热管及热管换热器..
热管与热管换热器设计基础
热管是一种利用液体的湿润性和蒸发冷却原理进行热传导的装置,具有高效、均匀、可控的热传导能力。
热管换热器则是利用热管进行热传导和热交换的换热设备。
以下是热管和热管换热器设计的基础知识:1.热管的工作原理:热管由内外壳体、工作流体和蒸汽管组成。
当热管的工作端加热时,内部的工作流体沸腾产生蒸汽,蒸汽通过蒸汽管传输到另一端,然后在冷却区域重新凝结为液态,液体通过液管回流到工作端。
这样,热量通过蒸汽和液体的相变传导实现了从热源到热汇的传递。
2.热管特性:热管具有高导热性、无需外部能源驱动、传热均匀、尺寸小巧等特点。
它可以将热源与热汇之间的温度差降低到很小的范围,实现高效的热传导。
3.热管换热器设计要点:●热管选择:根据具体应用需求选择合适的热管,考虑工作温度范围、导热性能、流体类型等因素。
●散热需求:确定需要传热的功率和温度差,以便选择合适的热管尺寸和数量。
●热管布局:考虑热源和热汇的位置关系,设计合适的热管布局,使热量能够有效传导到需要的位置。
●换热介质:选择合适的换热介质(如空气、水、液体等),确定流体的流速和换热方式(对流、辐射等)。
●结构设计:考虑热管的结构材料、密封性、耐腐蚀性等因素,确保热管换热器的稳定性和可靠性。
4.热管换热器的应用:热管换热器广泛应用于电子设备散热、航天器热控、工业生产过程中的热回收等领域。
它在提高换热效率、降低设备体积和重量方面具有重要的作用。
总而言之,热管和热管换热器的设计基础包括热管工作原理、热传导特性、热管选择、散热需求、热管布局、换热介质选择以及结构设计等方面。
这些基础知识是设计高效热管换热器的关键。
热管换热器的工作原理
热管换热器的工作原理热管换热器是一种利用液体和蒸汽的相变过程来传递热量的设备。
它主要由热管、冷凝器和蒸发器组成。
热管是热管换热器的核心部件,通常由内部镶嵌有多个鳍片的金属管组成。
热管内填充有一种称为工作介质的特殊液体,通常为蒸发液体。
热管的两端分别连接一个冷凝器和一个蒸发器。
工作原理如下:1. 脉动蒸发:当热管的蒸发器端加热时,工作介质在蒸发器内迅速汽化。
汽化的工作介质变成蒸汽,并迅速上升到热管的冷凝器端。
2. 相变传热:在冷凝器端,蒸汽与冷凝器内的冷凝介质接触,传热给冷凝介质。
蒸汽在冷凝器内冷却,并逐渐凝结成液体。
3. 导热返回:在冷凝成液体后,冷凝介质流入热管的蒸发器端,通过鳍片的导热作用,将热量传递给蒸发器。
4. 重复循环:液体工作介质在蒸发器中再次汽化,蒸汽上升到冷凝器端再次冷凝,循环往复。
热管换热器的工作原理可基于两个基本原理来解释。
第一个是相变传热原理。
当液体在蒸发器内蒸发时,蒸汽所需的潜热可以从周围环境吸收,从而降低周围环境的温度。
相对应的,在冷凝器端,蒸汽释放出潜热,将热量传递给冷凝介质。
由于相变过程的热传导非常高效,所以热管换热器的热传输效率很高。
第二个原理是液体的循环工作原理。
热管内的工作介质在蒸发器端蒸发成蒸汽后,蒸汽的上升作用和重力的配合使得液体循环并将蒸汽带到冷凝器端。
液体在冷凝器端冷却凝结后,由于重力作用,液体流回蒸发器,再次蒸发成蒸汽,循环往复完成热量的传递。
热管换热器的工作原理使其具有以下优点:1. 高热传输效率:利用相变传热和液体循环工作原理,热管换热器的热传输效率高于传统的热交换器。
2. 快速响应:由于热管内的蒸汽和液体循环快速,热管换热器能够在很短的时间内响应温度的变化。
3. 节省空间:由于热管换热器可以实现高热传输效率,所以相同换热功率的热管换热器相对较小,占用的空间较少。
4. 不需要外部电源:热管换热器的工作原理不依赖于外部电源,因此可以在没有电力供应的环境下运行。
热管及热管换热器
这样即可以改变热流密度,
解决一些其他方法难以解决的 传热难题。
*热流方向可逆性——一根水平放置的有芯热管,由于其内部循环动
力是毛细力,因此任意一端受热就可做为蒸发段,而另一端向外散热就 成为冷凝段。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也 可用于先放热后吸热的化学反应器及其他装置。
*热二极管与热开关性能——热管可做成热二极管或热开关,所谓热
热管内质量流、压力和温度分布
热管液汽分界面的形状
(a)管起动前的液—汽交界面 (b)热管工作时的液—汽交界面 (c)吸液芯内液—汽界面参数
热管工作过程动画
注意:热管中的水会
因为内部低压而在100℃ 以下就沸腾蒸发。
热量散失
水蒸汽流 水蒸汽冷凝
热量输入 液态水蒸发 液体由于重力 或吸附力回流
4 两相闭式热虹吸管——重力热管、热虹吸管
热管的工作液要有较高的汽化潜热、导热系数,合适的饱和压力及沸 点,较低的粘度及良好的稳定性。工作液体还应有较大的表面张力和 润湿毛细结构的能力,使毛细结构能对工作液作用并产生必须的毛细 力。工作液还不能对毛细结构和管壁产生溶解作用,否则被溶解的物 质将积累在蒸发段破坏毛细结构。
2.2 热管的三个区段的划分 * 根据热管外部热交换情况分:加热段、绝热段、冷却段 * 根据热管内部工质传热传质情况分:蒸发段、绝热段、冷 凝段
7 总结热管的重要特点
*高导热性——热管内部主要靠工作液体的汽、液相变传热,热阻很小,
因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管 可多传递几个数量级的热量。 当然,高导热性也是相对而言的,温差总是存在的,不可能违反热 力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些 传热极限。
热管换热器工作原理及特点-概述说明以及解释
热管换热器工作原理及特点-概述说明以及解释1.引言1.1 概述热管换热器是一种高效换热设备,利用热管作为传热介质,通过在换热器内部的传热管路中进行传热工作,实现热量的传递和换热。
热管换热器具有结构简单、能耗低、换热效率高等特点,在工程领域得到了广泛的应用。
本文将重点介绍热管换热器的工作原理、特点以及在工程应用中的优势,希望通过深入的研究和分析,能为读者提供更加全面和深入的了解,为今后热管换热器在工程实践中的应用提供借鉴和参考。
1.2 文章结构本文将首先介绍热管换热器的工作原理,包括其基本工作原理和传热过程,以帮助读者深入了解热管换热器的工作机制。
接着,我们将探讨热管换热器的特点,包括其高效换热、结构简单等优势,以便读者对热管换热器在工程中的应用有更全面的认识。
最后,我们将重点讨论热管换热器在工程应用中的优势,以展示其在实际工程中的重要性和价值。
通过对热管换热器的原理、特点和应用优势进行全面介绍,本文旨在帮助读者深入理解和应用热管换热器技术。
1.3 目的:本文旨在深入介绍热管换热器的工作原理及特点,探讨其在工程应用中的优势。
通过对热管换热器的全面解析,旨在帮助读者全面了解该换热器的优点和适用领域,为工程实践提供参考和指导。
同时,通过对热管换热器未来发展前景的展望,进一步探讨该技术在换热领域的潜力和发展方向。
希望本文能为读者提供一份全面且深入的研究参考,促进热管换热器技术的不断创新与发展。
2.正文2.1 热管换热器的工作原理热管换热器是一种利用热管换热原理实现热量转移的换热设备。
其工作原理是通过热管内介质的相变过程来实现热量的传递。
热管换热器主要包括蒸发段和冷凝段两部分。
在蒸发段,工作介质(如液态水)受热后蒸发成为蒸汽,蒸汽通过热管的热传递作用被传输到冷凝段。
在冷凝段,蒸汽失去热量后冷凝成为液态介质,释放出的热量再次通过热管传递到冷却介质。
通过这样的过程,热管换热器实现了热量的高效传递,并具有一定的节能效果。
介绍几种干燥设备中常用的热源
一、热源的种类有以下几种:1、蒸汽2、热水3、电能4、煤炭5、燃油6、可燃气体二、空气换热器(一)热管换热器热管换热器是一种利用封闭在管内的工作物质反复进行物理相变或化学反应来传递热量的一种换热装置。
热管技术是一项新技术,自1964年每一支热管问世以来,到现在也仅有三十多年的历史。
由于它在回收余热、预热空气等方面显示出很多优点,热管技术得到飞速发展,种类和功能也很多,根据热管的工作原理,按工作方式,可以分为物理热管和化学热管。
物理热管是利用工作淮的物理相变传递热量。
化学热管是利用工作物质化合与分解应应传递热量。
在喷雾干燥系统中,利用热管换热器间接加热空气,已获得良好的经济效益。
热管的工作液根据可以选择不同的液体,但每种工作液都有它合适的工作温度范围。
(二)燃煤热风炉以煤为燃料的热空气炉,多数是以间接换热的方法加热空气。
在间接换热过程中,一般有两种情况,一种情况是炉内设有风管,冷空气走管层,烟道气走壳层。
煤燃烧产生的热量对管的外壁进行辐射,热量通过管壁传向内管,然后再与内管的冷空气进行加热。
炉的进口为冷空气,经加热后从另一口出来的为加热到一定温度的高温洁净空气。
另一种为燃煤式导热油炉,导热油被加热后流向别一个换热器,再与冷空气进行换热。
间接换热的特点是得到的热气体洁净度较高,在换热过程中空气无湿度变化,仍操持冷空气的湿含量。
燃煤热风炉结构比较简单,加煤方式也有多种,要据工艺需要或换热量的不同采取不同的加热方式。
由于火焰与换热管直接辐射,燃气内又有硫等腐蚀性较强的化学物质,对管的材料有一定要求。
(三)蒸汽换热器蒸汽换热器是间接换热设备,由多根散热管组成。
在换热时可根据需要一组工作,也可以多组串联使用。
排管用紫铜或钢质材料,为增加传热效果,管外套绕翅片,翅片管子有良好的接触。
用蒸汽做热介质时,管内通蒸汽,管处翅片间走空气。
(四)电加热器电加热器是电能转换成热能,向空气进行辐射传热的加热设备。
电加热器是多要管状电热元件组成。
热管换热器测试方案
热管换热器测试方案一、热管换热器的结构和工作原理热管是由内部充填工质、密封、成型和连接装配的,其主要部分包括工质、吸附剂和润滑剂三部分。
热管换热器内部的工质在热管工作温度下,部分汽化成为饱和蒸气,并传递热量,然后在冷端部分冷凝成为液体,再通过毛细管力和重力力作用,通过循环传输热量。
二、热管换热器测试的目的和意义1.验证热管换热器的热传导性能、传热性能和整体热平衡性能;2.检验热管换热器的设计和制造质量;3.评估热管换热器的可靠性和耐久性;4.寻找改进设计和工艺的方法。
三、热管换热器测试的一般步骤1.准备测试设备和仪器:包括热管换热器、供热器、冷却器、温度计、压力计等。
2.制定测试计划:包括测试方案、测试目标、测试条件和测试方法等。
3.热传导性能测试:通过制定不同的供热功率和测量热源温度和热管内部温度来确定热管换热器的热传导性能。
4.传热性能测试:通过测量冷却器的冷却水流量、进出水温差和热管的工作温度来确定热管换热器的传热性能。
5.整体热平衡性能测试:通过测量热管换热器内部的温度分布和热源输入功率来评估热管换热器的整体热平衡性能。
6.可靠性测试:包括水压试验、温度循环试验、振动试验等,以评估热管换热器的可靠性和耐久性。
7.数据分析和评估:将测试得到的数据进行分析和评估,评估热管换热器的性能和可靠性,找出可能存在的问题和改进的方法。
8.撰写测试报告:根据测试结果撰写详细的测试报告,包括测试目的、测试方法、测试结果和结论等。
四、热管换热器测试的注意事项1.测试过程中要注意安全:热管换热器在工作过程中会产生高温和高压,测试时要做好防护措施,避免烫伤和热管爆裂等事故。
2.测试设备和仪器的准确性:测试设备和仪器的准确性对测试结果的准确性有着重要影响,要定期校准和维护设备和仪器。
3.测试条件的稳定性:测试过程中要保持测试条件的稳定性,如供热功率、冷却水流量等,确保测试结果的可靠性和可重复性。
4.数据处理和分析方法的科学性:对测试得到的数据要进行科学的处理和分析,采用合适的统计方法和模型进行评估,得出准确的结论。
热管换热器节能的原因
热管换热器节能的原因
热管换热器相比传统换热器具有一些节能优势,具体原因如下:
1.高换热效率:热管换热器采用热管作为换热元件,热管内部充满工作介质,可以实现高效的传热。
由于其内部工作介质的回流和再循环,热管换热器能够以更高的速度实现换热,从而提高了能量利用率。
2.传热距离短:采用热管换热器可以减少传热距离,因为热管可以将热量快速传递到需要的位置,减少了热能传输的损失。
3.少量流体:传统换热器需要较大的流体量来进行换热,而热管换热器只需要很少的流体就能实现高效的换热。
这意味着更少的流体泵送能耗和处理成本。
4.节省能源:由于热管换热器能够以更高的效率进行换热,并且需要较少的流体量,从而可以实现节约能源的效果。
热管换热器具有高效的传热性能,可以减少传热距离、使用少量流体以及节省能源,因此在许多工业和商业应用中被广泛采用以实现节能环保的目的。
热管及热管式换热器的研究
热管及热管式换热器的研究文章来源:中国换热器网添加人:admin 添加时间:2008-12-10<DIV><FONT face=Verdana>热管及热管式换热器的研究</FONT></DIV><DIV> </DIV><DIV><FONT face=Verdana> 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。
热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。
热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。
< BR> 1热管及热管式换热器的发展<BR> 1.1热管工作原理及特点<BR> 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。
热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。
<BR> 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。
什么是热管换热器
什么是热管换热器热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
热管式换热器:是指利用热管原理实现热交换的换热器。
有若干支热管组成的换热管束通过中隔板置于壳体内构成,中热管式换热器是指利用热管原理实现热交换的换热器。
有若干支热管组成的换热管束通过中隔板置于壳体内构成,中隔板与热管加热段、冷却段及相应的壳体内腔分别形成热、冷流体通道,热、冷流体在通道申横掠热管束连续流动实现传热。
多用于余热回收工程。
热管换热器涉及换热器结构的改进,尤其是热烟道上的换热器结构的改进;解决以往烟道中换热器传热效率低的问题;该热管换热器是由炉体、集灰池墙体、隔板、隔墙板、换热管、挡水板、进、出水管构成,其主要改进是在下部构成集灰池,在上面的储水池中安装挡水板;其优点是消除受热介质直流现象,使受热介质受热均匀,提高传热效率,再加上在下部设置了集灰池,使换热管减少灰尘的沉积,提高了传热效率;该热管换热器可以广泛的安置在热烟道中,尤其是安置在窑炉排烟道中回收利用余热效果明显,受热介质可以取暖、可以洗浴。
热管换热器的应用热管换热器的构造原理:热管是一种高效传热元件,其导热能力比金属高几百倍至数千倍。
热管还具有均温特性好、热流密度可调、传热方向可逆等特性。
用它组成换热器不仅具有热管固有的传热量大、温差小、重量轻体积小、热响应迅速等特点,而且还具有安装方便、维修简单、使用寿命长、阻力损失小、进、排风流道便于分隔、互不渗漏等特点。
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A 中温热管换热器、GRSC-B高温热管换热器。
热管一端受热时管内工质汽化,从热源吸收汽化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。
热管换热器及设计计算
冷流体4.9t/h 进口温度70℃ 出口温度135℃
热流体速度 0.8m/s
冷流体速度 1.5m/s
螺旋板式换热器板宽 0.3m
? 设计结果
换热面积 8.4m2
螺旋通道长度 14m
THANKS
? 翅片材料-低碳钢 焊接方式-高频焊接
? 光管外径0.032m 热管内径0.027m
? 热管全长2m
翅片高度0.015m
主要设计步骤
? 计算传热量、空气流出口温度和对数平均 温差
? 确定引风面积、迎风面管排数 ? 求总传热系数 ? 求加热侧总传热面积、热管换热器根数 ? 求换热器纵深方向排数 ? 求流体通过热管换热器的压力降
? 常规设计计算法与常规间壁式换热器相似 将热管群看成是一块热阻很小的“间
壁”,热流体通过“间壁”的一侧不断冷却, 冷流体通过“间壁”的另一侧不断被加热。
主要原始数据
? 排烟烟气流量4507m3/h 温度240-260℃
? 预热空气流量3800m3/h
进口温度20℃ 出口温度160-170℃
? 热管工质-水 管壳材料-20号锅炉无缝钢管
主要内容
? 热管介绍 ? 热管换热器分类 ? 热管换热器设计计算 ? 热管技术的应用 ? 螺旋板换热器介绍 ? 螺旋板换热器设计计算
热管的介绍
? 热管一般由管壳、毛细多孔材料 吸液芯和工作介质组成。
? 在蒸发段吸热热量气化成气体; ? 在冷凝段放出气化潜热热凝结成
液体; ? 在工业利用中,工作介质依靠重
螺旋板式换热器较多采用液 -液换热。
螺旋板式换热器分类
1、按流动方式分 ? 逆流型 ? 错流型 ? 混合型 2、按焊接方式分 ? “Ⅰ”型 螺旋体端面全部焊
热管式换热器工作原理
热管式换热器工作原理
热管式换热器是用来转换热量的设备。
它通过可靠的物理接触,
可以将流经其中的冷热流体的温度差转换为有效的传热量。
热管式换
热器的基本工作原理是将两个不同温度的流体进行热交换。
在管路中,冷热流体分别进入上部和下部的两个室,流量的大小和温度的不同密
切相关。
这样,当温热的流体流经热管,其热能被传递到冷流体中,
冷流体接受了热能,其温度会随之升高。
同样,当冷流体流经热管时,其温度也会随之降低,温热的流体则可以继续从上部室得到热能。
在传热单元中,冷热流体分别由上部室和下部室流入,并在换热
器壁上交换温度。
换热器壁上的冷热差热量会阻碍流体的流动,在一
定程度上减慢流体的流速,减少潜热的损失。
同时,热管式换热器的
物理构型和结构也有助于减少热量的损失。
两侧流体在换热器中的反
复往复运动,有效地实现了传热过程,使冷热流体的温度差得到控制
和调节,最终达到热能转换效果。
热管式换热器具有以下优点:结构紧凑,安装和拆卸简便;操作
可靠,耗能低;使用温差低,温差高可以获得较好的高热量效果;具
有传热效率高,不需要额外的加热设备;热能转换效率高,温度变化
范围广等优点。
因此,热管式换热器深受工业市场的欢迎,得到了广
泛的应用。
热管换热器(热管换热器)
Principle and design of heat exchanger 2015
③Hale Waihona Puke 旋转热管:工作液体的回流依靠离心力的分力作用
④ 重力辅助热管:同时受到毛细力和重力作用使凝液回流。当具有吸液芯的热管处于 冷凝段在加热段上方位置时,热管就将按重力辅助热管方式运行
Principle and design of heat exchanger 2015
换热器
原理与设计
Principle and design of heat exchanger
Principle and design of heat exchanger 2015
3.5 热管换热器
热管换热器是一种新型、高效、节能换热器,广泛使用于航天航空业,并逐步 用于加热炉对流室烟气余热回收中。它是由数根热管组成的。热管外部装有翅片以 提高传热效果。热管管束中间装有隔板,冷、热流体分别在隔板的两侧流动,通过 热管进行热量传递。
Principle and design of heat exchanger 2015
3)工作液 对工作液的要求: 要有较高的汽化潜热、导热系数,合适的饱和压力及沸点,较低的粘度及良好的
稳定性 应有较大的表面张力和润湿毛细结构的能力,使毛细结构能对工作液作用并产生
必须的毛细力 不能对毛细结构和管壁产生溶解作用,否则被溶解的物质将积累在蒸发段破坏毛
Principle and design of heat exchanger 2015
3.5.2 热管的结构
轴向分为三个区域:蒸发段(或称热源段、热端)、蒸发输送段(或称绝热段)、 冷凝段(或称热汇段、冷端)
热管换热器设计说明书
第一章热管及热管换热器的概述热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。
随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。
热管气-气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。
热管气-气换热器是目前应用最广泛的一种气-气换热器。
我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。
大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气-气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。
据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。
如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6]。
利用热管气-气换热器代替传统的管壳式气-气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气-气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低。
热管及其应用热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
各种换热器工作原理和特点,值得收藏
各种换热器工作原理和特点,值得收藏一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了除去热应力。
性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压本领强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点是管内清洗不便,管束中心部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。
依据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点这是一种古老的换热设备。
它结构简单,制造、安装、清洗和维护和修理便利,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。
为提高传热系数,容器内可安装搅拌器。
3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
热管资料
家用,房地产配套,工厂办 公
165以下 200 以下
燃 料 耗 量 LNG KW
(8000kcal/m3)
m3/h
18.0 1.85
22.1 2.26
27.6 2.82
34.5 3.54
41.4 4.24
燃 料 耗 量 LPG KW
(25000kcal/m3)
m3/h
18.0 0.78
22.1 0.95
同时凝结成液体放出汽化潜热,热量传给放热侧的冷流体,冷凝液体依靠重力回流
到受热侧。 由于热管内部抽成真空,所以工质极易蒸发与沸腾,热管起动迅速。热
管在冷、热两侧均可装设翅片,以强化传热。
热管技术的特征
具有很强的导热能力:重力热管利用工质相变,其导热能力比金属大百倍以上。
优良的均温性:热管工作时,工质由吸热段流至放热段,压降甚微,使热管放热
发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可
任意改变、可远距离传热、可控制温度等一系列优点。由热管组成的换热器具有传
热效率高、结构紧凑、流体阻损小等优点。由于其特殊的传热特性可控制管壁温度,
避免露点腐蚀。重力热管工作原理:热管受热侧吸收热量,并将热量传给管内工质(液
态),工质吸热后以蒸发与沸腾的形式转变为蒸汽,蒸汽在压差作用下上升至放热侧,
段蒸气空间内,具有很好的温度均一性。
传热方向不可逆性:因借助重力使工质回流,决定了重力热管必须是加热段在
下,而放热段在上。
具有一定的工作温度范围:每一种工质都有自己的工作温度范围,热管在工作温
度内,在真空状态下,从低温启动工作,随着工作温度的提高,壳内压力上升。
通常,增加加热段热量,使热管进入等温工况的温度称为热管的启动温度。
热管式热交换器设计说明
本科毕业设计说明书热管式热交换器(烟气余热回收空气预热器)Heat pipe heat exchanger (flue gas heat recovery air preheater)摘要热管是一种依靠管内工质的蒸发,凝结和循环流动而传递热量的部件。
由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。
热管换热器最大的特点是:结构简单,传热效率高、动力消耗小。
其越来越受到人们的重视,是一种应用前景非常好的换热设备。
目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。
本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。
在讨论热管换热器的设计过程中,主要针对热力计算,设备结构计算、元件参数的选择做了一个合理构建。
关键词:热管;热管热交换器;设计计算;ABSTRACRely on heat pipe is a pipe working fluid evaporation, condensation and recycling the flow of heat transfer member. Components of the heat pipe, heat pipe principle the use of heat exchange heat exchanger called the heat pipe heat exchanger. Heat pipe heat exchanger biggest feature is: simple structure, high heat transfer efficiency, power consumption is small. Which more and more people's attention, is a very good application prospects heat transfer equipment. Currently, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, application and design to make a brief discussion, focused on the heat pipe heat exchanger design. In discussing the heat pipe heat exchanger design process, mainly for thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction.Key words:Heat pipe;Heat pipe heat exchanger;Design calculations;目录第一章绪论 (1)第一节热管及热管换热器概述 (1)第二节热管及其应用 (3)1.2.1热管的构造原理 (3)1.2.2热管的工作原理 (7)1.2.3热管的基本特性 (8)1.2.4热管分类 (8)1.2.5热管技术 (9)1.2.6热管技术特点 (10)第二章热管换热器 (12)第一节热管换热器技术优势 (12)第二节热管换热器的分类 (12)第三节换热器应用前景 (14)第三章热管气-气换热器设计中应注意的问题 (16)第四章热管气-气换热器设计步骤 (17)第一节计算步骤 (17)第二节符号说明 (19)第三节标注说明 (20)致谢 (22)参考文献 (23)附录 (25)外文资料及翻译 (35)任务书 (55)第一章绪论第一节热管的发展及现状在现有的传热元件中,热管是我们所知的最高效的传热元件之一,它能将大量热量通过其特别小的截面积远距离地传输而不需要外加动力。
热管换热器计算
热管换热器计算热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。
热管换热器的计算:1. 热管换热器的效率定义/t1- t3(1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和 t3,取新风量Lx与排风量L P 相等。
即 Lx= LP,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= Lx ρXCx(t2-t1)/3600 (1-4)式中 Lx——新风量( m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x ——新风的比热容,一般可取1.01kJ/ (kg ·℃ )。
η=t1-t 23.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。
2)表面风速宜采用1.5 m/s~3.5m/s。
3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。
4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。
但仍可按上述公式计算(增加的热量作为安全因素)。
需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。
h 2=h1-36Q/ L×ρ(1-5)式中 h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W); L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。