平行线的性质练习(答案)

合集下载

2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。

5.3 平行线的性质(三)同步作业(含答案)

5.3 平行线的性质(三)同步作业(含答案)

5.3 平行线的性质(三)◆典型例题【例1】下列语句是不是命题.(1)画∠AOB的角平分线;(2)平面上有几个点;(3)两点之间,线段最短;(4)若a≠b,则|a|≠|b|.【解析】(1)是操作性的语句;(2)是问句;(3)、(4)是判定语句.【答案】(1)、(2)不是命题;(3)、(4)是命题.【例2】指出下列命题的题论、结论:(1)如果两条直线相交,那么它们只有一个交点.(2)两条直线被第三条直线所截,如果同旁内角互补,即这两条直线平行.(3)两条平行平行线被第三条直线所截,内错角相等.(4)若∠1=∠2,∠2=∠3,则∠1=∠3.【解析】每个命题都是由题设、结论两部分组成,题设是知事项,结论是由已知事项推出的事项,命题常写成“如果…,那么…”的形式,具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.【答案】(1)题设:两条直线相交;结论:它们只有—个交点;(2)题设:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(3)因为这个命题可以改写成:“如果两条平行线被第三条直线所截,那么内错角相等”;也可以简写成“如果两直线平行,那么内错角相等”,所以可以简单说成,题设:两直线平行,结论:内错角相等.(4)题设:∠1=∠2,∠2=∠3,结论:∠1=∠3.◆课前热身1.每个命题都由____________和____________两部分组成.2.命题“对顶角相等”的题设是____________,结论________________________.◆课上作业3.命题“同位角相等”改写成“如果…,那么…”的形式是____________________________.4.请用“如果…,那么…”的形式写一个命题______________5.一个命题,如果题设成立,结论一定成立,这样的命题是_____________命题;如果题设成立,结论不成立或不一定成立,这样的命题叫_______命题(填“真”、“假”).6.以下四个命题:①一个锐角与一个钝角的和为180°;②若m不是正数,则m一定小于零;③若ab>0,则a>0,b>0;④如果一个数能被2整除,那么这个数一定能被4整除.真命题有_______个.◆课下作业一、填空题7.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是____________________________________________.8.“垂线段最短”的题设是_____________________,结论是____________________.9.命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题.请你写出一种改法:_______________________________________________10.对于同一平面的三条直线a、b、c,给出以下五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c以其中两个为题设,一个为结论,组成一个正确的命题______________________.二、选择题11.唐伯虎点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是∶春香、夏香、秋香、冬香【所给人物】A、B、C、D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是春香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香若上面的命题都是真命题,问谁是秋香?A.AB.BC.CD.D12.下列命题正确的是( )A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等;D.两直线平行,同旁内角相等三、解答题13.阅读以下两小题后作出相应的解答:(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等的逆命题,并指出逆命题的题设和结论;(2)根据以下语句作出图形,并写出该命题的文字叙述.已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.14.如图5-122,给出下列论断:(1)AB∥DC;(2)AD∥BC;(3)∠A+∠B=180°;(4)∠B+∠C=180°,以其中一个作为题设,一个作为结论,写出一个真命题.想一想,若连接BD,你能自已写出一个真命题吗?试写出—个真命题并写出推理过程.图5-122参考答案◆课下作业一、填空题7.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是____________________________________________.答案:④8.“垂线段最短”的题设是_____________________,结论是____________________.答案:连接直线外一点与直线上一点的所有线段中;垂线段最短9.命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题.请你写出一种改法:_______________________________________________答案:答案不唯一,如:a>b>0,|a|>|b|等10.对于同一平面的三条直线a、b、c,给出以下五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c以其中两个为题设,一个为结论,组成一个正确的命题______________________.答案:下列答案任选其一:①若a∥b,b∥c则a∥c②若a∥b,a∥c则b∥c;③若a∥c,b∥c,则a∥b④若a⊥b,a⊥c,则b∥c⑤若a⊥c,b∥c,则a⊥b;⑥若a⊥b,b∥c,则a⊥c二、选择题11.唐伯虎点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是∶春香、夏香、秋香、冬香【所给人物】A、B、C、D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是春香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香若上面的命题都是真命题,问谁是秋香?A.AB.BC.CD.D答案:D12.下列命题正确的是( )A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等;D.两直线平行,同旁内角相等答案:C三、解答题13.阅读以下两小题后作出相应的解答:(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等的逆命题,并指出逆命题的题设和结论;(2)根据以下语句作出图形,并写出该命题的文字叙述.已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.答案:(1)到角两边距离相等的点在这个角的平分线上;题设是到角两边距离相等的点,结论是该点在这个角的平分线上(2)图略;邻补角的平分线互相垂直14.如图5-122,给出下列论断:图5-122(2)AB∥DC;(2)AD∥BC;(3)∠A+∠B=180°;(4)∠B+∠C=180°,以其中一个作为题设,一个作为结论,写出一个真命题.想一想,若连接BD,你能自已写出一个真命题吗?试写出—个真命题并写出推理过程.答案:(1)(4)、(2)(3)、(4)(1)、(3)(2)中任选一个;AD∥BC则∠ADB=∠CBD或∠ADB=∠CBD则AD∥BC.略。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

平行线的性质及判定(人教版)(含答案)

平行线的性质及判定(人教版)(含答案)

学生做题前请先回答以下问题问题1:平行线的判定有几个?分别是什么?问题2:平行线的性质有几个?分别是什么?平行线的性质及判定(人教版)一、单选题(共12道,每道8分)1.如图,若∠1=∠2,则( )A.AD∥BCB.AD=BCC.AB∥CDD.AB=CD答案:C解题思路:∠1和∠2是直线AB和直线CD被直线AC所截得到的内错角,根据内错角相等,两直线平行,可得AB∥CD.故选C.试题难度:三颗星知识点:平行线的判定2.如图,若AB∥EF,则∠ADE=_____,理由是_________.( )A.∠B;两直线平行,同位角相等B.∠DEF;内错角相等,两直线平行C.∠DEF;两直线平行,内错角相等D.∠CEF;两直线平行,同位角相等答案:C解题思路:∠ADE和∠DEF是由两条平行直线AB和EF被直线DE所截得到的内错角,若AB∥EF,则∠ADE=∠DEF,理由是两直线平行,内错角相等.试题难度:三颗星知识点:平行线的性质3.如图,两直线a,b被直线c所截,形成八个角,可以判断a∥b的是( )A.∠2+∠4=180°B.∠3+∠8=180°C.∠5+∠6=180°D.∠7+∠8=180°答案:B解题思路:选项B:∵∠2=∠8(对顶角相等)∠3+∠8=180°(已知)∴∠2+∠3=180°(等量代换)∴a∥b(同旁内角互补,两直线平行)故选B.试题难度:三颗星知识点:平行线的判定4.如图,下列推理及所注明的依据都正确的是( )A.因为∠1=∠ABC,所以DE∥BC(内错角相等,两直线平行)B.因为∠2=∠3,所以DE∥BC(两直线平行,内错角相等)C.因为DE∥BC,所以∠2=∠3(两直线平行,内错角相等)D.因为∠AEB+∠C=180°,所以DE∥BC(同旁内角互补,两直线平行)解题思路:选项A中,由条件∠1=∠ABC,∠1和∠ABC不是同位角、内错角,而且也转化不成这样的角,所以不能证明DE∥BC,故选项A错误;选项B中,条件是∠2=∠3,结论是DE∥BC,依据是内错角相等,两直线平行,故选项B 错误;选项C中,条件是DE∥BC,结论是∠2=∠3,依据是两直线平行,内错角相等,故选项C 正确;选项D中,∠AEB+∠C=180°,但∠AEB和∠C不是同旁内角,是同位角,所以不能证明DE∥BC,故选项D错误.故选C.试题难度:三颗星知识点:平行线的性质5.如图,点E在AC的延长线上,若BD∥AE,则下列结论错误的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°答案:B解题思路:由BD∥AE,根据两直线平行,内错角相等得∠3=∠4,∠D=∠DCE,根据两直线平行,同旁内角互补得∠D+∠ACD=180°,但∠1与∠2的关系无法判断,因为∠1与∠2是直线AB与直线CD被直线BC所截得到的内错角,但直线AB与直线CD是否平行,不知道.故选B.试题难度:三颗星知识点:平行线的性质6.如图,下列推理及所注明的理由都正确的是( )A.若AB∥DG,则∠BAC=∠DCA,理由是内错角相等,两直线平行B.若AE∥CF,则∠3=∠4,理由是两直线平行,内错角相等C.若AE∥CF,则∠E=∠F,理由是内错角相等,两直线平行D.若AB∥DG,则∠3=∠4,理由是两直线平行,内错角相等答案:B解题思路:分析:利用平行线的判定和性质时,要分清楚条件和结论,找出截线和被截线.选项A中,AB∥DG是条件,内错角∠BAC=∠DCA是结论,因此依据是两直线平行,内错角相等,选项A错误;选项B中,AE∥CF是条件,内错角∠3=∠4是结论,因此依据是两直线平行,内错角相等,选项B正确;选项C中,AE∥CF是条件,内错角∠E=∠F是结论,因此依据是两直线平行,内错角相等,选项C错误;选项D中,∠3和∠4不是两条平行直线AB和DG被第三条直线所截得到的角,选项D错误.故选B.试题难度:三颗星知识点:平行线的性质7.下列说法:①若∠A+∠B=180°,则∠A,∠B互补;②若∠A+∠B=180°,则∠A,∠B是同旁内角;③若∠A,∠B互补,则∠A+∠B=180°;④若∠A,∠B是同旁内角,则∠A+∠B=180°.其中正确的是( )A.①②③④B.①③C.①③④D.①②③答案:B解题思路:如果两个角的和是180°,那么称这两个角互为补角,反之,当两个角互补时,这两个角的和是180°,所以①和③正确;同旁内角是位置角,与大小无关,只有两条平行直线被第三条直线所截时,才有同旁内角互补,所以②和④错误.故选B.试题难度:三颗星知识点:互补8.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2的度数为( )A.30°B.40°C.50°D.60°答案:C解题思路:由c⊥a,c⊥b,可得a∥b,然后再由两直线平行,同位角相等得∠2=∠1,因为∠1=50°,所以∠2=50°.故选C.试题难度:三颗星知识点:平行线的性质9.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠ACD的度数为( )A.35°B.40°C.45°D.50°答案:B解题思路:如图,∵AD平分∠BAC(已知)∴∠BAC=2∠BAD(角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等量代换)∵AB∥CD(已知)∴∠1+∠BAC=180°(两直线平行,同旁内角互补)∴∠1=180°-∠BAC=180°-140°=40°(等式性质)故选B.试题难度:三颗星知识点:平行线的性质10.已知:如图,AC∥ED,AB∥FD,∠A=54°,则∠EDF的度数为( )A.36°B.45°C.54°D.60°答案:C解题思路:分析:由AB∥FD,利用两直线平行,同位角相等得∠A=∠DFC;由AC∥ED,利用两直线平行,内错角相等得∠EDF=∠DFC;进而得到∠EDF=∠A=54°.解:如图,∵AB∥FD(已知)∴∠A=∠DFC(两直线平行,同位角相等)∵AC∥ED(已知)∴∠EDF=∠DFC(两直线平行,内错角相等)∴∠A=∠EDF(等量代换)∵∠A=54°(已知)∴∠EDF=54°(等量代换)故选C.试题难度:三颗星知识点:平行线的性质11.已知:如图,AB∥CD,BC∥DE.求证:∠B+∠D=180°.证明:如图,∵AB∥CD(已知)∴____________(两直线平行,内错角相等)∵BC∥DE(已知)∴____________(两直线平行,同旁内角互补)∴∠B+∠D=180°(________________________)①∠B=∠C;②∠B=∠E;③∠C=∠D;④∠C+∠D=180°;⑤∠D=∠E;⑥等量代换;⑦同角的补角相等.以上空缺处依次所填正确的是( )A.①④⑦B.②④⑥C.①④⑥D.③⑤⑦答案:C解题思路:第一个空:条件是AB∥CD,结合下面的推理过程中用到了∠B以及这一步的依据是两直线平行,内错角相等,因此应填是∠B=∠C,所以选①;第二个空:条件是BC∥DE,结合下面的推理过程中用到了∠D以及这一步的依据是两直线平行,同旁内角互补,因此应该填写的是∠C+∠D=180°,所以选④;第三个空:条件应该是上面的两步∠B=∠C,∠C+∠D=180°,结论是∠B+∠D=180°,由条件到结论的依据是等量代换,所以选⑥;故选C.试题难度:三颗星知识点:平行线的性质12.已知:如图,AC,EF相交于点O,∠E=∠F,∠1=∠2.求证:AB∥DG.证明:如图,∵∠E=∠F(已知)∴____________(内错角相等,两直线平行)∴∠3=∠4(____________________)∵∠1=∠2(已知)∴∠1+∠3=∠2+∠4(等式性质)即∠BAC=∠DCA∴____________(内错角相等,两直线平行)①AB∥DG;②AE∥CF;③两直线平行,内错角相等;④内错角相等,两直线平行;⑤两直线平行,同位角相等.以上空缺处依次所填正确的是( )A.①④①B.②③⑤C.②③①D.①③②答案:C解题思路:第一个空:条件是∠E=∠F,结合下面的推理过程以及这一步的依据是内错角相等,两直线平行,所以应填AE∥CF,所以选②;第二个空:条件是上一步得到的结论AE∥CF,结论是∠3=∠4,由平行得到内错角相等,所以应填的依据是两直线平行,内错角相等,所以选③;第三个空:条件是上一步得到的结论∠BAC=∠DCA,以及这一步的依据是内错角相等,两直线平行,所以应填AB∥DG,所以选①.故选C.试题难度:三颗星知识点:平行的判定学生做题后建议通过以下问题总结反思问题1:已知两直线平行,你能想到什么?问题2:若要证明两直线平行,需要考虑什么?。

七年级数学下册《平行线的性质》练习题及答案解析

七年级数学下册《平行线的性质》练习题及答案解析

七年级数学下册《平行线的性质》练习题及答案解析一、选择题(共20小题)1. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个2. 如图,AB∥CD,∠B=75∘,∠E=27∘,则∠D的度数为( )A. 45∘B. 48∘C. 50∘D. 58∘3. 如图,直线DE经过点A,DE∥BC,∠B=60∘,下列结论一定成立的是( )A. ∠C=60∘B. ∠DAB=60∘C. ∠EAC=60∘D. ∠BAC=60∘4. 如图,已知AD∥BC,下列结论不一定正确的是( )A. ∠A+∠ABC=180∘B. ∠1=∠2C. ∠A=∠3D. ∠C=∠35. 如图,直线a∥b,直线c分别与a,b相交,∠1=50∘,则∠2的度数为( )A. 130∘B. 150∘C. 50∘D. 100∘6. 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60∘,则下列结论错误的是( )A. ∠2=60∘B. ∠3=60∘C. ∠4=120∘D. ∠5=40∘8. 如图,直线a,b被直线c所截,a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 130∘D. 150∘9. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘10. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30∘,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘11. 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=25∘,那么∠2的度数为( )A. 25∘B. 30∘C. 45∘D. 65∘12. 如图,两直线a,b被直线c所截,已知a∥b,∠1=65∘,则∠2的度数为( )A. 65∘B. 105∘C. 115∘D. 125∘13. 如图,直线AD∥BC,若∠1=74∘,∠BAC=56∘,则∠2的度数为( )A. 70∘B. 60∘C. 50∘D. 40∘14. 如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55∘,则∠2的度数为( )A. 45∘B. 125∘C. 55∘D. 35∘15. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘16. 如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40∘,则∠BAE的度数是( )A. 40∘B. 70∘C. 80∘D. 140∘17. 如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40∘,则∠2的度数为( )A. 140∘B. 90∘C. 50∘D. 40∘18. 一个多边形的内角和比它的外角和的3倍少180∘,这个多边形的边数是( )A. 5B. 6C. 7D. 819. 经过点P(−4,3)垂直于x轴的直线可以表示为( )A. 直线x=3B. 直线y=−4C. 直线x=−4D. 直线y=320. 如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数是( )A. 140∘B. 130∘C. 120∘D. 110∘二、填空题(共8小题)21. 如图,已知直线AB∥CD,∠1=50∘,则∠2=.22. 如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、后的两条路平行,若第—次拐角是150∘,则第二次拐角大小为度.23. 如图,l1∥l2,∠1=120∘,∠2=100∘,则∠3=.24. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.25. 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a∘.则下列结论:(180−a)∘;①∠BOE=12②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).26. 小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠A=40∘,∠1=70∘,小明马上运用已学的数学知识得出了∠C 的度数,聪明的你一定知道∠C=.27. 如图,AD∥CE,∠ABC=100∘,则∠2−∠1的度数是.28. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于度.三、解答题(共6小题)29. 如图,已知:点P在直线CD上,∠BAP+∠APD=180∘,∠1=∠2.求证:∠E=∠F.30. 已知AB∥CD,E为AB,CD同侧上一点.(1)如图1,过点E作EF∥AB.求证:∠CEA=∠EAB−∠ECD.(2)如图2,E,B,D三点在一条直线上,EA平分∠CED,若∠C=50∘,∠EAB=80∘,求∠CED的度数;(3)如图3,CH,AH交于点H,∠BAH=2∠EAH,∠DCH=40∘,∠DCE=60∘,求∠H的值.∠E31. 如图,∠AOB=120∘,射线OC在∠AOB内,且∠AOC=30∘,OD平分∠BOC,OE平分∠AOD.(1)依题意补全图形;(2)求∠EOC的度数.32. 复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零,这是一种常见的数学解题思想.(1)如图①,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角;(2)如图②,平面内三条直线l1,l2,l3两两相交,交点分别为A,B,C,图中一共有对同旁内角;(3)平面内四条直线两两相交,最多可以形成对同旁内角;(4)平面内n条直线两两相交,最多可以形成对同旁内角.33. 如图,直线AB,CD被m,n所截,已知:∠1=110∘,∠2=70∘.(1)试判断AB,CD的位置关系,并说明理由.(2)已知AD平分∠BAC,若∠3=120∘,求∠BAD的度数.34. 如图,直线AB∥CD,DE∥BC.(1)判断∠B与∠D的数量关系,并说明理由.(2)设∠B=(2x+15)∘,∠D=(65−3x)∘,求∠1的度数.参考答案与解析1. D2. B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75∘−27∘=48∘.3. B4. D5. A6. D7. D8. B 【解析】∵a∥b,∴∠2=∠1=50∘.9. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘,∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.故选:B.10. B【解析】因为AB∥CD,所以∠1=∠ADC=30∘,又因为等腰直角三角形ADE中,∠ADE=45∘,所以∠1=45∘−30∘=15∘.11. D12. C 【解析】∵a∥b,∴∠1=∠3,∵∠1=65∘,∴∠3=65∘,∵∠2+∠3=180∘,∴∠2=115∘.13. C14. D15. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘.∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.16. B【解析】因为AB∥CD,所以∠ACD+∠BAC=180∘,因为∠ACD=40∘,所以∠BAC=180∘−40∘=140∘,因为AE平分∠CAB,×140∘=70∘.所以∠BAE=∠BAC=1217. C【解析】如图所示:∵直线a∥b,∠1=40∘,∴∠3=∠1=40∘.∵AC⊥AB,∴∠BAC=90∘,∴∠2=90∘−∠1=90∘−40∘=50∘.故选C.18. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.19. C【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.故选:C.20. B【解析】如图,过点C作CG∥AB,由题意可得AB∥EF∥CG,故∠B=∠BCG,∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.则∠BCD=40∘+90∘=130∘.21. 50∘22. 15023. 40∘24. 90∘25. ①②③【解析】①∵AB∥CD,∴∠BOD=∠ABO=a∘,∴∠COB=180∘−a∘=(180−a)∘,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180−a)∘.故①正确;②∵OF⊥OE,∴∠EOF=90∘,∴∠BOF=90∘−12(180−a)∘=12a∘,∴∠BOF=12∠BOD,∴OF平分∠BOD,∴②正确;③∵OP⊥CD,∴∠COP=90∘,∴∠POE=90∘−∠EOC=12a∘,∴∠POE=∠BOF;∴③正确;∴∠POB=90∘−a∘,而∠DOF=12a∘,∴④错误.26. 30∘27. 80∘【解析】作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180∘,∵∠ABC=100∘,∴∠3+∠4=100∘,∴∠1+∠4=100∘,∴∠2−∠1=80∘.28. 30【解析】因为AB∥CD,所以∠DNM=∠BME=75∘.因为∠PND=45∘,所以∠PNM=∠DNM−∠DNP=30∘.29. ∵∠BAP+∠APD=180∘,∴AB∥CD,∴∠BAP=∠APC.又∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,∴AE∥FP,∴∠E=∠F.30. (1)∵AB∥CD,EF∥AB,∴CD∥EF∥AB,∴∠FEA=∠EAB,∠FEC=∠ECD,∴∠CEA=∠FEA−∠FEC=∠EAB−∠ECD;(2)由(1)知∠CEA=∠EAB−∠ECD=30∘,∵EA平分∠CED,∴∠CED=2∠CEA=60∘;(3)设∠EAH=x,∠BAH=2x,由(1)可知∠E=∠EAB−∠ECD=3x−60∘,∠H=∠HAB−∠HCD=2x−40∘,∴∠H∠E =2x−40∘3x−60∘=23.31. (1)补全图形如图所示:(2)∵∠AOB=120∘,∠AOC=30∘,∴∠COB=∠AOB−∠AOC=90∘.∵OD平分∠BOC,∴∠DOC=12∠BOC=45∘.∴∠DOA=∠AOC+∠DOC=75∘.∵OE平分∠AOD,∴∠DOE=12∠AOD=37.5∘.∴∠EOC=∠DOC−∠DOE=45∘−37.5∘=7.5∘.32. (1)2(2)6(3)24(4)n(n−1)(n−2)33. (1)AB∥CD.理由如下:∵∠1=110∘,∵∠2=70∘,∴∠2=∠4,∴AB∥CD.(2)∵∠3=120∘,∴∠5=60∘,∴AB∥CD,∴∠BAC=∠5=60∘,∵AD平分∠BAC,∠BAC=30∘.∴∠BAD=1234. (1)∠B=∠D.∵AB∥CD,∴∠B=∠1 .∵DE∥BC,∴∠1=∠D .∴∠B=∠D .(2)由2x+15=65−3x,解得x=10,所以∠B=35∘ .。

七年级数学上册《第五章 平行线的性质》同步练习题及答案(华东师大版)

七年级数学上册《第五章 平行线的性质》同步练习题及答案(华东师大版)

七年级数学上册《第五章平行线的性质》同步练习题及答案(华东师大版)班级姓名学号一、选择题1.如图,已知直线a∥b,∠1=60°,则∠2的度数是( )A.45°B.55°C.60°D.120°2.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°3.如图,已知直线AB∥CD,当点E在直线AB与CD之间时,下列关系式成立的是( )A.∠BED=∠ABE+∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABED.∠BED=2∠CDE-∠ABE4.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°6.如图,DE∥AB,∠CAE=13∠CAB,∠CDE=75°,∠B=65°则∠AEB是 ( )A.70°B.65°C.60°D.55°7.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A.18°B.126°C.18°或126°D.以上都不对8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个二、填空题9.如图,a∥b,若∠1=46°,则∠2= °.10.如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.11.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.12.如图,DB平分∠ADE,DE∥AB,∠CDE=80°,则∠ABD= ,∠A= .13.如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2= °.14.如图1是长方形纸袋,∠DEF=a,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用表示图3中∠CFE的大小为_________三、解答题15.如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.16.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3.求证:BA平分∠EBF.下面给出证法1.证法1:设∠1、∠2、∠3的度数分别为x,2x,3x.∵AB∥CD∴2x+3x=180°,解得x=36°∴∠1=36°,∠2=72°,∠3=108°∵∠EBD=180°∴∠EBA=72°∴BA平分∠EBF请阅读证法1后,找出与证法1不同的证法2,并写出证明过程.17.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.18.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.答案1.C2.B3.A4.A.5.C6.B7.C8.D9.答案为:46.10.答案为:20.11.答案为:15°.12.答案为:50°,80°.13.答案为50.14.答案为:180°﹣3α.15.解:(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义) 所以∠1=∠CDB所以AE∥FC( 同位角相等两直线平行)(2)平行因为AE∥CF所以∠C=∠CBE(两直线平行, 内错角相等)又∠A=∠C所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3) 平分因为DA平分∠BDF所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD.16.证明:∵AB∥CD∴∠2+∠3=180°∵∠1:∠2:∠3=1:2:3∴设∠1=x°,∠2=2x°,∠3=3x°∴2x+3x=180解得:x=36∴∠1=36°,∠2=72°∴∠EBA=180°-36°-72°=72°∴BA平分∠EBF.17.解:如图,延长BE交CD的延长线于点F∵AB∥CD[已知]∴∠ABE+∠EFC=180°[两直线平行,同旁内角互补]又∵∠ABE=120°,[已知]∴∠EFC=180°﹣∠B=180°﹣120°=60°,[两直线平行,同旁内角互补] ∵∠DCE=35°∴∠BEC=∠DCE+∠EFC=35°+60°=95°18.解:(1)∵AE∥OF∴∠FOB=∠A=30°∵OF平分∠BOC∴∠COF=∠FOB=30°∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG∴∠FOG=90°∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°∵∠AOD=∠COB=∠COF+∠FOB=60°∴∠AOD=∠DOG ∴OD平分∠AOG.。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案一、选择题1. 在平面内,如果两条直线不相交,那么这两条直线被称为:A. 相交线B. 垂直线C. 平行线D. 异面直线答案:C2. 根据平行线的性质,下列哪项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 如果一条直线与两条平行线中的一条相交,则与另一条也相交D. 平行线可以确定一个平面答案:C3. 如果直线AB与直线CD平行,且点E在直线AB上,点F在直线CD 上,那么直线EF与AB的关系是:A. 平行B. 垂直C. 相交D. 无法确定答案:D二、填空题4. 如果直线l1与直线l2平行,且直线l1上的点P到直线l2的距离为d,那么直线l1上任意一点到直线l2的距离都是________。

答案:d5. 平行线的性质之一是,如果一条直线与两条平行线中的一条相交,则与另一条________。

答案:不相交三、判断题6. 平行线在任何情况下都不会相交。

()答案:正确7. 如果两条直线相交,它们就不可能平行。

()答案:正确8. 平行线之间的夹角总是90度。

()答案:错误四、简答题9. 解释什么是平行线,并给出平行线的基本性质。

答案:平行线是两条直线在同一个平面内,且不论延伸多远都不相交的直线。

基本性质包括:平行线之间的距离处处相等,平行线永远不会相交,如果一条直线与两条平行线中的一条平行,则与另一条也平行。

10. 描述如何使用直尺和三角板来检验两条直线是否平行。

答案:首先,使用直尺画出两条直线。

然后,用三角板的一边与直线之一对齐,确保没有间隙。

接着,将三角板沿着直线滑动,检查三角板的另一边是否始终与另一条直线平行。

如果始终平行,则两条直线平行。

五、计算题11. 在平面直角坐标系中,已知直线l1的方程为y=2x+3,直线l2的方程为y=2x+5。

请判断这两条直线是否平行,并给出理由。

答案:这两条直线是平行的。

因为它们的斜率相同,都是2,而截距不同,分别是3和5。

根据平行线的性质,当两条直线的斜率相同时,它们是平行的。

平行线的性质专项练习60题有答案

平行线的性质专项练习60题有答案

平行线的性质专项练习60题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.12.如图,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.30.如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F,EG平分∠FEB,∠EFG=50°,求∠FEG的度数.31.如图,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度数.32.如图所示,直线l1∥l2,∠A=90°,∠ABF=25°,求∠ACE的度数.33.如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.34.如图,CD∥AB,CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.35.如图:a∥b,∠1=122°,∠3=50°,求∠2和∠4的度数.36.如图,已知AB∥CD,∠1=50°,BD平分∠ADC,求∠A的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.42.已知:如图AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一条直线上.求∠AEC的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.58.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.59.如图,已知DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.60.如图,已知AB∥CD,∠1=∠2,∠EFD=56°,求∠EGD的度数.11 / 17第11页共17 页平行线的性质60题参考答案:1.∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.2.解法一:过C点作CF∥AB,则∠1=∠ACF=35°(两直线平行,内错角相等),∵AB∥ED,CF∥AB(已知),∴CF∥ED(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°;解法二:延长DC交AB于F∵AB∥ED(已知),∴∠BFC=∠2=80°(两直线平行,内错角相等),∵∠ACF=∠BFC﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC、ED交于F∵AB∥ED,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100°∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD∥BC,∴∠C=∠CAD,∠B=∠DAE,又∵AD平分∠CAE,∴∠CAD=∠DAE,即∠C=∠B.4.∵AD∥EF(已知)∴∠BAD=∠E(两直线平行,同位角相等)∠DAC=∠F(两直线平行,内错角相等)∵∠E=∠F(已知)∴∠BAD=∠DAC(等量代换)∴AD是∠BAC的平分线.5.设∠3=3x,∠2=2x,由∠3+∠2=180°,可得3x+2x=180°,∴x=36°,∴∠2=2x=72°;∵AB∥CD,∴∠1=∠2=72°6.∵AB∥CD,∴∠BEF+∠EFD=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD)=×180°=90°,在△EFG中,∠G=180°﹣∠1﹣∠2=90°,∴EG⊥FG.7.∵DE∥BC,∴∠1+∠2=180°,又∵∠1=65°,∴∠2=115°;∵AB∥DF,∴∠3=∠2=115°.8.如图,过点E作EP∥AB,而AB∥CD,则EP∥CD,∴∠FEP=∠FGB,∵EF⊥AB,∴∠FGB=90°,∵∠GEH=138°,∴∠PEH=138°﹣90°=48°∵EP∥CD,∴∠EHD=180°﹣∠PEH=132°9.∵AD∥BC,∴∠EAD=∠B=25°,∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°.10.∵AB∥CD,∴∠ACD=180°﹣65°=115°,∵AC⊥BC,∴∠BCD=115°﹣90°=25°.11.过点E作EF∥AB,∴∠AEF=∠BAE=45°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°,∴AE⊥CE.12.∵AB∥CD,∠ABC=55°,∴∠BCD=∠ABC=55°,∵EF∥CD,∴∠ECD+∠CEF=180°,∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°,∴∠BCE=∠BCD﹣∠ECD=55°﹣30°=25°,∴∠BCE的度数为25°.13.设∠1为x,∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x,∵∠D:∠DBC=2:1,∴∠D=2×2x=4x,∵DE∥BC,∴∠D+∠DBC=180°,即2x+4x=180°,解得x=30°,∵DE∥BC,∴∠DEB=∠1=30°.14.∵EF⊥AB于E,MN∥AB∴EF⊥MN即∠EFM=90°.∵MN∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC∥BD,∴∠1=∠2.又∵∠A=∠D,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°,∴∠E=∠F.16.∵HG∥AB(已知),∴∠1=∠3(两直线平行,内错角相等),又∵HG∥CD(已知),∴∠2=∠4(两直线平行,内错角相等),∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),又∵EG平分∠BEF(已知),∴∠1=∠BEF(角平分线的定义),又∵FG平分∠EFD(已知),∴∠2=∠EFD(角平分线的定义),∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)即∠EGF=90°17.∵AD∥BC,∴∠2=∠1=30°,∵AB⊥AC,∴∠B=90°﹣∠2=60°.18.过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF=45°,∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB,OC分别是∠ABC,∠ACB的平分线,∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,13 / 17第13页共17 页∴∠1=∠3,∠4=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵△OEF的周长=10,∴BC=10.20.∵AB∥CD,∠C=60°,∴∠EFB=∠C=60°;∵∠EFB=∠A+∠E,∴∠A+∠E=60°.21.∵AB∥CD,∴∠C=∠B.∵∠B=55°,∴∠C=55°.∵BC∥DE,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°.22.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB﹣∠FOC=180°﹣25°﹣30°=125°23.∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=120°,∴∠BCD=60°;又∵CA平分∠BCD,∴∠2=30°,∵AB∥CD,∴∠1=∠2=30°24.∵AB∥CD,∴∠EFB=∠C=65°,∵∠EFB=∠A+∠E,∴∠E=∠EFB﹣∠A=65°﹣40°=25°.25.∵CD是∠ACB的平分线,∠ACB=40°,∴∠DCB=∠ACD=20°,又DE∥BC,∴∠EDC=∠DCB=20°,在△BCD中,∵∠B=70°,∴∠BDC=90°.∴∠EDC和∠BDC的度数分别为20°、90°26.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°27.∵OP平分∠AOB,(已知)∴∠1=∠2(角平分线定义)∵MN∥OB(已知)∴∠2=∠3(两直线平行,内错角相等)∴∠1=∠3(等量代换).28.∵AB∥CD,∴∠D=∠1=55°,∵∠C=∠D,∴∠C=55°;∵AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°.29.∵AD∥BC,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB=∠2=30°,∵BD⊥CD,∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°,故∠C的度数为60°.30.∵AB∥CD(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)∵∠EFG=50°(已知)∴∠FEB=130°(等式的性质)∵EG平分∠FEB(已知)∴∠FEG=∠FEB=65°(角平分线的定义).31.∵CD∥AB,∴∠BOD=∠D=52°;∵OE平分∠BOD,∴∠BOE=26°32.如答图所示,∵L1∥L2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°.35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF,则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°,∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,∴∠PAC=∠BAC=72°,∴∠PAG=∠PAC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.15 / 17第15页共17 页44.∵AB∥MN(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补)∵CG、DG是角平分线∴∠1=∠BCD,∠2=∠CDN(角平分线定义)∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°)∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°,∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°,∠DEG=∠BED﹣50°=50°.∴∠BEG和∠DEG都为50°46.∵∠AEF=125,∴∠CEA=55°∵AE∥BD,∠CDB=∠CEA=55°,在△BCD中,∵∠CBD=57°,∴∠C=68°.47.∵CE是∠DCB的角平分线,∴∠1=∠2.∵CE∥AB,∴∠1=∠A,∠2=∠B,∴∠A=∠B.48.AB∥CD,∠2+∠3=90°.理由如下:∵BE、DE分别平分∠ABD、∠CDB,∴∠ABD=2∠1,∠BDC=2∠2.∵∠2+∠1=90°,∴∠ABD+∠CDB=180°,∴AB∥CD.∴∠3=∠ABF.∵∠1=∠ABF,∠2+∠1=90°.∴∠2+∠3=90°.49.由题意可知,AB∥CD,∠HEB=50°,∴∠FGD=50°,又∵∠CFG=30°,∴∠FCG=20°50.∵AB∥CD,BC∥ED,∴∠B=∠C,∠C+∠D=180°,∴∠B+∠D=180°.51.∵AB∥CD(已知),∴∠B=∠BCD(两直线平行,内错角相等)又∵∠B=∠DCE(已知),∴∠BCD=∠DCE(等量代换)即CD平分∠BCE.52.∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°53.∵DE∥AC,∴∠ADE=∠CAD,∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴∠ADE=∠EAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∴∠ABD=∠BDE,∴BE=DE,∴AE=BE.54.如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1;又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)∵∠GMA=52°,(已知)∴∠GFC=52°.(等量代换)∵CD是直线,(已知)∴∠GFC+∠GFD=180°.(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)∵EF平分∠GFD,(已知)∴∠EFD=∠GFD=64°.(角平分线定义)∵AB∥CD,(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补)∴∠BEF=180°﹣64°=116°.(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FPA=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°.60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2,∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD,∴∠EGD=118°17 / 17第17页共17 页。

平行线的性质 同步提升训练(解析版)

平行线的性质 同步提升训练(解析版)

1.4平行线的性质同步提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•临洮县期中)将直尺和三角板按如图所示的位置放置.若∠1=50°,则∠2度数是()A.60°B.50°C.40°D.70°【分析】先根据平行线的性质求出∠3的度数,再由三角形内角和定理求出∠2的度数即可.【解答】解:∵直尺的两条边互相平行,∠1=50°,∴∠3=∠1=50°,∵∠4=60°,∴∠2=180°﹣∠4﹣∠3=180°﹣60°﹣50°=70°.故选:D.2.(2022秋•碑林区校级月考)如图,a∥b.∠1=58°,则∠2的度数为()A.58°B.112°C.120°D.132°【分析】根据平行线性质得出∠1=∠3,根据对顶角相等即可得出答案.【解答】解:如图,∵a∥b,∠1=58°,∴∠3=∠1=58°,∴∠2=∠3=58°,故选:A.3.(2022秋•龙岗区期末)如图,已知AB∥CD,BC平分∠ACD,∠B=35°,E是CA延长线上一点,则∠BAE的度数是()A.35°B.60°C.65°D.70°【分析】由平行线的性质可得∠BCD=∠B=35°,∠BAE=∠DCE,再由角平分线的定义求得∠DCE=2∠BCD,即可求∠BAE的度数.【解答】解:∵AB∥CD,∠B=35°,∴∠BCD=∠B=35°,∠BAE=∠DCE,∵BC平分∠ACD,∴∠DCE=2∠BCD=70°,∴∠BAE=70°.故选:D.4.(2022秋•宜兴市月考)如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()A.20°B.25°C.30°D.40°【分析】根据折叠得出∠OGC=∠OGC′=100°,求出∠OGD,即可求出答案.【解答】解:∵将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,∴∠OGC=∠OGC′=100°,∴∠OGD=180°﹣∠OGC=80°,∴∠DGC'=∠OGC′﹣∠OGD=20°,故选:A.5.(2022•项城市校级模拟)如图,AB∥CD,∠MNC=138°,MP平分∠BMN,则∠MPN的度数为()A.59°B.48°C.54°D.69°【分析】首先根据AB∥CD,∠MNC=138°,求出∠MNC=∠BMN=138°,再根据MP平分∠BMN,求出∠BNP的度数.【解答】解:∵AB∥CD,∠MNC=138°,∴∠MNC=∠BMN=138°,∵MP平分∠BMN,∴∠BNP=BMN=69°,∵AB∥CD,∴∠BMP=∠MPN=69°.故选:D.6.(2022•博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为()A.104°B.128°C.138°D.156°【分析】先根据平行线性质求出∠A,再根据邻补角的定义求出∠4,最后根据三角形外角性质得出∠3=∠4+∠A.【解答】解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.7.(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.8.(2021秋•盐湖区校级期末)如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转()A.10°B.20°C.30°D.40°【分析】由平行线的判定“同位角相等,两直线平行”可知,∠EGB=∠EHD时,AB∥CD,即∠EGB需要变小20°,即将木棒AB绕点G逆时针旋转20°即可.【解答】解:当∠EGB=∠EHD时,AB∥CD,∵∠EGB=100°,∠EHD=80°,∴∠EGB需要变小20°,即将木棒AB绕点G逆时针旋转20°.故选:B.9.(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.10.(2021秋•晋中期末)如图,已知AB∥CD,点F,G分别在直线AB,CD上,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,若∠BFE=50°,∠CGE=140°,则∠GPQ的度数为()A.30°B.40°C.45°D.50°【分析】根据平行线的性质可得∠BMG=∠CGP,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF﹣∠PFM=∠CGP﹣∠BFQ,代入计算即可得到答案.【解答】解:如图:∵AB∥CD,∴∠BMG=∠CGP,∵FQ平分∠BFE,GP平分∠CGE,∠BFE=50°,∠CGE=140°,∴∠BFQ=∠BFE=25°,∠CGP=∠CGE=70°,∴∠GPQ=∠BMG﹣∠PFM=∠CGP﹣∠BFQ=70°﹣25°=45°.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2021秋•赣县区期末)如图,AB∥CD,∠B=42°,∠A+10°=∠1,则∠ACD=64°.【分析】利用平行线的性质解答即可.【解答】解:∵AB∥CD,∵∠DCB+∠B=180°,∵∠B=42°,∴∠DCB=138°,即∠DCA+∠1=138°.∴∠1=138°﹣∠DCA.∵AB∥CD,∴∠DCA=∠A,∴∠1=138°﹣∠A.∵∠A+10°=∠1,∴∠A+10°=138°﹣∠A,∴∠A=64°,∴∠ACD=∠A=64°.故答案为:64°.12.(2021秋•社旗县期末)如图,已知AB∥CD,∠A=30°,∠B=71°,则∠BEF的度数是101°.【分析】利用平行线的性质求出∠AEC,再由对顶角相等得到∠DEF,从而可计算∠BEF.【解答】解:∵AB∥CD,∴∠AEC=∠A=30°,∠BED=∠B=71°,∴∠DEF=∠AEC=30°,∴∠BEF=∠BED+∠DEF=71°+30°=101°.故答案为:101°.13.(2021秋•叙州区期末)如图,AB∥CD,MF与AB、CD分别交于点E、F,∠CFE的平分线FG交AB于点G,若∠MEG=140°,则∠EGF的度数为70°.【分析】根据两直线平行同位角相等可得∠CFE=140°,根据角平分线的定义可得∠CFG=70°,再根据两直线平行内错角相等可得∠EGF=70°.【解答】解:∵FG平分∠CFE,∴∠CFG=∠EFG,∵AB∥CD,∴∠CFE=∠MEG,∵∠MEG=140°,∴∠CFE=140°,∴∠CFG=∠EFG=70°,∵AB∥CD,∴∠EGF=∠CFG=70°.故答案为:70°.14.(2022秋•肇源县期中)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F的度数50°.【分析】连接BC,由平行线的性质得∠ABC=∠BCD,由∠1=∠2得∠EBC=∠BCF,根据内错角相等,两直线平行可得EB∥CF,再根据两直线平行,内错角相等即可求解.【解答】解:连接BC,∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠BCF,∴EB∥CF,∴∠F=∠E=50°.故答案为:50°.15.(2022秋•香坊区校级期中)若∠1和∠2的两边互相平行,且∠1比∠2的3倍少36度,则∠2=18°或54°.【分析】由∠1和∠2的两边互相平行,可得此两角互补或相等,然后设∠2的度数为x,分别从两角相等或互补去分析,由∠1比∠2的3倍少36度列方程求解即可求得答案.【解答】解:∵∠1和∠2的两边互相平行,∴∠1和∠2互补或相等,设∠2的度数为x,则∠1=3x﹣36°,①当∠1和∠2相等时,则x=3x﹣36°,解得:x=18°,②当∠1和∠2互补时,则x+3x﹣36°=180°,解得:x=54°,综上,∠2=18°或54°,故答案为:18°或54°.16.(2021秋•盘州市期末)如图,已知AB∥CD,易得∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4=540°,根据以上的规律求∠1+∠2+∠3+…+∠n=(n﹣1)×180°.【分析】由∠1+∠2+∠3=2×180°=360°,∠1+∠2+∠3+∠4=3×180°=540°,可得一般规律为∠1+∠2+∠3+…+∠n=(n﹣1)×180°.【解答】解:∵∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4=540°,∴∠1+∠2+∠3=2×180°=360°,∠1+∠2+∠3+∠4=3×180°=540°,∴∠1+∠2+∠3+…+∠n=(n﹣1)×180°,故答案为:(n﹣1)×180°.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•黄岛区校级期末)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°(垂直的定义)又,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)∴∠AFB=∠AOE(两直线平行,同位角相等)∴∠AFB=90°(等量代换)又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=(90)°又∵∠A+∠2=90°(已知)∴∠A=∠AFC(同角的余角相等)∴AB∥CD.(内错角相等,两直线平行)【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【解答】证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.18.(2022秋•李沧区期末)如图,AB∥CD,直线EF分别与直线AB、直线CD相交于点E,F,点G在CD上,EG平分∠BEF.若∠EGC=58°,求∠EFD的度数.【分析】根据两直线平行,内错角相等求出∠BEG的度数,再根据角平分线的定义得到∠FEG,然后利用平行线的性质可得解.【解答】解:∵AB∥CD,∠EGC=58°,∴∠BEG=∠EGC=58°,∵EG平分∠BEF,∴∠BEF=2∠BEG=116°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=180°﹣116°=64°.19.(2022秋•福田区期末)如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.【分析】(1)根据平行线的判定方法可得FG∥CB,由平行线的性质即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF;(2)根据平行线的性质可得∠BFC=∠DEC=90°,再根据勾股定理计算即可.【解答】(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BF A=∠DEA=90°,∵AF=3,AB=4,∴BF===.20.(2022•杭州模拟)已知:如图,AE⊥BC,FG⊥BC,∠CEA=∠FGB,∠D=∠ABC+50°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【分析】(1)先证明AE∥GF,可得∠EAB=∠FGB,再证明∠CEA=∠EAB,从而可得答案;(2)由AB∥CD,可得∠D+∠CBD+∠ABC=180°,再把∠D=∠ABC+50°,∠CBD=70°代入进行计算即可.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠EAB=∠FGB,∵∠CEA=∠FGB,∴∠CEA=∠EAB,∴AB∥CD;(2)解:由(1)得,AB∥CD,∴∠D+∠CBD+∠ABC=180°,∵∠D=∠ABC+50°,∠CBD=70°,∴∠ABC+70°+∠ABC+50°=180°,∴∠ABC=30°,∴∠C=∠ABC=30°.21.(2021秋•略阳县期末)如图,在三角形ABC中,点D,E分别在AB,BC上,且DE∥AC,∠1=∠2.(1)AF与BC平行吗?为什么?(2)若AC平分∠BAF,∠B=36°,求∠1的度数.【分析】(1)由平行线的性质可得∠1=∠C,从而可求得∠2=∠C,即可判定AF∥BC;(2)由平行线的性质可得∠B+∠BAF=180°,从而可求得∠BAF=144°,再由角平分线的定义求得∠2=72°,即可求∠1.【解答】解:(1)AF∥BC,理由如下:∵DE∥AC,∴∠1=∠C,∵∠1=∠2,∴∠C=∠2,∴AF∥BC;(2)∵AF∥BC,∴∠B+∠BAF=180°,∵∠B=36°,∴∠BAF=144°,∵AC平分∠BAF,∴,∵∠1=∠2,∴∠1=72°.22.(2021秋•镇巴县期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点C,点H是MN上一点,且GH⊥EG,过点P作PQ∥AB,则PF与GH平行吗?为什么?【分析】(1)由对顶角相等可求∠1=∠AEF,∠2=∠CFE,结合条件可得∠AEF+∠CFE=180°,由同旁内角互补,两直线平行可以证明结论;(2)由(1)得AB∥CD,则有∠BEF+∠EFD=180°,根据角平分线的定义可得∠BEP=∠BEF,∠PFD=∠EFD,根据平行线的判定和性质可得∠EPF=∠EPQ+∠FPQ=(∠BEF+∠EFD)=90°,根据垂直的定义可得EG⊥PF,由GH⊥EG可得PF∥GH.【解答】解:(1)AB∥CD,理由如下:∵∠1=∠AEF,∠2=∠CFE,∠1+∠2=180°,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)PF∥GH,理由如下:由(1)知AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠BEP=∠FEP=∠BEF,∠PFD=∠EFP=∠EFD,∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠EPQ=∠BEP=∠BEF,∴∠FPQ=∠PFD=∠EFD,∴∠EPQ+∠FPQ=(∠BEF+∠EFD),∴∠EPF=90°,即EG⊥PF,∵GH⊥EG,∴PF∥GH.23.(2022春•西安月考)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,且∠PFM=∠EMF.(1)求证:AB∥CD;(2)点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论.【分析】(1)因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;(2)分H在线段MF上和H在MF的延长线上两种情形解答即可.【解答】(1)证明:∵FM平分∠PFN,∴∠PFM=∠MFN,∵∠PFM=∠EMF,∴∠MFN=∠EMF,∴AB∥CD;②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN,证明如下:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°;如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN,∴∠GHF=∠FMN.。

平行线的性质_练习(含答案)

平行线的性质_练习(含答案)

5.3 平行线的性质一、选择题:1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个DCBA 1EDBAOF E D C BA(1) (2) (3)2.如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )A.78°B.90°C.88°D.92°3.如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°4.如图4所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°FE DCBAG FED C BA1(4) (5)5.如图5所示,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )• A.6个 B.5个 C.4个 D.3个6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( ) A.① B.②和③ C.④ D.①和④7.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交二、填空题:1.如图6所示,如果DE ∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______;如果∠CED=∠FDE,那么________∥_________.根据是________.F E DCBA(6) (7)2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________.DCBADCA12(8) (9)3.如图8所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______. 三、训练平台:1. 如图9所示,AD ∥BC,∠1=78°,∠2=40°,求∠ADC 的度数.2. 如图所示,AB ∥CD,AD ∥BC,∠A 的2倍与∠C 的3倍互补,求∠A 和∠D 的度数.•D CBA3. 如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.EDCBA4.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba3412四、提高训练:1. 如图所示,已知直线MN 的同侧有三个点A,B,C,且AB ∥MN,BC ∥MN,试说明A,•B,C 三点在同一直线上.NMA2. 如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.NMG F EDC BA五、探索发现:六、 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)六、中考题与竞赛题:1.(2002.河南)如图a 所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.GF EDCBA 12FEDCB A12(a) (b)2.(2002.哈尔滨)如图b 所示,已知直线AB,CD 被直线EF 所截,若∠1=∠2,•则∠AEF+∠CFE=________.答案:一、1.C 2.C 3.A 4.B 5.C 6.C 7.B二、1.∠AED ∠BDE 两直线平行,同旁内角互补 DF AC 内错角相等,两直线平行2.150°3.60° 40°三、1.∠ADC=118° 2.∠A=36°,∠D=144° 3.∠BED=78° 4.∠4=120°四、1.解:如图所示,过B点任作直线PQ交MN于Q,∵AB∥MN,∴∠PBA=∠MQP,•又∵BC∥MN,∴∠PBC=∠PQN,又∵∠PQM+∠PQN=180°,∴∠ABC=180°,∴A,B,C三点在同一直线上.2.∠DEG=100°五、(1)∠P=360°-∠A-∠C,(2)∠P=∠A+∠C,(3)∠P=∠C-∠A,(4)∠P=∠A-∠C(说明略).六、1.54° 2.180°N M。

七年级数学下册《平行线的性质》综合练习(含答案)

七年级数学下册《平行线的性质》综合练习(含答案)

2.3 平行线的性质一、选择题1.如图,如果︒=∠601,//,//GH EF CD AB ,那么下列结论不成立的是( )A .︒=∠602B .︒=∠603C .︒=∠604D .︒=∠6052.如图:若CD AB //,则下列结论中( )①21∠=∠ ②43∠=∠ ③︒=∠+∠+∠18031D ④︒=∠+∠+∠18042BA .都正确B .都不正确C .只有一个正确D .只有一个不正确3.如图:AC BC AD CD EF AB ,//,////平分BAD ∠,则图中与AOE ∠相等的角有( )个.A .2B .3C .4D .5二、填空题1.如图,因为21//l l ,所以21∠=∠,理由是_________;2.如图,因为21//l l ,所以____32=∠+∠,理由___________;3.如图,41∠=∠,理由是__________________;4.如图,已知____2,603,1201,////=∠︒=∠︒=∠c b a .5.如图:AE CD AB ,//平分CE BAC ,∠平分ACD ∠,则____=∠E .6.在AB 两地间修一条公路,从A 地测得公路的走向为北偏东50°,如果A 、B 两地同时开工,那么在B 地按____=∠α方向施工,才能使公路准确接通.7.已知:如图:︒=∠50,//,//A BC AD CD AB ,则_______=∠C8.如图BD BC AD ,//平分1:2:,=∠∠∠ABC a ABC ,则____=∠DBC9.已知α∠的两边分别与β∠的两边互相平行,当︒=∠40α时,____=∠β10.一条公路经过两次拐弯后和原来平行,已知第一次拐的角是100°,则第二次拐的角可能是_________度.三、解答题1.已知:如图,NH EF BC MN DE AB ////,////,写出图中所有与B ∠相等的角.2.如图,已知CD++∠∠的值.∠32AB//,求4+1∠3.如图,已知CO=50︒∠︒=∠分别是ABC,BO60ACBABC、,∠的∠和ACB平分线,EF过点O且BC∠的度数.EF//,求BOC4.如图,这是一块钢板,EFAB//,工人师傅想用它来做一种产品,需要知道E,这三个角的度数的和,你能帮工人师傅第算一下吗?∠,ACE∠A∠参考答案一、选择题1.A 2.D 3.D二、填空题1.二、两直线平行同位角相等2.180°、两直线平行,同旁内角互补3.对顶角相等 4.120° 5.90° 6.130° 7.50°8.30° 9.40°或140° 10.80°三、解答题1.ERN BPE MNH MRF E DPC ∠∠∠∠∠∠,,、、、2.540°(提示:过E 、F 分别作AB 的平行线,根据两直线平行,同旁内角互补可计算出︒=∠+∠+∠+∠5404321.3.125°(提示:F O E O B B O C ∠-∠-︒=∠180,且︒=∠=∠=∠2521ABC OBC EOB ,︒=∠=∠=∠3021ACB OCB FOC ,︒=∠125BOC )4.︒=∠+∠+∠360E ACE A (提示:过C 作AB CD //)。

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。

数学随堂小练人教版七年级下册:5.3平行线的性质(有答案)

数学随堂小练人教版七年级下册:5.3平行线的性质(有答案)

数学随堂小练人教版七年级下册:5.3平行线的性质一、单选题1.如图,直线a b ∥,160∠︒=,则2∠=( )A.30°B.60°C.45°D.120°2.如图,将一块直角三角板的直角顶点放在直尺的一边上.若240∠=︒,则1∠的度数是( )A .60°B .50° C. 40° D. 30°3.如图,B C ∠∠=,A D ∠∠=.下列结论: ①//AB CD ;②//AE DF ;③AE BC ⊥;④AMC BND ∠∠=,其中正确的结论有( )A.①②④B.②③④C.③④D.①②③④4.下列语句,不是命题的是( )A.俄罗斯是2018年世界杯的举办国B.两直线不相交就是平行C.连接A B ,两点D.两点之间线段最短5.下列命题是真命题的是( )A.两条直线被第三条直线所截,同位角相等B.两条直线被第三条直线所截,同旁内角互补C.两条平行线被第三条直线所截,同位角的平分线互相垂直D.两条平行线被第三条直线所截,同旁内角的平分线互相垂直6.下列推理中,错误的是( )A.AB CD =,CD EF =,AB EF ∴=B.αβ∠∠=,βγ∠∠=,αγ∴∠∠=C.//a b ,//b c ,//a c ∴D.AB EF ⊥,EF CD ⊥,AB CD ∴⊥7.如图,AB CD ∥,110C ∠︒=,120B ∠︒=,则BEC ∠=( )A.110︒B.120︒C.130︒D.150︒8.如图,AB CD ,EF BD ⊥,垂足为E ,240∠︒=,则1∠的度数为()A.50︒B.40︒C.45︒D.25︒9.如图,AB DE ∥,90ADB ∠︒=,则B ∠与1∠的关系是( )A.互余B.相等D.互补或相等二、填空题10.命题:“平行于同一条直线的两条直线平行”的题设是 , ,结论是 .11.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果//a b ,a c ⊥,那么b c ⊥;②如果//b a ,//c a ,那么//b c ;③如果b a ⊥,c a ⊥,那么b c ⊥;④如果b a ⊥,c a ⊥,那么//b c .其中真命题是(填写所有真命题的序号)12.如图,已知直线//,110,AB CD DCF AE AF ∠==,则A ∠=__________度13.命题:①对顶角相等;②相等的角是对顶角;③同位角相等;④同一平面内垂直于同一条直线的两直线平行。

平行线练习题答案

平行线练习题答案

平行线练习题答案一、选择题1. 下列哪一项不是平行线的性质?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 垂直于平行线2. 如果两条直线被第三条直线所截,且内错角不相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法确定3. 在平行四边形中,对边:A. 相等B. 平行且相等C. 垂直D. 相交4. 根据平行线的性质,下列哪个命题是错误的?A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 两直线平行,同旁内角互补D. 两直线平行,对应角相等5. 已知线段AB和CD平行,且线段AB=10cm,线段CD=8cm,那么线段AB和CD之间的距离是:A. 2cmB. 10cmC. 8cmD. 不能确定二、填空题6. 如果直线l1与直线l2平行,直线l2与直线l3平行,那么直线l1与直线l3________。

7. 两条平行线之间的距离是指________。

8. 在平行四边形ABCD中,若AB=3cm,BC=4cm,则对角线AC的长度是________。

9. 已知两平行线间的距离为d,若将其中一条平行线平移d的距离,那么平移后的线与原线________。

10. 两条平行线被第三条直线所截,形成的同位角有________个。

三、简答题11. 解释“平行线”的定义,并给出一个生活中的例子。

12. 描述如何使用平行线的性质来证明两个角是相等的。

13. 如果两条平行线被一条直线所截,形成的同位角不相等,那么这两条直线是否还平行?为什么?14. 解释什么是“平行四边形”,并说明它的哪些性质与平行线有关。

15. 如果两条平行线中的一条被平移,那么平移后的线与另一条线的关系是什么?四、计算题16. 在平面直角坐标系中,有两条平行线l1和l2,l1的方程为y=2x+3,l2的方程为y=2x+b。

求b的值,使得l1和l2之间的距离为2。

17. 在一个矩形ABCD中,AB=5cm,BC=10cm。

如果从A点到CD边作一条垂线AE,求AE的长度。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案平行线是几何学中非常重要的概念之一。

在平面几何中,平行线是指在同一个平面内永远不会相交的两条直线。

平行线的性质和应用广泛,不仅在数学中有重要意义,还涉及到物理学、工程学等领域。

为了更好地理解和应用平行线的性质,下面将给出一些平行线的练习题及答案。

练习题一:已知平行线l1和l2分别与一条横线m相交,如下图所示。

求证:∠ABC =∠DEF。

解答:根据平行线的性质,我们知道平行线与横线相交时,对应角相等。

所以∠ABC = ∠ADE。

又因为∠ADE和∠DEF是同位角,所以∠ABC = ∠DEF。

练习题二:在平面直角坐标系中,已知点A(2, 3)和点B(6, 7)分别在直线l1和直线l2上,且l1与l2平行。

求证:直线l1的斜率等于直线l2的斜率。

解答:直线的斜率可以通过两点间的坐标差来计算。

设直线l1的斜率为k1,直线l2的斜率为k2。

由于l1与l2平行,所以它们的斜率相等。

根据斜率的定义,我们可以得到以下等式:k1 = (7-3)/(6-2) = 4/4 = 1k2 = (7-3)/(6-2) = 4/4 = 1因此,直线l1的斜率等于直线l2的斜率。

练习题三:在平面直角坐标系中,已知直线l1的方程为y = 2x + 3,直线l2过点(1, 4)且与直线l1平行。

求直线l2的方程。

解答:由于直线l2与直线l1平行,所以它们的斜率相等。

直线l1的斜率为2,所以直线l2的斜率也为2。

设直线l2的方程为y = 2x + b,其中b为待定常数。

由于直线l2过点(1, 4),将该点的坐标代入方程得到:4 = 2*1 + b解方程可得b = 2。

因此,直线l2的方程为y = 2x + 2。

练习题四:在平面直角坐标系中,已知直线l1的方程为y = 3x + 5,直线l2过点(2, 4)且与直线l1平行。

求直线l2的方程。

解答:与练习题三类似,直线l2与直线l1平行,所以它们的斜率相等。

平行线的性质和判定(一)(含答案)

平行线的性质和判定(一)(含答案)

学生做题前请先回答以下问题问题1:平行线的判定定理是什么?问题2:如图,已知直线a和直线b被直线c所截,用数学语言描述平行线的判定定理.问题3:平行线的性质定理是什么?平行线的性质和判定(一)一、单选题(共13道,每道7分)1.如图,若∠D=∠BED,则AB∥DF,其依据是( )A.两直线平行,内错角相等B.内错角相等,两直线平行C.内错角相等D.同位角相等,两直线平行答案:B解题思路:试题难度:三颗星知识点:平行线的判定2.如图,若∠BED+∠D=180°,则AB∥DF,其依据是( )A.两直线平行,同旁内角互补B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.同旁内角互补答案:C解题思路:试题难度:三颗星知识点:平行线的判定3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A.两直线平行,同位角相等B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.同位角相等,两直线平行答案:D解题思路:试题难度:三颗星知识点:平行线的判定4.如图,由AB∥CD,可得∠A+∠D=180°,依据是( )A.同旁内角互补,两直线平行B.两直线平行,同旁内角互补C.两直线平行,同位角相等D.同旁内角互补答案:B解题思路:试题难度:三颗星知识点:平行线的性质5.如图,由DF∥AC,可得∠D=∠1,依据是( )A.两直线平行,同位角相等B.两直线平行,内错角相等C.内错角相等,两直线平行D.内错角相等答案:B解题思路:试题难度:三颗星知识点:平行线的性质6.如图,AB∥CD,∠ABE=140°,则∠C的度数为( )A.140°B.60°C.50°D.40°答案:D解题思路:试题难度:三颗星知识点:平行线的性质7.如图,若∠1=∠2,则( )A.AD∥BCB.AD=BCC.AB∥CDD.AB=CD答案:C解题思路:试题难度:三颗星知识点:平行线的判定8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平行线的性质9.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°答案:D解题思路:试题难度:三颗星知识点:平行线的判定10.如图,若CD∥AB,则∠1=_______,依据是______.( )A.∠2,两直线平行,同位角相等B.∠A,同位角相等,两直线平行C.∠A,两直线平行,同位角相等D.∠C,两直线平行,内错角相等答案:C解题思路:试题难度:三颗星知识点:平行线的性质11.如图,若DE∥BC,则∠ADE=_______,依据是______.( )A.∠B;同位角相等B.∠DFB;两直线平行,同位角相等C.∠DFB;同位角相等,两直线平行D.∠B;两直线平行,同位角相等答案:D解题思路:试题难度:三颗星知识点:平行线的性质12.如图,已知直线a,b被直线c所截,以下结论正确的有( )①∠1=∠2;②∠1=∠3;③∠2=∠3;④∠3+∠4=180°A.1个B.2个C.3个D.4个答案:A解题思路:试题难度:三颗星知识点:平行线的性质13.如图,下列推理及所注明的理由都正确的是( )A.若∠1=∠2,则AB∥CD,理由是内错角相等,两直线平行B.若AB∥CD,则∠1+∠2=180°,理由是两直线平行,同旁内角互补C.若∠3=∠4,则AB∥CD,理由是内错角相等,两直线平行D.若两条直线EF和GH被第三条直线CD所截,则∠4+∠2=180°,理由是同旁内角互补答案:B解题思路:试题难度:三颗星知识点:平行线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 平行线的性质
1.选择题:
(1)下列说法中,不正确的是()
A.同位角相等,两直线平行; B.两直线平行,内错角相等;
C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行
(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=1
2
∠CAB,∠ABC=75°,
则∠BCA等于(• )A.36°B.35°C.37.5°D.70°
(1) (2) (3)
(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余B.互补C.相等D.以上都不对
(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:
①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()
A.0个B.1个C.2个D.3个
(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()
A.1个B.2个C.3个D.4个
(5)
3.填写理由:
(1)如图9所示,∵DF∥AC(已知),
∴∠D+______=180°(__________________________)
∵∠C=∠D(已知),
∴∠C+_______=180°(_________________________)
∴DB∥EC(_________).
(2)如图10所示,∵∠A=∠BDE(已知),(9) ∴______∥_____(__________________________)
∴∠DEB=_______(_________________________)
∵∠C=90°(已知),
∴∠DEB=______(_________________________)
∴DE⊥______(_________________________)
4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.
5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?
6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交
CD于G,求∠1的度数.
7.如图l-2-14,已知B D⊥AC,EF⊥AC,D、F为垂足,G是AB上一点,
且∠l=∠2.求证:∠AGD=∠ABC.。

相关文档
最新文档