苏科版七年级数学下册知识

合集下载

苏科版数学教学课件七年级下册图形的平移

苏科版数学教学课件七年级下册图形的平移

解:连接AA'. 过点B作AA'的平行线l, 在l上截取BB'=AA',则点B' 就 是点B的对应点. 类似地作出点C的对应点C', 顺次连接点A',B',C', 得到三角形A'B'C'.
B' l B
A' C'
A
C
平移作图
平移作图的步骤: 1.找关键点(一般是图形的顶点); 2.根据平移的距离和方向作出这些点经过平移后的对应点; 3.将所作对应点按本来已知图形的连接方式连接起来,所得图
图形平移的方向,不限于是水平或是垂直方向的.如下图所示:
平移的概念及性质
练一练: 下列属于平移现象的有( C ) ①水平运输带上的砖的运动;
②高楼电梯上上下下迎送来客;
③健身做呼拉圈运动;
④火车飞驰在一段笔直的铁轨上.
A.1种
B.2种
C.3种D.4种源自平移作图例 如图,平移三角形ABC,使点A移动到点A'. 画出平移后的三角形A'B'C'.
平移的概念及性质
想一想:雪人的形状、大小、位置在运动前后是否产生了变化? 形状不变,大小不变,位置改变.
定 义: 在平面内,将一个图形沿着某个方向移动一定的距离,
这种图形运动叫做图形的平移. 平移时,原图形上的所有点 都沿同一个方向移动相同的距离.原图形上一点A平移后成 为A',这样的两点叫做对应点.
平移的概念及性质
问题2 在所画出的相邻两个雪人中,找出三组对应点(例如,它们的
鼻尖A与A',帽顶B与B',纽扣C与C'),连接这些对应点,视察得出的
线段,它们的位置、长短有什么关系?

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 (新版)苏科版

七年级数学下册 9.1 单项式乘单项式知识点梳理+练习 (新版)苏科版

§9.1 单项式乘单项式【知识平台】单项式的乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【思维点击】单项式相乘的一般步骤:(1)各因式系数的积作为积的系数;(2)利用同底数幂的乘法法则,把相同字母分别相乘;(3)只在一个单项式里含有的字母,连同指数作为积的一个因式.【考点浏览】例计算:(-2ab2)3·abc2·12(-a3b)2.【解析】(-2ab2)3·abc2·12(-a3b)2=-8a3b6·abc2·14a6b2=-8×14(a3·a·a6)·(b6·b·b2)·c2=-2a10b9c2.说明在进行单项式乘法时,有乘方的要先算乘方,再进行乘法运算.【在线检测】下列1~5题计算是否正确,若不正确,加以改正:1.3a2·2a3=6a6._____________________;2.3a2·4a4=7a6.___________________; 3.2a3·5a2=10a5.__________________; 4.a2b·2a2b2c=2a4b3.____________;5.4ab·3ab=12ab._________________.计算:6.3m2·2m4. 7.13x y·23x2y3. 8.5x2y·(-15xy2)·xyz3.9.4x2n+2·(-34x n-2). 10.(-mn)2·(-m2n)3.11.(-ab)3·(-a2b)·(-a2b4c)2. 12.12ab2c·(-0.5ab)2·(-3bc2)3.13.2(x+y)3·5(x+y)k+2·4(x+y)4.14.3(3m-2n)3·0.5(3m-2n)·13(2n-3m).15.[-12(x-y)2] ·(y-x)3·[-3(x-y)4].16.5(a-b)m·94(b-a)2m-1·715(b-a)2m+2.17.-2(ab2c)2·12b·(ac)3+(abc)2·(-abc)3.18.(6×108)×(7×109)×(4×104). 19.(3×2)10×(23×25)10.20.(12×103)2×(4×102)3. 21.(-1.2×102)2×(5×102)×(-2×103)2.22.光的速度约是每秒3×105千米,有一颗恒星发射的光要10•年才能到达地球,若一年以3.1×107秒计算,这颗恒星距离地球有多少千米?参考答案1~5.略 6.6m6 7.29x3y4 8.-x4y4z2 9.-3x3n 10.-m8n5 11.a9b12c212.-278a3b7c7 13.•40(x+y)k+9 14.-12(3m-2n)5 15.-32(x-y)916.-214(a-b)5m+1 17.-2a5b5c5 18.1.68×1023 19.1020 •20.1.6×101321.2.88×1013 22.这颗恒星距离地球有9.3×1013千米.百度文库是百度发布的供网友在线分享文档的平台。

苏科版七年级数学下册7.1直线平行的条件和探索例题和同步练习(含练习答案)

苏科版七年级数学下册7.1直线平行的条件和探索例题和同步练习(含练习答案)

苏科版七年级数学下册直线平行的条件和探索【直线平行的条件和性质】【学习目标】1.同位角、内错角、同旁内角的识别;2.会判定两条直线平行;3.平行线的性质.【基础知识梳理】1.如图,同位角的是;内错角的是;同旁内角的是.2.直线平行的条件:(1)基本事实:,两直线平行;(2)定理:,两直线平行;(3)定理:,两直线平行.3.平行线的性质:(1)基本事实:两直线平行,;(2)定理:两直线平行,;(3)定理:两直线平行,.【典型例题】一、三线八角模型例1:如图所示,同位角一共有对,分别是;内错角一共有对,分别是;同旁内角一共有对,分别是.【变式】已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上.例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1一同旁内角→∠9一内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6一同位角→∠10一同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?二、平行线的判定例2:如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有.(填写所有满足条件的序号)三、平行线的性质例3:如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,求图2中∠AEF的度数.【变式】如图,AB⊥BC,DC⊥BC,E是BC上一点,EM⊥EN,∠EMA和∠END的平分线交于点F,求∠F的度数.四、综合运用例4:填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.例5:(1)如图(1),若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图(2),要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.【变式】问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【拓展应用】例6:如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【能力提升】1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CD B.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CD D.由∠MAB=∠ACD,得AB∥CD4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在所作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.5.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1= (度).6.如图,BE ∥CF ,则∠A +∠B +∠C +∠D = 度.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.8.(1)如图①,若∠B +∠D =∠BED ,试猜想AB 与CD 的位置关系,并说明理由;(2)如图②,要想得到AB ∥CD ,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.9.如图,AD ∥BC ,∠DAC =120°,∠ACF =20°,∠EFC =140°.求证:EF ∥AD .10.【探究】如图①,∠AFH 和∠CHF 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、C .(1)若∠AFH =60°,∠CHF =50°,则∠EOF = 度,∠FOH = 度.(2)若∠AFH +∠CHF =100°,求∠FOH 的度数.【拓展】如图②,∠AFH 和∠CHI 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、G .若∠AFH +∠CHF =α,直接写出∠FOH 的度数.(用含α的代数式表示)【能力提升】答案第1题 第3题 第4题 第5题 第6题1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角解:A、∠1和∠2是同旁内角,故本选项错误,符合题意;B、∠2和∠3是同旁内角,故本选项正确,不符合题意;C、∠1和∠4是同位角,故本选项正确,不符合题意;D、∠3和∠4是内错角,故本选项正确,不符合题意;故选:A.2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD解:A、正确,同位角∠CAB=∠NCD,故AB∥CD;B、错误,∠DCN=∠BAC不是同位角,所以B不对;C、正确,∠MAE=∠ACG,∠DCG=∠BAE,可得同位角∠BAN=∠DCN,故AB∥CD;D、正确,同位角∠MAB=∠ACD,故AB∥CD.故选:B.4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.解:如图所示,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.5.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.6.如图,BE∥CF,则∠A+∠B+∠C+∠D=180度.解:如图所示,由图知∠A+∠B=∠BPD,∵BE∥CF,∴∠CQD=∠BPD=∠A+∠B,又∵∠CQD+∠C+∠D=180°,∴∠A+∠B+∠C+∠D=180°.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.解:如图,∵∠ACB=90°∴∠1+∠3=90°,∵∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°.8.(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EF A(两直线平行,同位角相等),∵∠1=∠2+∠EF A,∴∠1=∠2+∠3.9.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB-∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.10. 【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF =α,直接写出∠FOH的度数.(用含α的代数式表示)解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°;∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°-∠OFH-∠OHF=125°;故答案为:30,125;(2)∵FO 平分∠AFH ,HO 平分∠CHF ,∴∠OFH =12 ∠AFH ,∠OHF =12∠CHF . ∵∠AFH +∠CHF =100°,∴∠OFH +∠OHF =12 (∠AFH +∠CHF )=12×100°=50°. ∵EG ∥FH ,∴∠EOF =∠OFH ,∠GOH =∠OHF .∴∠EOF +∠GOH =∠OFH +∠OHF =50°.∵∠EOF +∠GOH +∠FOH =180°,∴∠FOH =180°-(∠EOF +∠GOH )=180°-50°=130°.【拓展】∵∠AFH 和∠CHI 的平分线交于点O ,∴∠OFH =12 ∠AFH ,∠OHI =12∠CHI , ∴∠FOH =∠OHI -∠OFH=12(∠CHI -∠AFH ) =12(180°-∠CHF -∠AFH ) =12(180°-α) =90°-12α.。

苏科版七年级下册数学课件同底数幂的乘法(共20张)

苏科版七年级下册数学课件同底数幂的乘法(共20张)
am+n = am ·an (m、n都是正整数)
巩固练习 4
1.已知am=2,an=3,求am+n的值;
2.已知3x+1=81,求x.
学以致用
如果地球卫星绕地球
运行速度是 7.9 103 m / s,
求卫星运行1h的路程。
解: 1h 3.6103 s
(7.9 103) (3.6 103) 7.93.6(103 103) 2.844107(m)
(3) -b2·b5
(2)a13·a
(4)am+1·am-1
(m是大于1的整数)
2、计算( ☆ ☆ ☆ ) (1)34×36×3 (2)a·a4·a5
3、计算 ( ☆ ☆ ☆ ☆ ) (1)(p-q)5·(q-p)2 (2)(s-t)m·(s-t)m+n·(t-s)
(m,n是正整数) (3)xn·xn-1·x2n·x(n是正整数)
m个a
n个a
=a×a×a×…×a
(m+n)个a
=am+n
总结法则
同底数幂的乘法法则:
am·an=am+n(m、n都是正整数)
你能用文字语言将同底数幂乘法的性质叙述出来吗?
同底数幂相乘,底数不变 ,指数相加 .
请你推广
am·an·ap= am+n+p
(m、n、p都是正整数)
例题导学
【例1】 :计算
2.下面的计算是否正确?如有错误,请改正:
(1)x3 ·x3=2x6 ; (2)x4 ·x2=x8 ; (3)a2+a2=a4 ; (4)x·x3 = x3 .
( × )x6 ( × ) x6 ( × )2a2 ( × )x4
你认为,用法则时应该注意些什么?

苏教版七年级数学下册目录

苏教版七年级数学下册目录

苏教版七年级数学下册目录课程是(七班级数学)(教育)工作的中心,七班级数学教材是课程的载体。

教材目录是整部数学教材在编排过程中所遵循的一条完整脉络。

下面给大家分享一些苏教版七班级数学下册的目录,大家快来跟一起欣赏吧。

苏教版七班级数学下册课本目录第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一)9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确13.2 可能性苏教版七班级数学下册平行线知识1、同位角、内错角、同旁内角的定义两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles) 如图:1与8,2与7,3与6,4与5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

如图:1与6,2与5均为同位角。

两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side) 。

乘法公式-苏科版七年级数学下册课件

乘法公式-苏科版七年级数学下册课件

C. (a-b)2 = a2-b2
D. (a+b)(a-b)=a2+b2
2. (2014•临沂)请你计算:(1﹣x)(1+x),(1﹣x)
(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是
()
A.1﹣xn+1 B. 1+xn+1
C. 1﹣xn
D. 1+xn
知识梳理
3.(2014•包头)计算:( x+1)2-(x+2)(x-2)= . 4. (2014•厦门)设a=192×918,b=8882-302,c= 10532-7472,则数a,b,c 按从小到大的顺序排列,结果是
x
x2
D (a 2b)2 a 2 2ab 4b 2
知识梳理
2. 有若干张面积分别为纸片,阳阳从中抽取了1张面积为a2的
正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大
正方形,则还需要抽取面积为b2的正方形纸片( B )
A.2张
B.4张
C.6张
D.8张
3. 计算:(1)(-2a+1b)2; (2)(-4b-2)2
C.(ab)2=a2b2
D.(a+b)2=a2+b2
2. 图9.4-2的图①是一个边长为(m+n)的正方形,小颖将图 ①中的阴影部分拼成图②的形状,由图①和图②能验证的式子 是( B )
A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mn
C.(m﹣n)2+2mn=m2+n2
D.(m+n)(m﹣n)=m2﹣n2
课堂练习

七年级数学下册知识讲义-9完全平方公式-苏科版

七年级数学下册知识讲义-9完全平方公式-苏科版

【考点精讲】1. 完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2,即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

这两个等式是完全平方式,它们由左到右的变形是多项式的因式分解,我们可以运用这个公式对某些多项式进行因式分解,这种方法叫做运用完全平方公式法。

2. 完全平方公式的特点:等式的左边是三项式,其中有两项同号,且能写成两数平方和的形式,另一项是这两数乘积的2倍;等式右边是这两数和(或差)的平方。

其中三项式可用口诀来记忆:首平方尾平方,二数乘积在中央。

【典例精析】例题1 把下列各式因式分解:(1)9x2+12xy+4y2;(2)4a2-36ab+81b2;(3)25x4+10x2+1;(4)4(m+n)2-28(m+n)+49。

思路导航:本例中的四个题目直接按完全平方公式分解因式即可,但一定要分清公式中的a,b,并适当地改写成公式的形式。

答案:(1)原式=(3x)2+2·3x·2y+(2y)2=(3x+2y)2;(2)原式=(2a)2-2·2a·9b+(9b)2=(2a-9b)2;(3)原式=(5x2)2+2·5x2·1+12=(5x2+1)2;(4)原式=[2(m+n)]2-2·2(m+n)·7+72=[2(m+n)-7]2=(2m+2n-7)2。

点评:通过本例,我们知道运用完全平方公式法因式分解的步骤:一变(将三项式转化成“首平方尾平方,乘积2倍在中央”的形式)、二套(直接套用完全平方公式进行分解因式分解)。

另外,第(4)题要利用整体思想,即公式中的a相当于2(m+n),并注意结果的化简。

例题2 (1)简便计算:20132-4026×2014+20142;(2)已知实数a、b、c满足a2+b2+c2=6a+8b+12c-61,求(a+b-c)2014的值。

苏科版数学七年级下册:7.4认识三角形

苏科版数学七年级下册:7.4认识三角形

7.4认识三角形学习目标1.理解三角形的概念及其中线、高、角平分线的概念,并能正确画出任意一个三角形的中线、角平分线和高.2.按照边长、角的大小对三角形进行分类.3.探索并证明三角形的任意两边之和大于第三边.知识详解:知识点一:三角形的有关概念1.定义:不在同一条直线上的三条线段首尾依次相连所组成的图形叫做三角形.2.三角形的基本要素:边:组成三角形的3条线段叫做三角形的边,三角形有3条边.顶点:三角形中相邻两边的公共端点叫做三角的顶点,三角形有3个顶点.角:三角形中相邻两条边所夹的角叫做三角形的内角,简称三角形的角,三角形有3个内角.3.三角形及其元素的表示:如图,顶点是A,B,C的三角形,记作“△ABC”,读作“三角形ABC”,∠A,∠B,∠C是三角形的内角,线段AB、BC、CA是三角形的边.拓展:1.由三角形的定义可知:三角形有三个特征:(1)三条线段;(2)三条线段不在同一条直线上;(3)三条线段首尾依次相接.这也是识别三角形的依据.2.用符号“△”时,其后必须紧跟表示三角形的三个顶点的大写字母,字母顺序可以自由安排.“△”不能单独使用,如“三角形的角”不能写成“△的角”.3.△ABC的三边,有时也用cb,来表示.,来表示.顶点A所对的边BC用a表示,边AC,边AB分别用cba,(2)以AD 为边的三角形有 . (3)∠AED 是 , 的内角. 知识点二:三角形的分类 1.按角分类⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形三角形2.按边分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧等边三角形角形腰和底不相等的等腰三等腰三角形不等边三角形三角形说明:1.根据角的大小来识别三角形的形状时,一般只需要考虑三角形中最大的角.若三角形中最大的角是锐角,则三角形是锐角三角形;若三角形中最大的角是直角,则三角形是直角三角形;若三角形中最大的角是钝角,则三角形是钝角三角形.2.常见的特殊三角形有:等腰三角形(按边分)、等边三角形(按边分)、直角三角形(按角分)、等腰直角三角形(既按角分又按边分)、等边三角形和等腰直角三角形都是特殊的等腰三角形.例2:现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A. 3B. 4或5C. 6或7D. 8知识点三:三角形的三边关系1.三角形的三边关系:三角形任意两边之和大于第三边,三角形的任意两边之差小于第三边.2.三边关系的应用(1)根据这一关系可以判断已知的三条线段是否可以构成一个三角形;(2)在一个三角形中,可由已知的两边来确定第三边的取值范围.拓展:1.从三角形三边关系的研究钟可知三角形的三边相互制约——三角形的任意两边之和大于第三边,且任意两边之差小于第三边.2.判断c>a>+b,,三个条件缺一不可.c+,>+c,三条线段能否组成一个三角形,应注意:ba,baacb当a是c,三条线段中最长的一条时,只需要aa,b+,就有任意两条线段的和大于第三边.cb>3.根据三角三边自之间的关系可得结论:已知三角形的两边为ba+<<-ba,,则第三边c满足.||bac例3:下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.)a4>aaa(4,,08知识点四:三角形的中线、角平分线、高1.三角形的中线在三角形中,连接一个顶点与它的对边中点的线段叫做这个三角形的中线.1BC.几何表达:如图,E是BC的中点,线段AE是△ABC的中线,则BE=EC=2拓展:1.三角形的中线是线段,而非直线.2.三角形的一条中线可以把三角形分成面积相等的两个三角形.3.通过画出锐角三角形、钝角三角形和直角三角形的三条中线,我们可以发现一个三角形中一共有三如图,△ABC的中线分别为AD、BE、CF,它们相交于点O.例4:如图,某校生物兴趣小组有一块三角形的试验田,现某种作物的四个品种进行对比试验,需将这块土地分成面积相等的四块,请你设计几种不同的划分方案供选择(画图说明).2.三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.1∠BAC.几何表达:如图,AD是∠BAC的平分线,则∠BAD=∠DAC=2注意:1.三角形的角平分线与角的平分线既有联系,也有区别,区别:三角形的角平分线是一条线段,角的平分线是一条射线;联系:三角形的一个内角的角平分线与对边相交,这个角的顶点与交点之间的线段就是三角形的一条角平分线.2.通过画出锐角三角形、钝角三角形和直角三角形的三条角平分线,我们可以发现一个三角形中一共有三条角平分线,都在三角形的内部,它们相交于一点,交在三角形的内部,这个交点叫做三角形的内心.如图,△ABC的角平分线分别为AD、BE、CF,它们相交于点O.例5:如图,在△ABC中,AD是∠A的平分线,若∠B=50°,∠C=70°,则∠BAD= °.3.三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高线,简称三角形的高.几何表达:如图,线段AG是△ABC的边BC上的高,则∠AGB=∠AGC=90°.拓展:1.借助三角尺画三角形高的一般步骤一靠:使三角尺的一条直角边与一条边所在的直线重合;二移:沿着这条直线平移三角尺,使三角尺的另一条直角边经过三角形的这条边所对的顶点;三画:沿着这条直角边从顶点到底边所在直线画一条线段,这条线段就是三角形的高.2.一个三角形有三条高,这三条高的位置根据三角形的形状而定.锐角三角形三条高都在三角形内部;直角三角形两条高与直角边重合,三条高相交于直角顶点;钝角三角形两条高在三角形外部,一条高在三角形的内部,三条高没有交点,三条高所在的直线相交于一点,如图:例6:如图,过△ABC 的顶点A 作BC 边上的高,以下作法正确的是( )拓展例题:拓展点一:三角形三边关系的应用 1.求三角形第三边的长或取值范围例1:两根木棒的长分别是7cm 和9cm ,现要你选择第3根木棒,将它们钉成一个三角形,若选择的木棒长度是7的倍数,则你选择的木棒的长度为 cm.2.三角形的构成数量例2:长为9,6,5,4的四根木条,组成三角形,选法有( ) A.1 种 B. 2种 C.3种 D.4种 3.三角形三边的化简例3:若c b a ,,是△ABC 的三边,化简.||||||b a c a c b c b a --+--+--拓展点二:三角形中线的运用例4:如图所示,在△ABC中,已知点D,E,F分别是BA、AD、CE的中点,且2=S,4cm∆ABC则=S .∆BEF拓展点三:三角形高的运用例5:△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B. 4或5C. 5或6D. 6拓展点四:三角形三边关系在实际生活中的应用例6:有四个停车场,位于如图所示的四边形ABCD的四个顶点,现在要建立一个汽车维修站,你能运用“三角形两边之和大于第三边”,在四边形ABCD的内部找一点P,使点P到A,B,C,D四点的距离之和最小吗?易错提醒易错点一:忽视三角形三边关系的检验导致错解例1:已知一个等腰三角形的两边长为3和7,求等腰三角形的周长.易错点二:没有正确理解三角形的高基础巩固:1.如图,以BC为边的三角形有()A.3个B. 4个C. 5个D. 6个2.已知三角形的两边长分别是3和8,则该三角形第三边长可能是()A. 5B. 10C. 11D. 123.下面给出的四个三角形都有一部分被遮住,其中不能按角判断三角形类型的是()4.如图,在△ABC中,∠C=90°,D、E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.在如图所示的图形中,三角形有个;以∠B为内角的三角形有和;在这两个三角形中,∠B对的边分别为和 .6.如图是钝角△ABC,请画出:(1)AB边上的高CD;(2)BC边上的中线AE;(3)∠BAC的平分线AF;(4)写出图中相等的线段;(5)写出图中面积相等的三角形.能力提升7.以长为13cm,10cm,5cm,7cm的四条线段中的三条线段为边可以画出三角形的个数为()A. 1B. 2C. 3D. 48.如图,正方形网格中,每个小方格都是边长为1个单位长度的正方形,A,B两点在小方格的顶点上,位置如图所示,C也在小方格的顶点上,且以A,B,C为顶点的三角形的面积为1个平方单位,则符合条件的点C的个数为()9.如图所示,在△ABC中,BC边上的高是;在△AEC中,AE边上的高是 .10.“综合与实践”学习活动小组准备制作一组三角形,记这些三角形的三边均分别为a并且这些三角形三边的长度大于1且小于5的整数个单位长度.b,c,,(1)用记号)cba≤≤表示一个满足条件的三角形,如(2,3,3)表示边长分别为a)(,b,(c2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足cb<的三角形(用给定的单位长度,不写作法,保a<留作图痕迹)。

第10章 二元一次方程组 苏科版七年级数学下册复习课件

第10章 二元一次方程组 苏科版七年级数学下册复习课件
方案一
方案二
时间(小时)




路程
50
x+
y
70
x-
y

50(x+ )=y

70(x-

)=y

常见的实际问题分类
5、年龄问题
等量关系:“等于”
例:一名34岁的男子带着他的两个孩子一同进行晨跑,下面是两个
孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
(1)
3.2 x 2.4 y 5.2
4 x 8 y 12
(2)
3x 2 y 5
如果有一个未知数的系数为1或-1时,用代入法;如果同一个
未知数的系数互为倍数,用加减法较为简便.
2x + 3y = 10
ax + by = 2
例:关于x、y的二元一次方程组 ax - by = 4 的解与 4x - 5y = -2


)x=(1- )y


常见的实际问题分类
等量关系:销售额=售价×件数
利润=销售额-成本
3、销售问题
例:某市某机电公司生产的A、B两种产品在欧洲市场热销今年第
一季度这两种产品的销售总额为 2060万元,总利润为1020 万元,其
每件产品的成本和售价信息如下表:
A
B
成本(万元/件)
2
4
售价(万元/件)
验:检验所求出未知数是否符合题意
答:写出答案
常见的实际问题分类
1、工程问题
等量关系:施工量不变
例:甲乙两工程队共同修建150km的公路,原计划30个月完工实际施
工时,甲工程队通过技术创新,施工效率提高了50%,乙工程队施

多项式的因式分解-第1课时(课件)七年级数学下册(苏科版)

多项式的因式分解-第1课时(课件)七年级数学下册(苏科版)

公因式、因式分解
01 知问识题精引讲入
Q1:巧算:29×7+29×2.1+29×0.9 【解答】 原式=29×(7+2.1+0.9) =29×10 =290
01 知问识题精引讲入
Q2:运用所学的知识填空 (1) m(a+b+c)=_m__a_+_m__b_+_m__c_; (4) ma+mb+mc=( m )(a+b+c) (2) x2(x+1)=____x_3_+_x_2____; (5) x3+x2=( x2)(x+1) (3) ab(x-y)=___a_b_x_-_a_b_y___. (6) abx-aby=(ab)(x-y)
课后总结
【因式分解】 像这样,把一个多项式写成几个整式的积的形式,叫做多项式的因式分解
【注意点】 ①因式分解与整式乘法是互逆运算; ②因式分解是两个或几个因式积的形式,且每个因式都是整式;整式乘法是多项式的形式; ③因式分解是恒等变形,因此可以用整式乘法来检验; ④因式分解必须分解彻底.
【提公因式法】 把多项式的公因式提到括号外,把多项式写成公因式与另一个多项式的积的形式,
【分析】 b2(x-2)+b(2-x) =b2(x-2)-b(x-2) =b(x-2)·b-b(x-2)·1 =b(x-2)(b-1).
【利用提公因式法求值】
例5、已知x2y+xy2=42,xy=7,则x+y=____6____.
【分析】 ∵x2y+xy2=42,xy=7, ∴xy(x+y)=42, ∴x+y=6.
提公因式法
02 知识精讲
提公因式法

苏科版数学七年级下册第七章平面图形认识第一节 7.1探索直线平行的条件课件 17张ppt

苏科版数学七年级下册第七章平面图形认识第一节 7.1探索直线平行的条件课件 17张ppt

线被哪一条直线截成的同位角?
A
4.如图,∠1=∠2,直线AB、CD平行吗?
说明你的理由.
D 21 E
A E1 C
3
3
B
FC
(第1题)
B 2F D
(第2题)
议一议 如图,直线a、b被直线c所截,∠2=∠3,直线a与直线b平
行吗?为什么? 解:因为∠1与∠3是对顶角,
c
1
3
b
2
a
所以∠1=∠3.理由是:对顶角相等. 这样由∠1=∠3、∠2=∠3,可得∠1=∠2. 因为∠1=∠2,所以a∥b.
7.1 探索直线平行的条件
生活中的平行线: 思考交流 你能找出它们的共同点吗?生活中还有哪些平行线?
平行线的介绍
1.在同一平面内,两条直线的位置关系是:相交或平行.
2.在同一平面内,不相交的两条直线叫做平行线. 3.如果两条直线都和第三条直线平行,那么这两条直线 也互相平行.
知识回顾 我们通常用“//”表示平行.
试说明理由. 8.如图,回答下列问题: (1)∠1与∠2互为什么角?
(第5题)
a
1
b 2
(第6题) c
(2)∠1与∠2可能相等吗?试说明理由.
作业:完成课时作业本相应习题. 要求:字迹工整,表述科学.
图中的∠1与∠2这样的一对角称为:同位角. 实践告诉我们一个基本事实:同位角相等,两直线平行.
同位角的介绍 图中的∠1与∠2这样的一对角称为:同位角.
同位角是F 形状
如图:两条直线a、b被第三条直线c所截而成的 8个角中,在两条被截线的同侧,在截线的同旁, 这样的一对角称为同位角.
同位角的特点: ①必须是两直线被第三条直线所截成的角; ②没有公共端点;③在第三条直线同旁; 注意:同位角不一定相等.

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

苏科版七年级下册数学第7章平面图形的认识(二)知识点总复习及强化练习

平面图形的认识(二)知识点总复习及强化练习【知识梳理】1.平行线的认识(1)认识三线八角:如图,两条直线被第三条直线所截,分成了八个角。

(2)平行的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

(3)平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2.三角形的认识(1)三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

(2)三角形的内角和:三角形的内角和是180°(3)三角形内外角关系:一个外角大于和它不相邻的任意一个内角,等于和它不相邻的两个内角和。

(4)三角形的分类:直角三角形;锐角三角形;钝角三角形。

(5)三角形的三线:角平分线;中线;高线。

3.多边形的外角和与内角和公式。

【例题精讲】题型一:平行的判定与性质例1.如图所示,AB∥CD,AF平分∠CAB,CF平分∠ACD.计算(1)∠B+∠E+∠D=________;(2)∠AFC=________.例2.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.题型二:折叠问题例1.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=__________.与AD交于点G,例2.如图,把矩形ABCD沿EF折叠,点A、B分别落在A′、B′处.A′B′若∠1 =50°,则∠AEF=()A.110°B.115°C.120°D.130°题型三:多边形的内角和与外角和例1.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.......。

例2.一个零件的形状如图,按规定∠A=90°,∠ABD和∠ACD,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.例3.如图,已知∠DAB+∠D=180°,AC平分∠A,且∠CAD=25°,∠B=95°(1)求∠DCA的度数;(2)求∠ACE的度数.题型四:拓展延伸例1.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.例2.如图,△ABC中,BE,CD为角平分线且交点为点O,当∠A=600时,(1)求∠BOC的度数;(2)当∠A=1000时,求∠BOC的度数;(3)若∠A=α时,求∠BOC的度数。

7年级 数学苏科版下册课件第7单元 《7.5多边形的内角和与外角和》

7年级 数学苏科版下册课件第7单元 《7.5多边形的内角和与外角和》

An
A1 A2
An
p
A1
A2
A5
A4 A3
A5
A4
A3
An
A5
A1
A2 An
A4
p
A3
A5
A1
A2 p
A4 A3
边数
三角形个数
内角和
4
2
2×18°=36°
5
3
3×18°=54°
6
4
4×18°=72°
… … …
n
n-2
(n-2) ·18°
综上所述,设多边形的边数为n,
则 n边形的内角和等于 (n一2)•18°
的平分线分别交CD、AB于点E、F。∠1与∠2有怎样的数量
关系?为什么?
解:∠1与∠2互余 在四边形ABCD中,
E
C
D
1
∠A+∠ABC+∠C+∠ADC=(4-2) ×18°=36°
由∠A+∠C=18°,得
∠ABC+∠ADC=36°-(∠A+∠C)=36°-18°=18° A
2
B F
由BE、DF分别平分∠ABC、∠ADC,得
D C
D
E
C
A
B
A
B
小明过生日,邀请同学一起到到他家庆祝,他准 备了一个生日蛋糕,在分蛋糕的时候,他想了一 个问题考考大家,蛋糕的形状各不相同,要求把 蛋糕分成的形状都是三角形,最少分成几个三角 形,你能帮他想想办法吗?
动动脑
你能根据这些图形中的各个三角形的内角 和计算出这几个图形的内角和吗?
边数
1
5、如图,OA⊥CA,OB⊥CB,且∠1= ∠2,求∠1和∠2的度数。

初中数学苏科版(新版)七年级下册1不等式的解集教学课件

初中数学苏科版(新版)七年级下册1不等式的解集教学课件

3、注意数形结合思想的应用.
拓展延伸
1、根据“当x为任何正数时,都能使不等式x+2>1成立”,能不能说“不等式x+2>1的 解集为x>0”?
2、在数轴上表示不等式x+4≥0的解集,并写出这个不等式的非正整数解.
2 .
(2)
-2 -1 0 1 2 3
பைடு நூலகம்
解集可表示为: x≤2
.
(3)
-2 -1 0 1 2 2.5 3
解集可表示为:-1<x≤2.5
.
练习:写出下列各数轴表示的不等式的解集 (1) (2)
(3) (4)
-2
例3.不等式x≤2的正整数解是( C)
A. 1
B. 0,1
C. 1,2
D. 0,1,2
不等式x<2的非负整数解是________. 不等式x≥-4的负整数解是________.
4、不等式4x<9的解集x< 9( √ ) 4
【回顾与反思】必须正确理解不等式的解与不等式的解集的联系与区分.
想一想 不等式 x-3>0的解集x>3可以用数轴上表示3的点的___边部分来表示,包不包括3 这个数?

-3 -2-1 0 1 2 3 4 5
如何表示不等式的解集为x≤4呢?
-3 -2-1 0 1 2 3 4 5
1.你能求出合适不等式-1≤x<4的整数 解吗?其中的x的最大整数值是多少呢?
2.若x<a的解集中最大的整数解为3, 则a的取值范围为 3<a≤4 .
若x≥b的解集中最小的整数解为-3,
则b的取值范围为
.
1、什么是不等式的解? 什么是不等式的解集?
课堂小结
2、如何用数轴来表示不等式的解集?
规律:小于向左画,大于向右画; 无等号画空心圆圈,有等号画实心圆点.

苏科版七年级下册数学课件单项式乘单项式(共17张)

苏科版七年级下册数学课件单项式乘单项式(共17张)
你能总结出怎样进行单项式乘以单项式吗?
❖(1)系数相乘 注意符号 (2)相同字母的幂相乘 (3)只在一个单项式中出 现的字母,则连同它的 指数一起作为积的一个 因式。
单项式乘以单项式法则:
单项式与单项式相乘,把它们
的系数、相同字母的幂分别
相乘,对于只在一个单项式中 出现的字母,则连同它的指数 一起作为积的一个因式。
(3)可以用单项式乘以单项式来解决现实生活中的问题
知识延伸
1.已知3xn-3y5-n与-8x3my2n的积 是2x4y9的同类项,求m、n的值.
2.若(2anb· abm)3=8a9b15 求m+n的值
① (a2)2(—2ab); ② 5m·( 9 abm) ·(—am); ③ 0.5an—41bm—2c ·(— 0.2a2b3);
例题(1)
(3x2 y ) • (2xy3)
注意这里体现 了结合律及交 换律
解:原式=3 2 (x2 x)( y y3 )
把系数相乘 把相同字母的幂分别相乘
6 x21 y13
6x3 y4
例题(2)
(2a2b3) • (3ac)
解:原式= (2)× (3) a2·a b3c.
把系数相乘
把相同字母的幂分别相乘
6a3b3c
其余字母连同它的 指数不变
下面的计算是否正确?如果有错误,
请改正.
12
(1)3a3·4a4= 7 a7 -6 (2) -2x4·3x2= 6x6 6 (3) 2b3·4b3= 8b3
(× ) (×) (× )
(4)-4x2y3·5xy2z=-20x3y5z ( × )
9.1 单项式乘单项式
你是如何计算(2×103)×(3×105)的?

初中数学苏科版七年级下册幂的乘方与积的乘方第二课时课件

初中数学苏科版七年级下册幂的乘方与积的乘方第二课时课件
回顾 & 思考☞
回顾幂与的思意义考:
n个a
a·a·… ·a = an
同底数幂的乘法运算法则:
am ·an =am+n(m,n都是正整数)
幂的乘方运算法则:
(am)n= amn (m、n都是正整数)
探索 交流
参与活动:
(2) 为了计算(化简)算式ab·ab·ab,可以应用
乘法的交换律和结合律。
n个ab
(ab)n = ab·ab·……·ab
( 幂的意义
)
n个a
n个b
=(a·a·……·a) (b·b·……·b) ( 乘法交换律 )
结合律
=an·bn.
( 幂的意义 )
积的乘方法则
(ab积)n =的an乘·bn方(m法,n都则是正整数)
积的乘方 乘方的积
• 上式显示:
积的乘方 = __每__个__因__式__分__别__乘__方__后__的__积.
解:
=
×(6×103)3
注意 运算顺序 !
= × 63×109
≈ 9.05×1011 (千米3)
随堂练习
× × 判断: (1)(ab2)3=ab6 ( ) (2) (3xy)3=9x3y3 ( ) × × (3) (-2a2)2=-4a4 ( ) (4) -(-ab2)2=a2b4 ( )
计算:
(1) (ab)8 (2) (2m)3
本节课你的收获是什么?
幂的意义:
n个a
a·a·…
·a =
an
同底数幂的乘法运算法则:
am ·an=am+n
幂的乘方运算法则: am n amn
积的乘方运算法则: (ab)n=anbn
逆向使用am ·an =am+n、(am)n =amn 可使某些计算简捷。

苏科版七年级下册数学:1不等式的解集

苏科版七年级下册数学:1不等式的解集
无论是方程还是不等式,它们的解一定满足方 程(或不等式),都可以通过代入方程(或不 等式)来检验.方程x+3=6的解只有一个,而 是x+3>6的解有无数个,但这无数个解有一个 共同特征:它们都大于3.
11.2 不等式的解集
一个含有未知数的不等式的所有的解,组 成这个不等式的解的集合,简称这个不等 式的解集 思考:“当x为任何正数时,都能使不等式x+2>1成
表示?
11.2 不等式的解集
典型例题
例1 两个不等式的解集分别是x<3,
x≥-1,分别在数轴上将它们表示出来.
解:x<3在数轴上表示为:
x≥-1在数轴上表示为:
11.2 不等式的解集
请注意
对于“x<a”或“x>a”的情势,用 数轴表示时应在数轴上表示数a的点 处画“小空心圆圈”,小于向左边 画,大于向右边画;对于“x≤a”或 “x≥a”的情势,用数轴表示时应在 数轴上表示数a的点处画“小实心 点”,小于或等于向左边画,大于 或等于向右边画.
11.2 不等式的解集
练一练 2、根据图示写出不等式的解集:

-3 -2 - 1.5-1
0
1
2
解集可表示为:
.

-2 -1
0
1
2
3
解集可表示为:
.
11.2 不等式的解集
典型例题
例3 不等式x≤2的正整数解是( C )
A. 1 C. 1,2
B. 0,1 D. 0,1,2
11.2 不等式的解集
练一练
立”,能不能说“不等式x+2>1的解集为x>0”?
注意:不等式的解集是所有解的全体,缺少
任何一个都不能称为该不等式的解集.

苏科版七年级数学下册同底数幂的除法(第1课时)课件

苏科版七年级数学下册同底数幂的除法(第1课时)课件
即同底数幂相除,底数不变,指数相减.
同底数幂的除法
例 计算: (1)a6÷a2; (3)(ab)4÷(ab)2; ). 解:(1) a6÷a2 =a6-2= a4.
(2)(-b)8÷(-b)=(-b)8-1=(-b)7=-b7. (3)(ab)4÷(ab)2=(ab)4-2=(ab)2=a2b2. (4)t2m+3÷t2=t2m+3-2=t2m+1.
同底数幂的除法
问题2 运用你所学的知识,证明你的猜想. 已知:a为任意底数,m,n都是正整数,且m>n. 求证:am ÷an=am-n. 证明:因为am-n ·an=am-n+n=am,
所以am ÷an=am-n.
同底数幂的除法
同底数幂的除法法则: 一般地,如果字母m,n都是正整数(m>n),那么 am÷an=a( m-n ).
(ab)n= anbn (n是正整数).
CONTENTS
2
同底数幂的除法
问题1 计算: (1)35÷32 ;
(2)46÷43.
你发现了什 么规律?
解:(1)35÷32 33333 333 27. 33
(2)46÷43 4 4 4 4 4 4 4 4 4 64. 444
同底数幂相除,结果底数不变,只需要将指数相减即可.
七年级数学下册苏科版
第8章 幂的运算
8.3 同底数幂的除法
第1课时 同底数幂的除法
知识要点
1
CONTENTS
1
复习引入
回顾所学知识,完成下面内容. 1.同底数幂的乘法法则 :
am·an= am+n ( m,n都是正整数). 2.幂的乘方法则:
(am)n= amn (m,n都是正整数). 3.积的乘方法则:

2023年苏教版七年级数学全册知识点总结

2023年苏教版七年级数学全册知识点总结

苏科版数学知识点第二章:有理数一、实数与数轴1、整数分为正整数,0和负整数。

正整数和0统称自然数。

能被2整除旳整数称为偶数,被2除余1旳整数叫作奇数。

2、分数:可以写成两个整数之比旳不是整数旳数,叫做分数。

分数都可以转化为有限小数或循环小数。

反之,有限小数或循环小数都可以转化为分数。

3、有理数:整数和分数统称有理数。

4、无理数:无限不循环小数称为无理数。

5、实数:有理数和无理数统称为实数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度旳直线称为数轴。

原点、正方向、单位长度是数轴旳三要素。

7、数轴上旳点和实数旳对应关系:数轴上旳每一种点都表达一种实数,而每一种实数都可以用数轴上旳唯一旳点来表达。

实数和数轴上旳点是一一对应旳关系。

二、绝对值与相反数8、绝对值:在数轴上表达一种数旳点与原点旳距离,叫做这个数旳绝对值。

设数轴上原点为O,点A表达旳数为a,则a A =O ,设数轴上点A 表达旳数为a ,点B 表达旳数为b,则b a -=AB9、一种正数旳绝对值等于它自身,一种负数旳绝对值等于它旳相反数,0旳绝对值为0.反过来,绝对值等于它自身旳数为非负数(正数或0),绝对值等于它旳相反数为非正数(负数或0).10、相反数:符号不一样,绝对值相等旳两个数互为相反数。

0旳相反数是0.在数轴上互为相反数旳两个数表达旳点,分居在原点两侧,并且到原点旳距离相等。

相反数等于自身旳数只有0.在一种数前面添上“+”号还表达这个数,在一种数前面添上“—”号,就表达求这个数旳相反数。

二、实数大小旳比较11、在数轴上表达两个数,右边旳数总比左边旳数大。

12、正数不小于0;负数不不小于0;正数不小于一切负数;两个负数绝对值大旳反而小。

三、实数旳运算13、加法:(1)同号两数相加,取本来旳符号,并把它们旳绝对值相加;(2)异号两数相加,取绝对值较大旳加数旳符号,并用较大旳绝对值减去较小旳绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版七年级下册知识点总结1:平移:
1、定义:在平面内,将某个图形沿某个方向一动一定距离2:性质:(1)平移不改变图形形状、大小
(2)对应点连线平行或在同一直线上且相等对应线段平行或在同一直线上且相等对应角相等
2:三角形的角
2、(1)外角:三角形一边与另一边延长线组成的角叫三角形外角
3、(2)三角形内角和为180°
4、直角三角形两锐角互余
5、N 边形内角和为(n-2)×180°
6、n 边形外角和为360°
3:三线八角(同位角,内错角,同旁内角)基本性质:
1同位角相等两直线平行2内错角相等两直线平行3同旁内角互补两直线平行4两直线平行同位角相等5两直线平行内错角相等6两直线平行同旁内角互补
第八章幂的运算
1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加
n m n m a a a +=⋅(m,n 都是正数)
2..幂的乘方法则:幂的乘方,底数不变,指数相乘
mn n m a a =)((m,n 都是正数)
⎩⎨⎧-=-).
(),
()(,为奇数时当为偶数时当一般地n a n a a n
n n
3.幂的乘方,底数不变,指数相乘
4.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m、
n 都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即
)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即
p p a a 1
=
-(a
≠0,p 是正整数),而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的;当a<0时,a -p
的值
可能是正也可能是负的,如41(-2)2-=
,8
1)2(3-=--④运算要注意运算顺序.
第九章从面积到乘法公式
1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.2.整式的乘法
(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

3.平方差公式:2
2
))((b
a b a b a -=-+4.完全平方公式:
2
222)(b ab a b a +±=±5:因式分解方法:
1、提公因式法
2、平方差公式、完全平方公式
第十章二元一次方程式
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

第十一章图形的全等
一.知识框架
二.知识概念
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
第十二章数据在我们身边
一.知识框架二.知识概念
全面调查:考察全体对象的调查方式叫做全面调查。

抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

总体:要考察的全体对象称为总体。

全面调查
抽样调查
收集数据
描述数据
整理数据
分析数据
得出结论
个体:组成总体的每一个考察对象称为个体。

样本:被抽取的所有个体组成一个样本。

样本容量:样本中个体的数目称为样本容量。

频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

频率:频数与数据总数的比为频率。

组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

第十三章感受概率
一:知识框架:
不可能事件
确定事件
必然事件
事件
不确定事件随机事件
二:知识点
1:概率
一个事件发生可能性大小的数值,称为这个事件的概率
k事件A包含的可能结果数
P(A)==
n所有可能的结果总数
2:几点注意
必然事件的概率是1;不可能事件的概率是0;随机事件的概率大于0小于1。

相关文档
最新文档