (1) y sh(sh x) (sh x) sh(sh x) ch x(2) y ch x e ch x sh x e ch x sh x e ch x(ch x sh2x)(3) y1(ln x)12 (ln x)2 (ln x)ch x ch-----(4) y3sh 2x ch x 2ch x sh x sh x ch x (3sh x 2) (5) ych 21 2 (1 x 2)2 2xx 2 )(1 x )ch (1 (6) y1 1(x 2 1)2x( x 2 1)x 4 2x 2 2(7) y1(e 2x)2e2x(e 2x )21 e 4 x 1 (8) y 1(th x) 1 1 1 1 1 (thx) 2 1 th 2 x ch 2 x 1 2 2sh x ch xch 2x 1 1ch 2 x sh 2x 1 2sh 2 x(9) y1 (ch x) 1 (ch 2x)ch x2ch 4 xsh x 1 2ch x shxch x2ch 4 xsh x shx sh x ch 2x shxch xch 3x ch 3xsh x (ch 2 x 1) sh 3x th 3xch 3xch 3x(10) y2ch(x1) [ch(x1)] 2ch(x1) sh(x1) ( x 1)x 1x 1x 1 x 1 x 1sh(2x 1(x 1) (x 1)2sh(2 x 1)(x 1)2( x 1)2 )x 1x 112 求下列函数的导数(1) y e x (x 2 2x 3)(2) y sin 2x sin(x 2) (3) y (arctan x )22(4) yln xx ne t e (5) ye t ett(6) y ln cos 1x(7) y e sin 2 1x(8) y x x(9) yxarcsinx4 x 22(10) y arcsin2t1 t 2解 (1) y e x (x 2 2x 3) e x (2x 2) ex( x 2 4x 5)(2) y2 222sin x cos x sin(x ) sin x cos(x ) 2xsin2x sin(x 2) 2x sin 2x cos(x 2)(3) y 2arctanx1 1 4 arctan x2 1 x 2 2 x 2 4 241 xnln x nxn 11 n ln x(4) yxx 2nx n 1(5) y(e te t )(e t e t ) (e t e t )(e te t )4e 2t(e t e t )2(e 2t 1) 211111 1 1(6) y sec x (cos x ) sec x ( sin x ) ( x 2 ) x 2tanx(7) y esin 21 ( sin 21) e sin 21xxx( 2sin 1) cos1( 1 ) xxx2122 1s i nx 2 s i nexx(8) y1x (x x )2 1 (1 1 ) 2 xxx2 x2 x 1 4 xxx(9) y arcsinxx1 12 1 ( 2x) arcsin x21 x2 2 4 x 2 24-----(10) y1 ( 2t ) 12 (1 t 2) 2t (2t) 1 (2t)2 1 t 21 ( 2t )2 (1 t 2) 21 t21 t21 t22(1 t 2)2(1 t 2)(1 t 2)2 (1 t 2 )2 |1 t 2 |(1 t 2 )习题231 求函数的二阶导数(1) y 2x 2ln x (2) y e2x 1(3) y xcos x (4) y e t sin t (5) y a 2 x 2 (6) y ln(1 x 2)(7) y tan x1(8) yx 3 12(9) y (1 x )arctan x(10) ye xx(11) y x 2xe(12) y ln( x 1 x 2 )解 (1) y 4x1 y4 1xx2(2) y e 2x 12 2e 2x 1y 2e2x 1 2 4e 2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) ye tsin t e tcos t e t(cos t sin t)ye t (cos t sin t) e t ( sin t cos t) 2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xa2ya2x2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1 x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x6x(2x3 1) (x3 1)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n2x1 x2(10)y e x x e x 1e x( x 1)x2x2y [e x( x 1) e x] x2 e x( x 1) 2x e x(x2 2x 2)x4x3(11)y e x 2x e x2(2x)e x2(12x2 )yx22x24xx22 e2x (12x )e2xe(32x )(12)y12( x1x2 )12(12x 2 )12x 1 x x 1 x 2 1 x 1 x y1(1 x2 )12x x1 x2 1 x22 1 x2)(1 x) 2 1 x-----2 设 f(x)(x6(2)?10)f解 f(x) 6(x5f(x)43 10)30(x 10) f (x) 120(x 10)f(2)120(210)32073603若 f (x)存在求下列函数 y 的二阶导数d2ydx2(1)y f(x2)(2)y ln[ f(x)]解 (1)y f(x2) (x2) 2xf(x2)y2f(x2)2x 2xf(x2)2f(x2) 4x2f(x2)(2) y1 f (x)f (x)f(x) f (x) f ( x) f(x)f( x) f (x)[ f ( x)] 2 y[ f ( x)]2[ f ( x)]24试从dx 1导出dy y(1) d 2 x ydy 2( y ) 3(2)d 3x3( y )2y y dy3( y )5解(1) d 2x d dx d1d1dx y1ydy2dy dy dy y dx y dy( y )2y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2 s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy2y (C12e x C22e x)2(C1e x C2e x)(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2)y sin2x(3)y xln x(4)y xe x解 (1) y nx n 1(n1)a1x n 2 (n2)a2x n 3a n 1y n(n1)x n 21 n 32n 4n 2 (n 1)(n2)a x(n 2)(n 3)a x ay(n) n(n 1)(n 2) 2 1x0 n!(2) y 2sin x cos x sin2xy 2c o 2sx 2s i n2(x)2-----y22 c o s2x()22 s i n2x( 2)22y(4)23 c o s2x(2) 23 s i n2(x 3 )22y(n)2n 1s i n2x[ (n 1)]2(3)y ln x 1y 1 x1xy ( 1)x 2y(4) ( 1)( 2)x 3y(n)(1)( 2)( 3) ( n 2)x n 1( 1)n 2(n 2)!( 1)n (n 2)!x n 1x n 1(4) y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3) y x2sin 2x求y(50) .xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4) cos x所以y(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x v(99)ch x v(100) sh x所以y(100)u(100)v C1 u(99) v C2u(98) v C 98 u v(98) C99 u v(99)u v(100)100100100100100ch x xsh x(3)令 u x2 v sin 2x则有u2x u 2 u0v(48)248 sin(2x48)248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50)C5048u v(48)C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x2sin 2x50xc o 2sx12252 (s i n2x)2习题231求函数的二阶导数(1)y 2x2 ln x(2)y e2x 1(3)y xcos x(4)y e t sin t(5)y a2 x2(6)y ln(1 x2)(7)y tan x1(8) yx3 1(9) y (1 x2)arctan x(10) y e xx-----(11) y xe x2(12) y ln( x1x2 )解 (1) y4x1y41x x2(2) y e2x 1 2 2e2x 1y2e2x 1 2 4e2x 1(3) y xcos x y cos x xsin xy sin x sin x xcos x2sin x xcos x(4) y e t sin t e t cos t e t (cos t sin t)y e t(cos t sin t) e t (sin t cos t)2e t cos t(5) y21x2(a2x2)xx2a2a2a2x2x xx2a2ya2a2 x2(a2 x2 ) a2 x2(6) y11(1x2 )12x x2x2y 2(1x2 )2x (2x)2(1x2)(1 x2 )2(1x2 )2(7) y sec2 xy2sec x (sec x)2sec x sec x tan x2sec2x tan x(8) y(x31)3x2 (x31) 2(x31)2y 6x ( x31)23x22( x31) 3x 6x(2x3 1) (x31)4(x31)3(9) y2xarctanx(1x2)112xarctanx1 x2y2a r c t xa n 2x21 x(10)y e x x e x1 e x( x 1)x2x2y[e x ( x 1) e x ] x 2 e x ( x 1) 2x e x (x 2 2x 2)x4x3(11) ye x 2 x e x 2 (2x) e x 2 (1 2x 2 )yx 22x (1 2x 2x22e 2x ) e4x 2xe (3 2x )(12) y1( x1x 2 ) 1 (1 2x ) 1x 1 x 2x 1 x 22 1 x 21 x 2y1(1 x 2) 12xx1 x21 x 22 1 x 2)(1 x) 21 x2 设 f(x) (x 10)6f (2) ?解 f (x) 6(x 10)5 f (x) 30(x 10)4f (x) 120(x 10)3f(2) 120(2 10)3 2073603 若 f (x)存在 求下列函数(1) y f(x 2)(2) y ln[ f(x)]解 (1)yf(x 2) (x 2) 2xf (x 2) y 2f(x 2) 2x 2xf (x 2) (2) y1 f (x)f (x)f (x) f (x) f( x) f (x) y2[ f ( x)]4 试从dx 1导出dy y(1) d 2xydy 2( y ) 3(2)d 3x 3( y )2 y ydy3( y )5解 (1) d 2xd dxd 1dy2dy dydyyd 2 yy的二阶导数d x 22f (x 2) 4x 2f (x 2)f ( x) f (x) [ f ( x)] 2[ f ( x)]2d1dx y 1y dx y dy( y )2 y( y )3(2) d3x d y d y dxdy3dy y 3dx y 3dyy ( y )3 y 3( y )2 y13( y )2 y y(y )6y(y )55已知物体的运动规律为s Asin t(A、是常数 )求物体运动的加速度并验证d 2s2s 0dt 2解dsA cos t dt d2 s A 2 sin t dt 22d s就是物体运动的加速度dt2d2 s 2 s A 2 s i n t2 As i n t 0dt 2C1e x C2e x(6验证函数 y C1 C2是常数 )满足关系式y2y 0解y C1 e x C2 e xy C12e x C22e xy212e x C22x21x2e x)y (C e ) (C e C(C12e x C22e x) (C12e x C22e x) 0 7验证函数 y e x sin x 满足关系式y2y2y 0解 y e x sin x e x cos x e x(sin x cos x)y e x(sin x cos x)e x(cos x sin x) 2e x cos xyx xcos x)x2y 2y 2e cos x2e (sin x2e sin x 2e x cos x2e x sin x2e x cos x2e x sin x 08求下列函数的 n 阶导数的一般表达式(1) y x n1n 12n 2n 1n 12n 都是常数)a x a x a x a (a a a(2) y sin2x-----(3)y xln x(4)y xe x解 (1) y n 11n 2(n2 n 3n 1nx(n 1)a x2)a x ay n(n1)x n 2 (n1)(n2)a1x n 3(n 2)(n 3)a2x n 4a n 2y(n) n(n 1)(n 2) 2 1x0 n!(2) y2sin x cos x sin2xy2c o 2sx 2s i n2(x)2y22 c o s2x() 22 s i n2x( 2)22y(4) 23 cos(2x2) 23 sin(2x 3 )22(n)n 1y 2 s i n2x[ (n 1)](3)y ln x 1y 1x 1 xy ( 1)x 2y(4) ( 1)( 2)x 3(n)( 1)( 2)( 3)( n 2)x n 1( 1)n 2 (n 2)!( 1)n (n 2)!y x n 1x n 1 (4)y e x xe xy e x e x xe x 2e x xe xy 2e x e x xe x 3e x xe xy(n) ne x xe x e x(n x)9求下列函数所指定的阶的导数(1)y e x cos x 求 y(4)(2)y xsh x 求 y(100)(3)y x2sin 2x 求 y(50) .所以所以xv cos x有解 (1)令 u eu u u u(4)e xv sin x v cos x v sin x v(4)cos xy(4)u(4) v4u v6u v4u v u v(4)e x[cos x4(sin x)6(cos x)4sin x cos x] 4e x cos x(2)令 u x v sh x则有u 1 u0v ch x v sh x(99)ch x(100)sh xv vy(100) u(100) v C1 u(99)v C2u(98)v C 98 u v(98)C99 u v(99)u v(100) 100100100100(3)令 u x2u 2xv(48)100ch x xsh xv sin 2x 则有u 2 u0248 sin(2x 48 )248 s i n2x2v(49)249cos 2x v(50)250sin 2x所以y(50)u(50)v C1501u(49) v C502u(48) v C5048u v(48) C5049u v(49) u v(50) C5048u v(48) C5049u v(49) u v(50)50 492 228 sin 2x50 2x 249 c o 2sx x2 (250 s i n2x)250x 2sin 2x50xc o 2sx1 2 2 52 (2s i n2x)习题241求由下列方程所确定的隐函数 y 的导数dydx(1)y2 2x y 9 0(2)x3 y3 3axy 0(3)xy e x y(4)y 1 xe y解 (1)方程两边求导数得-----2y y 2y 2x y 0于是(y x)y yyyy x(2)方程两边求导数得3x 2 3y 2y 2ay 3axy 0于是(y 2 ax)y ayx 2yay x 2y2ax(3)方程两边求导数得y xy e x y (1 y )于是(x e x y )y e x y ye x yyyx e x y(4)方程两边求导数得y e y xe yy于是(1 xe y )y e yyey1 xey222在点 ( 2a, 2a) 处的切线方程和法线方程2 求曲线 x3y 3a34 4解 方程两边求导数得 2 x31 13 2y 3 y 031于是yx31y3在点 (2a,2a) 处 y 144所求切线方程为y2a ( x2a) 即 x y 2 a442所求法线方程为y2a (x2a) 即 x y 04423 求由下列方程所确定的隐函数 y 的二阶导数d ydx22 2(1) x y 1(2) b 2x 2 a 2y 2 a 2b 2 (3) y tan(x y)(4) y 1 xe y解 (1)方程两边求导数得2x 2yy 0yx yy ( x)y xxy xy y y 2x 21yy 2y 2y 3 y 3(2)方程两边求导数得2b 2 x 2a 2 yy 0yb 2 xa2yy x( b 2 x)b 2 y xy b 2 a 2 y ya2y2a2y 2b 2 a 2 y 2 b 2 x 2b 4a2a 2 y3a 2 y3(3)方程两边求导数得y sec 2(x y) (1 y )2y)1y s e c( x2y) 2y) 11 s e c(xc o s( x2y)21s i n(xc o s(x y)12y)y 2s i n( xy23 y23( 112 )2(1 y 2 )y 5yyy(4)方程两边求导数得yyy e xe y-----yeyeyey1 xe y1 (y 1)2 yye y y (2 y) e y ( y ) e y (3 y) y e 2 y (3 y)(2 y)2(2 y)2(2 y)34 用对数求导法求下列函数的导数(1) y ( x )x1 x (2) y5x 525 x2(3) yx 2(3 x)4( x 1)5(4) y xsin x 1e x解 (1)两边取对数得ln y xln|x| xln|1 x|,两边求导得1 y ln x x 1 l n1( x) x 1y x 1 x 于是y ( x)x[ l nx1 ]1 x 1 x 1x(2)两边取对数得ln y1ln |x 5|1l nx(22)两边求导得5251 y1 1 12x2y5 x 525 x 2于是y 1 5x 5[11 2x ]5 5 x 2 2x 5 5 x 2 2(3)两边取对数得ln y1l nx( 2) 4 l n3( x) 5l n x( 1)2两边求导得1 y 1 3 45y 2(x 2)x x 1于是yx 2(3x)4 [ 12)4 5 ](x 1)52(x x 3 x 1(4)两边取对数得ln y1ln x1ln s i nx1l n1( e x )两边求导得22 41 y1 1 c o xte xy 2x24(1 e x )于是yxs i nx 1 e x[11c o xte x]2x 2 4(1 e x )1 x 22c o tx e x ]4 xs i nx 1 e [ x e x1 dy5求下列参数方程所确定的函数的导数dxx at 2(1)y bt2x (1 sin ) (2)ycos解 (1)dyy t 3bt 2 3b tdxx t 2at 2ady ycos sin(2) dx x 1 sincos6 已知xe tsin t, 求当 t 3 时 dy的值y e tcost. dx解dy y te t cost e t sin t costsin t dxx t e tsin t e tcost sintcostdy 1 3 1 3 当 t 时 2 2 3 2dx 1 3 1 3 32 27 写出下列曲线在所给参数值相应的点处的切线方程和法线方程(1)x sin t在 t处y cos2t4x3at (2)1 t 2在 t=2 处y 3at 21 t 2解 (1) dyy t2sin 2tdxx tcost-----dy 2sin(2)当 t时42 2 2 x02y0 0 dx4cos2242所求切线方程为y 2 2(x2) 即2 2x y 2 0 2所求法线方程为y1(x 2 )即 2x 4y1222(2) y t 6at (1t2 )3at 2 2t6at(1t 2 )2(1t 2 )2x t 3a(1t 2)3at2t3a3at 2 (1t 2 )2(1t 2)2dy y t6at2tdx x t3a3at 21t 2当 t 2 时dy 2 24x 6a ydx1223050所求切线方程为012a 5y12 a 4(x6a)即 4x 3y 12a 0535所求法线方程为y12 a3(x 6a)即 3x 4y 6a 0545d 2 y8求下列参数方程所确定的函数的二阶导数dx2 x t 2(1)2y 1 t. xacost(2)y bsin t(3)x3e t y2e t(4)x f t (t )设 f(t)存在且不为零y tf t (t) f (t)dy y t1 d 2 y(y x)t1解 (1)t 21 dx x t t dx2x t t t3(2) dy y tbcostbcot tdx x t asin t ab 2 d 2 y (y x )t a csc t b dx 2 x t asin ta 2 sin 3 tdy y t 2e t22t(3) dx x t3e t3ed 2y( y x )t2 2t3 2e4 3tdx 2x t3e te9 (4) dy y t f (t) tf (t) f (t)dx x tf (t)td 2 y ( y x )t 1dx 2x tf (t)9 求下列参数方程所确定的函数的三阶导数(1) x 1 t 2y t t3(2)x ln(1 t 2) y t arctan t解 (1)dy (t t 3)1 3t2dx (1 t 2 )2t1 3t 2d 2y ( 2t )1 ( 1 3) dx 22t4 t 3 t1 1 3d 3y 4 ( t 3t )3(1 t 2)dx 32t8t 5dy (t arctan t)11(2)1 t 21 tdx [ln(1 t 2)]2t 21 t21d 2 y ( 2t) 1 t 2 dx 22t 4t1 t 23d y-----1 t 2d 3 y ( 4t ) t 4 1dx 3 2t 8t 31t 210 落在平静水面上的石头 产生同心波纹 若最外一圈波半径的增大率总是6m/s 问在 2 秒末扰动水面面积的增大率为多少?解 设波的半径为 r 对应圆面积为 S 则 S r 2 两边同时对 t 求导得S t 2 rr当 t 2 时 r 6 2 12 r t 6故 S t t 22 126 144( 米 2 秒)| 其速率为 4m 2/min11 注水入深 8m 上顶直径 8m 的正圆锥形容器中 当水深为 5m 时 其表面上升的速度为多少?解水深为 h 时 水面半径为 r1 h 水面面积为 S 1 h 21hS 1 h 1 h 224水的体积为 Vh 33 34 12dV 12 3h 2dh dh 4 dVdt dt dt h 2 dt已知 h 5(m), dV 4 (m 3/min) 因此 dh 4 dV 4 4 16(m/min)dtdt h 2 dt252512 溶液自深 18cm 直径 12cm 的正圆锥形漏斗中漏入一直径为 10cm 的圆柱形筒中 开始时漏斗中盛满了溶液 已知当溶液在漏斗中深为 12cm 时 其表面下 降的速率为 1cm/min 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在 t 时刻漏斗在的水深为 y 圆柱形筒中水深为 h 于是有1 62 18 1r 2 y 52hy 3y3由 r得 r 代入上式得 6 18 31 62 18 1 ( y ) 2 y 23 3 3 5 h即162 18 1y 3 52 h 两边对 t 3 33求导得1 y2 y 52 h32t当 y 12 时 y t1 代入上式得1 122( 1) 16h t32 52 0.64 (cm/min).25。

高等数学第二章导数试题及答案

高等数学第二章导数试题及答案

第二章 导数一.导数与微分概念 1.导数的定义如果极限()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim 存在, 称此极限值为函数()x f 在0x 处的导数导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆, 则()()()000limx x x f x f x f x x --='→h x f h x f x f h )()(lim)(0000-+='→或hx f h x f x f h ---='→)()(lim )(0000我们也引进单侧导数概念。

右导数:()()()()()x x f x x f x x x f x f x f x x x ∆-∆+=--='++→∆→+000000lim lim 0左导数:()()()()()xx f x x f x x x f x f x f x x x ∆-∆+=--='--→∆→-000000lim lim 0则有()x f 在点0x 处可导()x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线()x f y =在点()()00,x f x 处的切线的斜率。

切线方程:()()()000x x x f x f y -'=-法线方程:()()()0001x x x f x f y -'-=-()()00≠'x f 3.函数的可导性与连续性之间的关系如果函数()x f y =在点0x 处可导,则()x f 在点0x 处一定连续,反之不然,即函数()x f y =在点0x 处连续,却不一定在点0x 处可导。

例如,()x x f y ==,在00=x 处连续,却不可导。

4.微分的定义设函数()x f y =在点0x 处有增量x ∆时,如果函数的增量()()00x f x x f y -∆+=∆有下面的表达式()()x x x A y ∆+∆=∆00()0→∆x其中()0x A 为与x ∆无关,()x ∆0是0→∆x 时比x ∆高阶的无穷小。

高等数学题库第02章(导数与微分)

高等数学题库第02章(导数与微分)

第二章 导数与微分习题一一、选择题1.设)(x f 在a x =处可导,则=+--→hh a f h a f h )()(lim( )A.)(2'a fB. )('a fC. )(2'a f -D.0 2.设0)0(=f ,则下述所论极限存在,则=→xx f x )(lim( ) A. )0(f B. )0('f C. )('x f D.03.函数⎪⎩⎪⎨⎧=≠=000,1arctan )(x x xx x f ,,则)(x f 在点0=x 处( ) A.间断 B.连续,但不可导 C.可导 D.可导且2)0('π=f4.在3=x 处可导,则常数a 和b 的一组值为( )A.6和9B.-6和-9C.6和-9D.-6和95.已知)4)(3)(2)(1()(----=x x x x x f ,且!3)('=k f ,则=k ( ) A.4 B.3 C.2 D.16. 设)(x f 是偶函数,且在0=x 处可导,则)0('f =( ) A.1 B.-1 C.0 D.以上都不对7.设曲线21x e y -=与直线1-=x 的焦点为p ,则曲线在点p 处的切线方程是( ) A.022=+-y x B. 012=++y x C. 032=-+y x D. 032=+-y x8. 已知曲线L 的参数方程是⎪⎩⎪⎨⎧==2sin cos ty tx ,则曲线L 上3π=t 出法线方程是( ) A. 0142=+-y x B. 0124=--y x C. 0342=-+y x D. 0324=-+y x 二.填空题1.设函数)()()(22x g a x x f -=,其中)(x g 在点a x =处连续=)('a f .2.设函数)(x f 在()+∞∞-,可导,)1()1()(22x f x f x F -+-=,则=)1('F .3.设x x x f +=sin )(ln ,则=)('x f .4.设)0(1>=x xy x ,则='y . 5.设x z x y ∙=2,则=dy .6.设π<<x 0,则=∙+)cot 1(x x d )(cot x d7.已知)(2)(x fa x =ϕ,且)(2)('x x ϕϕ=,则=)('x f .8.)(2b x f y +=,则=''y .9.设)(x y y =由y y x =+)(ϕ确定,若)('y ϕ存在且1)('≠y ϕ,则=dxdy. 三.下列各题中均假定)(0'x f 存在,按照导数定义,求出下列各题中的A 值( ) (1)=∆-∆-→∆x x f x x f x )()(lim 000A(2)=→xx f x )(limA 设存在且)0(,0)0('f f = (3)=-+→hx f h x f h )()3(lim000A(4)=--+→hh x f h x f h )()2(lim000A四.设函数()⎩⎨⎧>+≤+=2212x b x x ax x f 在2=x 处可导,求常数a 和b 的值.五.设函数()⎩⎨⎧≥-<=0202x bx x ae x f x 在点0=x 处可导,求常数a 和b 的值.习题二一、选择题1. 2)('=a f ,则=--+→xx a f x a f x )()(lim0( ) A.2 B.-2 C.4 D.-42.设函数)(x f 和)(x g 在0=x 处可导,0)0()0(==g f ,且0)0('≠g ,则=→)()(limx g x f x ( )A.)0()0(''g fB. )()(''x g x f C. )0()0('g f D. )()('x g x f3.下列函数中,在0=x 处既连续又可导的是( ) A.x xx f =)( B. ⎩⎨⎧≤>-=0sin 0,1)(x x x x x f , C. ⎩⎨⎧≥+<=0)1ln(0,)(x x x x x f , D.x y sin =4.满足)()()('''b f a f b a f +=+的函数)(x f =( ) A.2x B.3x C.x e D.x ln5.设)100()4)(3)(2)(1()(++-+-=x x x x x x x f ,则=)1('f ( ) A.!101 B.100!101-C. !100-D. 99!100 6.设a 是实数,函数⎪⎩⎪⎨⎧≤>-∙-=101,11c o s )1(1)(x x x x x f a ,则)(x f 在1=x 处可导时,必有( )A.1-≤aB.01<<-aC.10<≤aD.1≥a7.若)(x f 的一阶导数与二阶导数都存在,且均不等于零,其反函数为)(y x ϕ=,则=)(''y ϕ( )A.)(1''x f B.[]2''')()(x f x f C. []2''')()(x f x f - D. []3''')()(x f x f - 二.填空题1.若对任意实数x ,函数)(x f 满足)()(x f x f -=-,且0)(0'≠=-k x f , 则=)(0'x f .2.已知)(x f e y =,其中f 二阶可导,则=''y .3.设xx x f +=⎪⎭⎫ ⎝⎛11,则=)('x f .4.设抛物线2ax y =与曲线x y ln =相切,则a = .5.设)1ln(2-+=x x y ,则='y .6.设曲线ax x y +=3与曲线c bx y +=2在点()0,1-处相切,其中c b a ,,为常数, 则a = ,b = , c = . 三.求下列函数的一阶导数:1.2ln 222+-=a x x y2.211xx y -+=3.21ln xxy += 4.x x y 2ln +=5.()x x y 32cos 3sin ∙=6.x y arcsin ln 3=7.x x y 2sec arctan ∙=8.xxx y tan 1sin +=9.()22sin sin xxy = 10.xx y ln 2=11.()x x y ln arcsin = 12.()x x y cos cos -=习题三一、选择题1.下列函数中,在0=x 处不可导的是( ) A.x y sin = B. x y cos = C.2ln =y D.x y =2. 下列函数中,在0=x 处可导的是( )A. x y ln =B. x y cos =C. x y sin =D. ⎩⎨⎧≥<=00,2x x x x y ,3.若函数⎩⎨⎧≥-<=0,0,)(2x bx a x e x f x 在0=x 处可导,则b a 、的值必为( )A.1-==b aB. 2,1=-=b aC. 2,1-==b aD. 2==b a4.设函数)(x f 在1=x 处可导,且21)1()31(lim=∆-∆-→∆x f x f x ,则=)1('f ( )A.31B. 61C. 61- D. 31- 5.曲线x e x y +=在0=x 处的切线方程是( )A.012=+-y xB. 022=+-y xC. 01=+-y xD. 02=+-y x 6.曲线1213123+++=bx x x y 在点(0,1)处的切线与x 轴交点的坐标是( ) A.(-1,0) B.⎪⎭⎫ ⎝⎛-0,61 C.(1,0) D. ⎪⎭⎫⎝⎛0,617.设xey 2sin =,则=dy ( )A.)(sin 2x d e xB. )(sin 2sin 2x d e x C. )(sin 2sin 2sin x xd e x∙ D. )(sin 2sin x d e x8.若函数)(x f y =有21)(0'=x f ,则当0→∆x 时,)(x f 在点0x 处的微分是( ) A.与x ∆等价的无穷小量 B.与x ∆同阶,但不等价的无穷小量 C.比x ∆高阶的无穷小量 D. 比x ∆低阶的无穷小量 二.填空题1设函数)(x f 在2=x 处可导,且2)1('=f ,则=+-+→h nh f mh f h )2()2(lim0 。

(完整版)数学必修2第二章知识点小结及典型习题

(完整版)数学必修2第二章知识点小结及典型习题

第二章 点线面位置关系总复习1、(1)平面含义:平面是无限延展的,没有大小,厚薄之分。

另外,注意平面的表示方法。

(2)点与平面的关系:点A 在平面内,记作;点不在平面α内,记作A α∉点与直线的关系:点A 的直线l 上,记作:A ∈l ;点A 在直线l 外,记作A ∉l ;直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α。

2、四个公理与等角定理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为A ∈LB ∈L ⇒ L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(只要找到直线的两点在平面内,则直线在平面内) (2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2的三个推论:(1):经过一条直线和这条直线外的一点,有且只有一个平面。

(2):经过两条相交直线,有且只有一个平面。

(3):经过两条平行直线,有且只有一个平面。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3说明:两个不重合的平面只要有公共点,那么它们必定交于一条过该公共点的直线,且线唯一。

公理3作用:判定两个平面是否相交的依据,是证明三线共点、三点共线的依据。

即:①判定两个平面相交的方法。

②说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③可以判断点在直线(交线)上,即证若干个点共线的重要依据。

(4)公理4:平行于同一条直线的两条直线互相平行。

a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

(表明空间中平行于一条已知直线的所有直线都互相平行)(5)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3、(1)证明共面问题:方法1是先证明由某些元素确定一个平面,在证明其余元素也在这个平面内。

高等数学-习题答案-方明亮-第二章

高等数学-习题答案-方明亮-第二章

第二章 导数与微分习题2-11.解:当自变量从x 变到1x 时,y 相应地从()=8f x x 变到11()=8f x x ,所以导数111111()()8()limlim 8x xx x f x f x x x y x x x x→→--'===--. 2.解:由导数的定义可知022020()()()lim()()() lim 2 lim 2h h h f x h f x f x ha x hb x hc ax bx c haxh h bhax bh →→→+-'=++++-++=++==+。

3.解:0022()22()limlimx x x x xsinsin cos x x cos xcos x xx∆→∆→+∆∆-⋅+∆-'==∆∆ 0022lim lim22x x x sinx x -sin sin x x ∆→∆→∆+∆=⋅=-∆ 4. 解:(1)不能,(1)与()f x 在0x 的取值无关,当然也就与()f x 在0x 是否连续无关,故是0()f x '存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价.5. 解:(1)45x ; (2)3212x --; (3)157227x ;(4)11ln 3x ; (5)5616x -; (6)22x e .6. 解:物体在t 时刻的运动速度为:2()()3()V t S T t m /s '==,故物体在2t s =时的速度为:22()3212()t V t m /s ==⋅=. 7.证明:由导数定义,知:00()(0)()(0)(0)limlim0x x f x f f x f f x x→→---'==- 00()(0)()(0)lim lim (0)0t x t t f t f f t f f t t =-→→--'==-=---所以,(0)0f '=。

高等数学第二章参考答案

高等数学第二章参考答案

第二章参考答案习题2.11.解:0000()()()limt t t t t tθθω∆→+∆-=∆2.解:0(1)(1)(1)lim x f x f f x ∆→+∆-'=∆ 202(1)2=lim x f x x∆→+∆-∆0lim (4)4x x ∆→=+∆= 3.证明:()f x 是偶函数。

x R ∴∀∈ 有()()f x f x -=()()()limx f x x f x f x x ∆→-+∆--'∴-=∆0()()lim x f x x f x x ∆→-∆-=∆ '0(())()lim ()x f x x f x f x x∆→+-∆-==-∆ 故()f x '是R 上的奇函数4、解:3()s t t =2()()3v t s t t '∴== 2()t s ∴= 时,22(2)312t v t===5、解:x y e = x y e '∴= 故在(0,1) 处(0,1)1y '= ∴过(0,1)切线方程为1y x -=,即1y x =+ ,过(0,1)直线方程为1y x -=,即1y x =-+6、解20()0x x f x x x -≤⎧=⎨≥⎩000()()(0)lim lim 1x x f x f x xf xx ---∆→∆→∆--∆'∴===-∆∆ 2000()()(0)lim lim 0x x f x f x x f x x+++∆→∆→∆--∆'===∆∆(0)(0)f f +-''≠ (0)f '∴ 不存在 7、21sin 0()0x x f x xx ⎧≠⎪=⎨⎪=⎩∴ 当0x ≠时,21()sin f x x x=,函数连续又201lim sin 0(0)x x f x →== 0x ∴=时,()f x 连续()f x ∴在(,)-∞+∞连续又0x ≠时,2111()(sin )2sin cos f x x x x x x''==-0x =时,2001sin()(0)(0)lim lim x x x f x f x f x x∆→∆→∆∆-'==∆∆ 01lim sin 0x x x ∆→=∆=∆ 112sin cos0()00x x f x x xx ⎧-≠⎪'∴=⎨⎪=⎩8、证明:()f x 在0x x =点可导0000()()()limh f x h f x f x h→+-'∴=000()()limh f x h f x h hαβ→+--∴00000()()()()lim h f x h f x f x h f x h h αβ→+---⎡⎤=-⎢⎥⎣⎦00000()()()()lim h f x h f x f x h f x h h αβααβ→⎡+---⎤=+⎢⎥⎣⎦ 000()()()()f x f x f x αβαβ'''=+=+习题2.21、解:(1)3()f x x =22()3,(21)3(21)f x x f x x ''∴=+=+(2)由3(21)f x x +=,另1212t t x x -=+⇒=3311()()(1)28t f t t -∴==- 31()(1)8f x x ∴=-222333()(1),'(21)(211)882f x x f x x x '∴=-+=+-=2.解:(1)532225(3)232y x x x x x ''=+-=+-(2)22()()2()()()a x a x a x ay a x a x a x --+---''===+++ (3)2221((arccos )ln )2(arccos )ln (arccos )y x x x x x x x x x x ''=⋅=⋅+⋅2(arccos )ln arccos y x x x x x x '=⋅+⋅ (4)122[(27)(13)]y x x ''=++112227(13)+6(27)2x x x x -=++ 3.解:(1)211(ln tan )sec tan sin cos y x x x x x''==⋅= (2)22223311(2)(21)(21)(2)33y x x x x x x --''==++⋅+=+++(3)22221111(1)(1)1(arctan)()1111(1)11()1()11x x x x y x x x x x x x x ++--+'''==⋅=⋅=-++---+++--(4)y ''=111222{[()]}x x x '=++ 11111222221[([()]2x x x x -'=++⋅+ 111111222222111[()][1()(1)]222x x x x xx ---=++++⋅+111222111()[1()(1)]222x x x ---=+⋅+1()]=+4解:22sin y x x =+2cos 2y x x '∴=+00||2cos 2|2x x y x x =='∴=+=∴曲线22sin y x x =+在(0,0)点切线方程为:2y x = 法线方程为:12y x =- 5 证明2x x e e shx -+=2x xe e chx -+= ()()22x x x xe e e e chx shx --+-''∴===()()22x x x xe e e e shx chx ---+''===6解:21,6()1,0a x f x x bx x +<⎧=⎨++≥⎩在0x =点可得,(0)(0)f f +-∴=且(0)(0)f f +-''=又2(0)lim ()lim(1)1(0)x x f f x x bx f +++→→==++== 0(0)lim ()lim(1)1x x f f x a a ---→→==+=+, 110a a ∴+=⇒=而2000(0)(0)11(0)lim lim =lim (+)x x x f x f x b x f x b b x x++++∆→∆→∆→+∆-∆+∆+-'==∆=∆∆0(0)(0)11(0)lim lim =0x x f x f a f x x---∆→∆→+∆-+-'==∆∆ 0b a ∴==7.解:()f x 在0x 点可导,0()=0f x ,()g x 在0x 点连续, 000000()()()()limlim x x f x x f x f x x f x x x∆→∆→+∆-+∆'∴==∆∆00lim ()()x x g x g x →=,000000()()()()[()()]lim x x x f x x g x x f x g x f x g x x =∆→+∆+∆-'∴=∆ xx x g x x f x ∆∆+∆+=→∆)()(lim 000 )()()(lim 0000x x g xx f x x f x ∆+⋅∆-∆+=→∆ )(lim )()(lim 00000x x g xx f x x f x x ∆+⋅∆-∆+=→∆→∆)()(00x g x f '=习题2.31.解(1)xx x x e x x e x xe e x y -----=-='=')2(2)(222x x x e x x e x e x x y ------='-='')2()22(])2[(22 )222(2x x x e x +--=- x e x x -+-=)24(2(2)12122)(--='='x x e e y ,12124)2(--='=''x x e e y (3)22211)1(arctan 2]arctan )1[(xx x x x x y +++='+='1arctan 2+=x x 212arctan 2)1arctan 2(x xx x x y ++='+='' (4)222211)1221(11])1[ln(xxx xx x x y +=++++='++='232222)1(12121)11(-+-=+⋅+-='+=''x x x xx x y2.解 56)10(6)()10()(+='∴+=x x f x x f34)10(120)()10(30)(+='''+=''x x f x x f 101212120)2(43⨯=⨯='''∴f3.证明:wt A s sin = wt Aw dt ds cos =∴wt Aw dtsd a sin 222-==∴ (运动物体加速度) 0sin sin 22222=⋅+-=+∴wt A w wt Aw s w dtsd 4.)(ln x f y = )(ln 11)(ln x f xx x f y '='='∴ x x f x x f x x f x y 1)(ln 1)(ln 1])(ln 1[2''+'-=''='')](ln )(ln [1)(ln 1)(ln 1222x f x f xx f x x f x '+''=''+'-=})](ln )(ln [1{2''-''=∴x f x f x y]1)(l n 1)(l n[1)](ln )(ln [223xx f x x f x x f x f x ''-'''+'-''-=)](ln )(ln [1)](ln )(ln [233x f x f xx f x f x ''-'''+'-''-= )](ln )(ln )(ln 2)(ln 2[13x f x f x f x f x ''-'''+'+''-=)](ln 3)(ln )(ln 2[13x f x f x f x''-'''+'=5.2)21(111-='∴-=y x y 34)1(2)1()1)(1(2x x x y -=----=''.....)1(23)1()1()1(32462x x x y -⋅=---⋅-='''设1)()1(!+-=k k x k y则222)1()1()!1()1()]1([)1(!+++-+=-+---=k k k k x k x k x k y1)()1(!+-=∴n n x n y6、解:22(1)x y x e =+(8)2212(7)22(6)88(1)()2+C ()2x x x y e x C e x e ∴=++⋅⋅221126287(1)2222x x e x xe e ⨯=+++⋅⋅ 22119(1272)x e x x =+++⋅22(20483585)x x x e =++7解:()21sin ,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 00x x ≠= 0x ∴≠时,2111()(sin )2sin cos f x x x x x x''==-0x =时:()2001sin()(0)limlim 0x x x f x f x f x xx∆→∆→∆∆-∆===∆∆()000112sincos ()(0)111limlim lim(2sin cos )x x x x f x f x x f x x xx x x x∆→→→∆-∆-∆∆===∆-∆∆∆∆∆112sin cos ,0()0,0x x f x x xx ⎧-≠⎪'∴=⎨⎪=⎩00112sincos ()(0)111(0)limlim lim(2sin cos )x x x x f x f x x f xx x x x→→→∆-∆-∆∆'===-∆∆∆∆∆故(0)f '不存在。

高等数学第二章答案2-3

高等数学第二章答案2-3

习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214xy -=''. (2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1.(3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x .(4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21x a x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 12a r c t a n 2xxx y ++=''. (10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3,f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2).(2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dtds ωωcos =, t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0s i n s i n 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 .解 y '=C 1λe λx -C 2λe -λx ,y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx )=(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式:y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x .y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数);(2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1, y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! .(2) y '=2sin x cos x =sin2x ,)22s i n (22c o s 2π+==''x x y , )222s i n (2)22c o s (222ππ⋅+=+='''x x y , )232s i n (2)222c o s (233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2s i n [21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y '''=(-1)x -2,y (4)=(-1)(-2)x -3,⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x ,y '''=2e x +e x +xe x =3e x +xe x ,⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x ,所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= =100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2s i n 212252c o s 502sin (2250x x x x x ++-=.。

高等数学第二章复习题及答案(1)

高等数学第二章复习题及答案(1)

⾼等数学第⼆章复习题及答案(1)思思学姐独家整理QQ33760379⾼等数学习题集及解答第⼆章⼀、填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。

2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。

3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。

4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。

5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dy dx =。

6、()x f x xe =,则_______________(ln 2)f '''=。

7、如果(0)y ax a =>是21y x =+的切线,则__________a =。

8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。

9、()(1)(2)()f x x x x x n =+++L ,则_________________(0)f '=。

11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。

12、设tan x y y +=,则_________________________dy =。

13、设lny =_______________(0)y '''=。

14、设函数()y f x =由⽅程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线⽅程是______________________。

高等数学第二章练习及答案

高等数学第二章练习及答案

第二章一、选择题.1. 函数1y x =+在0x =处( )A 、无定义B 、不连续C 、可导D 、连续但不可导 2. 设函数221,0(),0x x f x x x +<⎧=⎨≥⎩,则()f x 在点0x =处 ( )A 、没有极限B 、有极限但不连续C 、连续但不可导D 、可导3.设函数)(x f y =可微,则当0→∆x 时,dy y -∆与x ∆相比,是( )A .x ∆的等价无穷小B .x ∆的同阶无穷小C .x ∆的高阶无穷小D .x ∆的低阶无穷小 4.函数3y x x =-的单调增区间是( )A、(,-∞ B、( C、+)∞ D 、(0,+)∞ 5.函数1()()2x x f x e e -=+的极小值点是 ( )A 、1B 、1-C 、0D 、不存在二、填空题.1. 已知(sin )cos x x '=,利用导数定义求极限0πsin()12lim =x x x→+-__________.2、如果0()4f x '=,则xx f x x f x ∆-∆-→∆)()3(lim000=______________.3. 函数x x f ln )(=在1=x 处的切线方程是 .4.设1()f x x=,则()f x '=____ .5. 函数3()sin(cos )f x x =,则()f x '= .6. 设函数()ln cos f x x =,则二阶导数()f x ''=______________.7. (arctan 2)d x =________,[]ln(sin 2)d x =__________.8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________.三、判断题.1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( )2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ∆的改变量.( )3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( )4. 极值点一定是驻点.( )5. 函数y x=在点0x =处连续且可导.( )四、计算题.1.求函数y =.2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '.3. 设e xy x =,求y '.4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y ''五、求下列极限.(1)sin lim sin x x x x x →∞-+, (2)xx xx x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →⎛⎫- ⎪-⎝⎭, (4)1lim(1)(0)x x a x a →∞->, (5)()1lim 1xx x →+, (6)1lim ()x xx x e →+∞+.六、应用题.1. 求函数32()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点.2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?3. 设某产品的总成本函数和总收入函数分别为()3C x =+ 5()1xR x x =+. 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.4. 某产品的需求量Q 对价格p 的函数关系为11600(),4p Q =求当3p =时的需求价格弹性.5. 求立方抛物线()30y ax a =>上各点处的曲率,并求x a =处的曲率半径.总习题2答案一、1. D 2. A 3. C 4. B 5. C 二、1. 0 2. 12- 3.1=-y x 4.21x-5.2333sin cos(cos )x x x -⋅⋅ 6.2sec x - 7.2214dx x +, 2cot 2xdx 8. 5 , 9.2p-三、1. √ 2. √ 3.√ 4.× 5.× 四、1.y '=2. 22e 1.1ex yy -'=+ 3.e e (e ln ).xxxy x x x'=+4.sin(),1sin()x y y x y -+'=++ []3cos().1sin()x y y x y +''=-++ 五、(1) 1. (2) 1.- (3)1.2(4)ln .a (5).e (6).e 六、1. 函数32()395f x x x x =--+的单增区间是()()13-∞-+∞,,,单减区间是()13-,;极大值是(1)6f -=,极小值是(3)26f =-; 极值点为121,3x x ==.凸区间是()1-∞,,凹区间是()1+∞,;拐点是()110-,.2.(1) 成本函数为 ()200060C q q =+. 收入函数为211()(100)100.1010R q p q q q q q =⋅=-⋅=- (2) 利润函数为21()()()402000.10L q R q C q q q =-=--令()0,L q '= 得 200.q =因为200q =是定义域内唯一的驻点, 所以当产量为200吨时利润最大. 3.边际成本为'()C x=边际收入为25()(1)R x x '=+.利润函数为5()()() 3.1xL x R x C x x =-=-+ 边际利润为25()(1)L x x '=+ 4. '()2ln 2.d p E Q p p Q=⋅=- (3)23ln 26ln 2.d E =-⨯⨯=- 5. 36221(19).6a K aρ+==。

高等数学第二章习题详细解答答案

高等数学第二章习题详细解答答案

1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时

大专-高等数学--第二章-(1)

大专-高等数学--第二章-(1)

定理 3 (单调有界原理) 单调有界数列必有极限.
三、极限的性质
性质 性质 1 (惟一性) 则A B.
若 lim f (x) A, lim f (x) B,
xx0
xx0
性质 2
(有界性)
若 lim xx0
f (x)
A ,则存在
x0

某一空心邻域N (xˆ0,) ,在N (xˆ0, ) 内函数f (x) 有界.
定义2 设函数 f (x) 在 x0 的右半邻域(x0 , x0 ) 内 有定义,当自变量x 在此半邻域内无限接近于 x0 时,相应 的函数值 f (x)无限接近于常数 A ,则称 A 为函数 f (x) 在 x0 处的右极限,记为
lim
xx0
f
(x)
A
,f
(x0 )
A

f (x) A(x x0 ).
(4)
因为
lim x
1 4
x
0,所以当 x
时,
1 4
x

无穷小.
2. 极限与无穷小量之间的关系
设 lim xx0
f
(x)
A,即 x
x0 时,函数值
f
(x)无限接
近于常数 A,也就是说 f (x) A无限接近于常数零,即
x x0时, f (x) A以零为极限,也就是说 x x0时,
1. 无穷小量的定义
定义 8 极限为零的变量称为无穷小量,简称无穷小.
说明(1)数零是惟一可作为无穷小的常数. (2)无穷小表达的是量的变化状态,而不是量的大
小.一个量不管多么小,都不能是无穷小量,零是惟一例外 的.即无穷小量是绝对值无限变小且趋于零的量.
例 4 自变量 x在怎样的变化过程中,下列函数为无
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思思学姐 独家整理QQ33760379高等数学习题集及解答第二章一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。

2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。

3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。

4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。

5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。

6、()x f x xe =,则_______________(ln 2)f '''=。

7、如果(0)y ax a =>是21y x =+的切线,则__________a =。

8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。

9、()(1)(2)()f x x x x x n =+++L ,则_________________(0)f '=。

10、ln(13)x y -=+,则____________________y '=。

11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。

12、设tan x y y +=,则_________________________dy =。

13、设lny =_______________(0)y '''=。

14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。

15、1cos0()00x x f x xx λ⎧≠⎪=⎨⎪=⎩,其导数在0x =处连续,则λ的取值范围是_______________________。

16、知曲线323y x a x b =-+与x 轴相切 ,则2b 可以通过a 表示为____________。

二、 选择题。

17、设()f x 可导,()()(1sin )F x f x x =+,则(0)0f =是()F x 在0x =处可导的( )。

A 充分了必要条件,B 充分但非必要条件,C 必要条件但非充分条件,D 既非充分条件又非必要条件。

18、函数3221()31xx f x xx ⎧≤⎪=⎨⎪>⎩在1x =处 ( )A 左右导数均存在,B 左导数存在,右导数不存在,C 左导数不存在,右导数存在,D 左右导数均不存在。

19、设周期函数()f x 在(,)-∞+∞内可导,周期为4,又0(1)(1)lim 12x f f x x→--=-,则曲线()y f x =在点(5,(5))f 处的切线斜率为 ( )A12, B 0 , C –10, D –2 。

20、设函数11cos (1)1()0ax x f x ⎧⎪--=⎨⎪⎩11x x ≠= 则实常数a 当()f x 在1x =处可导时必满足( )A 1a <-;B 10x -≤<;C 01x ≤<;D 1a ≥21、已知212()2x x x ax b x ϕ⎧->=⎨+≤⎩ ,且(2)ϕ'存在,则常数,a b 的值为 ( )A 2,1;a b ==B 1,5;a b =-=C 4,5;a b ==-D 3, 3.a b ==- 22、函数()f x 在(,)-∞+∞上处处可导,且有(0)1f '=,此外,对任何的实数,x y 恒有()()()2f x y f x f y xy +=++,那么()f x '=( )A ;x eB ;xC 21x +;D 1x +。

23、已知函数()f x 具有任何阶导数,且2()[()]f x f x '=,则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是 ( )A 1![()]n n f x +;B 1[()]n n f x +;C 2[()]n f x ;D 2![()].n n f x24、若函数()y f x =有01()2f x '=,则当0x ∆→时,该函数在0x x =处的微分dy 是x ∆的( ) A 等价无穷小; B 同阶但不等价的无穷小;C 低阶无穷小;D 高阶无穷小。

25、设曲线1y x =和2y x =在它们交点处两切线的夹角为ϕ,则tan ϕ= ( )A 1-;B 1;C 2;D 3 。

26、设由方程组2110y x t te y =-⎧⎨++=⎩ 确定了y 是x 的函数,则202t d ydx ==( )A 21e ; B 212e ; C 1e -; D 12e- 。

一、 填空题的答案 1、2)(a f ' 2、-1 ;3、2141-e ;4、35、-16、6+2ln27、28、19、n! 10、-xx --+313ln 3 11、1 12、dx y dy 1sec 12-= 13、23-14、0=-y x15、2>λ 16、624a b =二、选择题答案:17、A 18、B 19、D 20、A 21、C 22、C 23、A 24、B 25、D 26、B 三、综合题:27、求曲线cux y =上与直线1=+y x 垂直的切线方程。

剖析:求曲线的切线议程关键有垂点,一是求切点,二是求切线斜线。

解:设切点为)(00y x 则点).(00y x 处的切线斜度为01|x x x y k =='=依题意知所求切线()坐y x +1=垂直,从而11=x 10=x 利切点为)01(、;切线()为.1=k故所求切线方程为10-=-x y 即:1-=x y 设xe xf 1)(-=则21041)2()2(lim-→-=--e tc f tc f t 9、如果)(x f 为偶函数,且)0(-f 存在 证明0)0(=-f 证明:因为)(x f 为偶函数,所以)()(x f x f =-从而)0(0)0()()(lim 0)0()(lim)0(00f x f x f x f x f x f f x x '-=---=-=--=→-→ ∴:0)0(2='f 故0)0(='f28、讨函数⎪⎩⎪⎨⎧=≠=001sin 2x x xx y 在0=x 处方程连续性与可得解:)0(1sin lim lim 200y xx y x x ==→→,所以函数y 在0=x 处连续 又01sin lim 1sinlim)0(lim 0200===--→→→xx x x x x y y x x x 故函数y 在0=x 处可导、值0|='=x y x29、已知⎩⎨⎧<-≥=0)(2x x x x x f 求)0().0(-+''f f 及是否存在)0(2f '解:0lim 0)0()(lim )0(200==--='++→→+x x x f x f f x x1lim 0)0()(lim )0(00-=-=--='--→→-xxx f x f f x x 故不存在)0(f ' 30、已知)(00sin )(,x f x x x x x f '⎩⎨⎧≥<=求解: x x f x cos )(.0='<时当1)(.0='>x f x 时当11lim )(lim )0(0=='='++→→+x x x f f所以:1)0(1=f 从而⎩⎨⎧≥<='01cos )(x x x x f 31、证明:双曲线22a xy =上往一点处切线与两坐标轴构成的三角形的面积都等于22a 。

证明:设),(00y x 为双曲线2a xy =上的一点,则该点处切线的斜率为,202x a k -=从而切线方程为)(00202x x x a y y --=-令0=x 得y 轴上的截距为020202x a x a y y =+=令0=y 得x 轴上的截距为02x x = 从而20202|2.2|21|||21a x a x y x s === 32、设xe y x1sin1tan =求y '解:)1(sin 1sin )(1tan 1tan'+'='xe x ey x x)1(1cos 1sin )1)(1(sec 21tan 221tan x x e x xx ex x-+-=33、设)2323(+-=x x f y 在2arcsin )(x x f =' 求0=x dxdy解:设2323),(+-==x x u u f y则:2)23()23(3)23(3)()2323)((+--+'='+-'=x x x u f x x u f dx dy22)23(12)(arcsin +=x u222312)2323arcsin(+⋅+-=x x x 从而π231arcsin 3|0===x dx dy34、设⎪⎩⎪⎨⎧=≠=0001arctan )(22x x xx x f ,讨论0)(='x x f 在点处连续性剖析:本题需先求)(x f '的表达式,再讨论)(x f '在点0=x 处的连续性解:当2232)1(121arctan )(0xx xxx f x +-+='≠时422121arctan x x x +-=21arctanlim 0)0()(lim200π==--='→→x x x x f x f f x x 从而:⎪⎪⎩⎪⎪⎨⎧=≠+-='020121arctan )(422x x x x x x f π由于)0(2121arctan lim )(lim 42200f x x x x f x x '==⎥⎦⎤⎢⎣⎡+-='→→π处连续在点0)(='∴x x f 35、:,)(dx dyy x f 的导数求下列函数可导设(1))(2x f y = (2))(cos )(sin 22x f x f y +=解:(1))(22)(22x f x x x f y '=⋅'='(2)))(cos (cos ))(sin (sin 2222''+''='x x f x x f y=x x x f x x x f sin cos 2)(cos cos sin 2)(sin 22'-' =[])(cos )(sin 2sin 2121x f x f x -37、设)(,)11(lim )(2t f xt x f tx x '+=∞→求 提示:tte t f 2)(=。

相关文档
最新文档