八年级数学下册 平面几何经典难题训练 沪科版
2021学年八年级下册数学专题1.4 四边形章末重难点题型(举一反三)(沪科版)(解析版)
专题1.4 四边形章末重难点题型【沪科版】【考点1 多边形的对角线】【方法点拨】从n边形的一个顶点出发,最多能画(n-3)条对角线,这些对角线能把n边形分成(n-2)个三角形。
共2)3(nn条对角线.【例1】(2019秋•杏花岭区校级期末)在研究多边形的几何性质时.我们常常把它分割成三角形进行研究.从八边形的一个顶点引对角线,最多把它分割成三角形的个数为()A.5B.6C.7D.8【分析】n边形从一个顶点出发可引出(n﹣3)条对角线,分成(n﹣2)个三角形.【答案】解:过八边形的一个顶点可以引(8﹣1﹣2)=5条对角线,所以可组成6个三角形.故选:B.【点睛】此题主要考查了多边形对角线,关键是掌握多边形对角线的画法.【变式2-1】(2019春•泰安期中)从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2019个三角形,则这个多边形的边数为()A.2020B.2019C.2018D.2017【分析】可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.【答案】解:从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2019个三角形,则这个多边形的边数为2019+1=2020.故选:A.【点睛】考查了多边形的对角线,多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.【变式2-2】(2019春•东昌府区期末)多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8B.9C.10D.11【分析】可根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.【答案】解:设多边形有n条边,则n﹣2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13﹣3=10.故选:C.【点睛】此题考查了多边形的对角线,多边形有n条边,则经过多边形的一个顶点的所有对角线有(n ﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.【变式2-3】一个凸n边形的边数与对角线条数的和小于20,且能被5整除,则n为()A.4B.5C.6D.5或6【分析】根据n边形的对角线条数=.【答案】解:设多边形有n条边,则n+<20,即n(n﹣1)<40,又能被5整除,所以n=5或6.故选:D.【点睛】熟记n边形对角线条数的公式,根据题意列不等式,再根据条件进行分析.【考点2 多边形的内角和与外角和】【方法点拨】多边形的外角和固定不变为360°,多边形的内角和为180(n-2)(其中n为边数).【例2】(2019秋•仁怀市期末)一个正多边形,它的一个内角恰好是一个外角的4倍,则这个正多边形的边数是()A.八B.九C.十D.十二【分析】根据正多边形的内角和外角的关系,求出外角的度数,再根据外角和为360°可求出正多边形的边数.【答案】解:设多边形的一个外角为x,则它的一个内角为4x,4x+x=180°,∴x=36°∴这个正n边形的边数为:360°÷36°=10,故选:C.【点睛】考查多边形的内角和、外角和的性质,掌握内角和外角的关系是正确解答的前提.【变式2-1】(2019秋•博白县期末)已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得多边形的边数.【答案】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.【变式2-2】(2019秋•定州市期末)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.【答案】解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.【变式2-3】(2019秋•恩施市期末)一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10B.11C.12D.10或11或12【分析】先根据多边形的内角和公式(n﹣2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【答案】解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选:D.【点睛】本题考查了多边形的内角和公式,本题难点在于多边形截去一个角后边数有增加1,不变,减少1三种情况.【考点3 平面镶嵌】【方法点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【例3】(2019春•洛江区期末)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【答案】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选:C.【点睛】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.【变式3-1】(2019春•上蔡县期末)在现实生活中,铺地最常见的是用正方形地板砖,某小区广场准备用多种地板砖组合铺设,则能够选择的组合是()A.正三角形,正方形B.正方形,正六边形C.正五边形,正六边形D.正六边形,正八边形【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【答案】解:∵正三角形的每个内角60°,正方形的每个内角是90°,正五边形的每个内角是108°,正六边形的每个内角是120°,正八边形每个内角是180°﹣360°÷8=135°,∴能够组合是正三角形,正方形,故选:A.【点睛】本题考查平面密铺的知识,注意掌握几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【变式3-2】(2019春•泉州期末)下列组合不能密铺平面的是()A.正三角形、正方形和正六边形B.正三角形、正方形和正十二边形C.正三角形、正六边形和正十二边形D.正方形、正六边形和正十二边形【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【答案】解:A、正三角形、正方形和正六边形,可以密铺平面,比如:2个正方形,一个正六边形,一个正三角形.本选项不符合题意;B、正三角形、正方形和正十二边形,可以密铺平面,比如:2个正三角形、一个正方形、一个正十二边形.本选项不符合题意;C、正三角形、正六边形和正十二边形,不能密铺平面.本选项符合题意;D、正方形、正六边形和正十二边形.可以密铺平面,比如:一个正方形、一个正六边形、一个正十二边形.本选项不符合题意;故选:C.【点睛】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【变式3-3】(2019春•卧龙区期末)下列能铺满地面的组合有()①正十二边形,正三角形的组合;②正六边形,正方形的组合;③正六边形,正方形,正三角形的组合;④正八边形,正五边形的组合;⑤正十二边形,正方形,正三角形的组合.A.1个B.2个C.3个D.4个【分析】分别求出各个多边形每个内角的度数,然后根据围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角判断即可.【答案】解:①正十二边形,正三角形的组合内角分别为30°、120°,能构成360°的周角,故能铺满;故正确;②正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故错误;③正六边形,正方形,正三角形的组合;因为正六边形的每个内角是120°,正方形的每个内角是90°,正三角形的内角为60°,能构成360°的周角,故能铺满;故正确;④正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;故错误;⑤正十二边形,正方形,正三角形的内角分别为30°,90°,120°,能构成360°的周角,故能铺满;故正确;故选:C.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°﹣360°÷边数.【考点4 平行四边形的性质】【方法点拨】解题的关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.【例4】(2019春•沙坪坝区期中)如图,平行四边形ABCD中,∠DAB的平分线AE交CD于E,DC=5,BC=3,则EC的长是()A.1B.1.5C.2D.3【分析】由平行四边形的性质知AD=BC=3,DC∥AB,据此得∠BAE=∠AED,再由角平分线性质知∠BAE=∠DAE,从而得∠AED=∠DAE,据此知AD=DE=3,根据EC=DC﹣DE可得答案.【答案】解:∵四边形ABCD是平行四边形,BC=3,∴AD=BC=3,DC∥AB,∴∠BAE=∠AED,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AED=∠DAE,∴AD=DE=3,∵DC=5,∴EC=DC﹣DE=5﹣3=2,故选:C.【点睛】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.【变式4-1】(2019春•巴南区期中)已知▱ABCD的周长为32cm,对角线AC、BD相交于点O,若△BOC 的周长比△AOB的周长大4cm,则AD的长是()A.4cm B.6cm C.8cm D.10cm【分析】▱ABCD的周长为32cm,则AB+BC=16;△BOC和△AOB共边OB,且OC=OA,则BC﹣AB =4;从而得到BC的长,且AD=BC;【答案】解:∵▱ABCD的周长为32cm,∴AB+BC=∵△BOC和△AOB共边OB,且平行四边形平分对角线;∴OB=OB,OA=OC;又∵若△BOC的周长比△AOB的周长大4cm,∴BC﹣AB=4联立∴BC=10,AB=6∴AD=BC=10故选:D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.【变式4-2】(2019春•闽侯县期中)如图,在平行四边形ABCD中,∠BAD的平分线交CD于点G,AD =AE.若AD=5,DE=6,则AG的长是()A.6B.8C.10D.12【分析】首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【答案】解:如图,设AG交BD于H.∵AD=AE,AG平分∠BAD,∴AG垂直平分DE,∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH,在Rt△ADH中,AH===4,∴AG=2AH=8.故选:B.【点睛】本题考查了平行四边形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题;【变式4-3】(2019春•谢家集区期中)如图,平行四边形ABCD的对角线相交于点O,且AD>AB,过点O作OE⊥AC交AD于点E,连接CE.若平行四边形ABCD的周长为20,则△CDE的周长是()A.10B.11C.12D.13【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=20,继而可得△CDE的周长等于AD+CD.【答案】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵平行四边形ABCD的周长为20,∴AD+CD=10,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=10.故选:A.【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.【考点5 平行四边形的判定条件】【方法点拨】平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.【例5】(2019春•鄂城区期中)下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【答案】解:①AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形;②AB=CD,AD=BC;能判定四边形ABCD为平行四边形;③∠A=∠B,∠C=∠D;不能判定四边形ABCD为平行四边形;④AB=AD,CB=CD;不能判定四边形ABCD为平行四边形;能判定四边形ABCD为平行四边形的个数有1个,故选:A.【点睛】此题主要考查了平行四边形的判定,正确掌握平行四边形的判定方法是解题关键.【变式5-1】(2019春•常熟市期中)在四边形ABCD中,对角线AC、BD相交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A.AB∥DC,AD=BC B.∠BAD=∠BCD,∠ABC=∠ADCC.OA=OC,OB=OD D.AB=DC,AD=BC【分析】根据平行四边形的判定定理分别进行分析即可.【答案】解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对角分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.【点睛】此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.【变式5-2】(2019春•北京校级期中)已知四边形ABCD中,AC、BD交于点O,给出条件①AD∥BC且AB=CD,②AB=CD且OA=OC,③∠DAB=∠DCB且OA=OC,④∠DAB=∠DCB且OB=OD,其中能判定四边形ABCD是平行四边形的有()A.0个B.1个C.2个D.3个【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形进行分析即可.【答案】解:①AD∥BC且AB=CD不能判定四边形ABCD是平行四边形;②AB=CD且OA=OC不能判定四边形ABCD是平行四边形;③∠DAB=∠DCB且OA=OC不能判定四边形ABCD是平行四边形;④∠DAB=∠DCB且OB=OD不能判定四边形ABCD是平行四边形;故选:A.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.【变式5-3】(2018•雁江区模拟)在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个【分析】(1)因为两组对边分别平行的四边形是平行四边形,所以①正确;(2)因为一组对边平行且相等的四边形是平行四边形,所以②正确;(3)此题易证此四边形的两组对边分别平行,所以③正确;(5)此题可以通过证明三角形全等,证得AB=CD,所以证得此四边形是平行四边形;正确;(4)与(6)等腰梯形也符合要求,所以错误.【答案】解:(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;正确;(2)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形;正确;(3)∵AB∥CD,∴∠A+∠D=180°,∵∠DAB=∠DCB,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形;正确;(4)可能是等腰梯形,所以错误;(5)∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵AO=CO,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形;正确;(6)此题可以是等腰梯形;错误.故选:B.【点睛】此题考查了平行四边形的判定.注意真命题需要证明,假命题只要举反例即可.解题时还要注意数形结合思想的应用.【考点6 平行四边形的判定及性质】【例6】(2019春•越秀区校级期中)如图,在平行四边形ABCD中,∠BAD和∠DCB的平分线AE,CF 分别交BC,AD于点E,F,点M,N分别是AE,CF的中点,连接FM,EN(1)求证:BE=DF;(2)求证:四边形FMEN是平行四边形.【分析】(1)由平行四边形的性质得出AD∥BC,AB=CD,∠BAD=∠DCB,∠B=∠D,证出∠BAE =∠DCF,由ASA证明△BAE≌△DCF,即可得出结论;(2)由全等三角形的性质得出得出AE=CF,∠AEB=∠DFC,证出AE∥CF,由已知得出ME∥FN,ME=FN,即可证出四边形MENF是平行四边形.【答案】(1)证明;∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∠BAD=∠DCB,∠B=∠D,∠DAE=∠AEB,∠DFC=∠BCF,∵∠BAD和∠DCB的平分线AE、CF分别交BC、AD于点E、F,∴∠BAE=∠DAE=∠BAD,∠BCF=∠DCF=∠DCB,∴∠BAE=∠DCF,在△BAE和△DCF中,,∴△BAE≌△DCF(ASA),∴BE=DF;(2)证明:∵△BAE≌△DCF,∴AE=CF,∠AEB=∠DFC,∴∠AEB=∠BCF,∴AE∥CF,∵点M、N分别为AE、CF的中点,∴ME∥FN,ME=FN,∴四边形FMEN是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质;熟练掌握平行四边形的性质与判定,证明三角形全等是解决问题的关键.【变式6-1】(2019春•香坊区校级期中)已知:如图,四边形ABCD是平行四边形,E,F是对角线AC上的两点,AE=CF.(1)求证:四边形DEBF是平行四边形;(2)如果AE=EF=FC,请直接写出图中所有面积等于四边形DEBF的面积的三角形.【分析】(1)首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形;(2)根据等底等高的三角形的面积相等即可得到结论.【答案】(1)证明:连接BD,交AC于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形;(2)∵AE=EF=FC,∴S△ADE=S△DEF=S△CDF=S△ABE=S△BEF=S△BCF,图中所有面积等于四边形DEBF的面积的三角形为△ADF,△CDE,△ABF,△CBE.【点睛】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.【变式6-2】(2019春•鄂城区期中)已知:如图,在▱ABCD中,点E、F在AC上,且AF=CE,点G、H 分别在AB、CD上,且AG=CH,AC与GH相交于点O.(1)求证:EG∥FH;(2)GH、EF互相平分.【分析】(1)由平行四边形的性质得到对边平行,得到内错角相等,根据三角形全等,得到边相等,角相等,再由邻补角得到内错角相等,得到两线平行;(2)根据平行四边形的性质和判定得到结论.【答案】(1)证明:在▱ABCD中,∵AB∥CD,∴∠GAE=∠HCF,∵AF=CE,∴AF﹣EF=CE=EF,即;AE=CF,在△AGE与△CHF中,,∴△AGE≌△CHF,∴GE=HF,∠AEG=∠CFH,∴∠GEO=∠HFO,∴EG∥FH;(2)由(1)证得GE=HF,EG∥FH,∴四边形GFHE是平行四边形,∴GH、EF互相平分.【点睛】本题考查了平行四边形的性质和判定,全等三角形的判定与性质,注意数形结合,分清平行四边形的性质和判定.【变式6-3】(2018春•青山区期中)如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=12,求△OEF的周长.【分析】(1)由平行四边形的性质可得AO=CO,BO=DO,由中点的性质可得EO=AO,GO=CO,FO=BO,HO=DO,由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=6,即可求解.【答案】证明:(1)∵四边形ABCD是平行四边形∴AO=CO,BO=DO,∵E、F、G、H分别是AO、BO、CO、DO的中点.∴EO=AO,GO=CO,FO=BO,HO=DO∴EO=GO,FO=HO∴四边形EFGH是平行四边形;(2)∵AC+BD=36,∴AO+BO=18,∴EO+FO=9∵E、F分别是AO、BO的中点,∴EF=AB,且AB=12∴EF=6,∴△OEF的周长=OE+OF+EF=9+6=15【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.【考点7 三角形的中位线】【例7】(2019秋•长春期中)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是()A.9°B.18°C.27°D.36°【分析】根据中位线定理和已知,易证明△EPF是等腰三角形,根据等腰三角形的性质即可得到结论.【答案】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=18°,∴∠PEF=∠PFE=18°.故选:B.【点睛】本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.【变式7-1】(2019春•相城区期中)如图,△ABC中,AB=9,D、E分别是AB、AC的中点,点F在DE 上,且DF=3EF,当AF⊥BF时,BC的长是()A.9B.10.5C.12D.18【分析】延长AF交BC于H,根据直角三角形的性质求出DF,根据题意求出DE,根据三角形中位线定理计算即可.【答案】解:延长AF交BC于H,∵AF⊥BF,D是AB的中点,∴DF=AB=4.5,∵DF=3EF,∴EF=1.5,则DE=DF+EF=6,∵D、E分别是AB、AC的中点,∴BC=2DE=12,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.【变式7-2】(2019春•嘉祥县期中)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.9【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.【答案】解:连接DN,∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB===13,∴EF的最大值为6.5.∵∠A=90°,AD=5,∴DN≥5,∴EF≥2.5,∴EF长度的可能为5;故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.【变式7-3】(2019春•庐阳区期末)如图,△ABC的周长为17,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为点N,∠ACB的平分线垂直于AD,垂足为点M,若BC=6,则MN的长度为()A.B.2C.D.3【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【答案】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,,∴△BNA≌△BNE(ASA),∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=17﹣BC=17﹣6=11,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.【考点8 菱形的性质】【方法点拨】菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线都平分一组对角。
难点详解沪科版八年级数学下册第19章 四边形综合训练试卷(含答案详解)
沪科版八年级数学下册第19章 四边形综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在正方形ABCD 中,10AB BC CD AD ====厘米,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4AE =厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动时间为t 秒.若存在a 与t 的值,使BPE 与CQP 全等时,则t 的值为( )A .2B .2或1.5C .2.5D .2.5或22、如图,在△ABC 中,AC =BC =8,∠BCA =60°,直线AD ⊥BC 于点D ,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60°得到FC ,连接DF ,则在点E 的运动过程中,DF 的最小值是( )A .1B .1.5C .2D .43、如图,在ABC 中,90C ∠=︒,点E ,F 分别是AC ,BC 上的点,16AE =,12BF =,点P ,Q ,D 分别是AF ,BE ,AB 的中点,则PQ 的长为( ).A .4B .10C .6D .84、在Rt △ABC 中,∠C =90°,若D 为斜边AB 上的中点,AB 的长为10,则DC 的长为( )A .5B .4C .3D .25、如图,四边形ABCD 是平行四边形,下列结论中错误的是( )A .当▱ABCD 是矩形时,∠ABC =90°B .当▱ABCD 是菱形时,AC ⊥BD C .当▱ABCD 是正方形时,AC =BD D .当▱ABCD 是菱形时,AB =AC6、如图,矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB =6,OA =4.则这个矩形的面积为( )A .24B .48C .D .7、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=8、如图,在△ABC 中,∠ABC =90°,AC =18,BC =14,D ,E 分别是AB ,AC 的中点,连接DE ,BE ,点M 在CB 的延长线上,连接DM ,若∠MDB =∠A ,则四边形DMBE 的周长为( )A .16B .24C .32D .409、若菱形的两条对角线长分别为10和24,则菱形的面积为( )A .13B .26C .120D .24010、下列正多边形中,能够铺满地面的是( )A .正方形B .正五边形C .正七边形D .正九边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC 和DEC 都是等边三角形,连接AD ,BD ,BE ,30EBD ∠=︒.下列四个结论中:①ACD △≌BCE ;②180ADC BDE ∠+∠=︒;③222BE BD BC +=;④90BED ∠=︒,正确的是______(填写所有正确结论的序号).2、已知□ABCD 的周长是20cm ,且AB :BC =3:2,则AB =_______cm .3、如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为_______.4、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.5、如图,点O 是平行四边形ABCD 的对称中心,EF 是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1______S2.(填“>”或“=”或“<”)三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF DE⊥,垂足为点F,BF与CD交于点G.(1)求证:CG CE=;(2)若BE=DG=BG的长.2、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF.(2)连接BD,CE,若∠BFD=2∠A,求证四边形BECD是矩形.3、如图,在矩形ABCD中,BD为对角线.(1)用尺规完成以下作图:在BD 上找一点E ,使AE AB =,连接AE ,作DAE ∠的平分线交BD 于点F ;(保留作图痕迹,不写作法) (2)在(1)所作的图形中,若68ABD ∠=︒,求DFA ∠的度数.4、如图,矩形ABCD 中,8AB =,4BC =,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形.(2)当四边形BEDF 是菱形时,求EF 的长.5、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC 为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.-参考答案-一、单选题1、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,解:当2BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.BP÷=÷=(秒).∴点P,Q运动的时间t=252 2.5综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.2、C【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=12CD=14BC=2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.3、B【分析】根据三角形中位线定理得到PD=12BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=12BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=12AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ,【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.5、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD 是正方形时,AC =BD ,正确,故C 不符合题意;当▱ABCD 是菱形时,AB =BC ,故D 符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.6、C【分析】根据矩形的性质,对角线相等且互相平分,可得28AC OA ==,进而勾股定理求得BC ,再根据AB BC ⨯即可求得矩形的面积.【详解】 解:四边形ABCD 是矩形,12OA AC ∴=,90ABC ∠=︒ AB =6,OA =4BC ∴∴矩形ABCD 的面积为:6AB BC ⨯=⨯故选C【点睛】本题考查了矩形的性质,勾股定理,掌握矩形的性质是解题的关键.7、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S SS ππ⋅=--=-⨯⨯=阴扇形 故选:C .【点睛】 此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.8、C【分析】由中点的定义可得AE =CE ,AD =BD ,根据三角形中位线的性质可得DE //BC ,DE =12BC ,根据平行线的性质可得∠ADE =∠ABC =90°,利用ASA 可证明△MBD ≌△EDA ,可得MD =AE ,DE =MB ,即可证明四边形DMBE 是平行四边形,可得MD =BE ,进而可得四边形DMBE 的周长为2DE +2MD =BC +AC ,即可得答案.【详解】∵D ,E 分别是AB ,AC 的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD=AE,DE=MB,∵DE//MB,∴四边形DMBE是平行四边形,∴MD=BE,∵AC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.9、C【分析】根据菱形的面积公式即可得到结论.【详解】解:菱形的两条对角线长分别为10和24,∴菱形的面积为110241202⨯⨯=,故选:C.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式.10、A【分析】根据使用给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面,即可求解.【详解】解:A 、∵正方形的内角和为360︒ ,∴正方形的每个内角为90°,而904=360︒⨯︒ ,∴正方形能够铺满地面,故本选项符合题意;B 、正五边形的每个内角为()521801085-⨯︒=︒ ,不能被360°整除,所以不能够铺满地面,故本选项不符合题意; C 、正七边形的每个内角为()7218090077-⨯︒⎛⎫=︒ ⎪⎝⎭,不能被360°整除,所以不能够铺满地面,故本选项不符合题意; D 、正九边形的每个内角为()921801409-⨯︒=︒ ,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;故选:A【点睛】 本题主要考查了用正多边形铺设地面,熟练掌握给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面是解题的关键.二、填空题1、①③【分析】利用等边三角形的性质即可证明出≌ACD BCE ;在四边形BECD 中,根据30EBD ∠=︒,可得150BDE BED ∠+∠=︒,即210180ADC BDE ∠+∠=︒≠︒;先求出90ADB ∠=︒,得222AD BD AB +=,通过等量代换即可;根据150BDE BED ∠+∠=︒即可判断.【详解】解:ABC 和DEC 都是等边三角形,60,,ACB DCE AC BC CD CE ∴∠=∠=︒==,,ACB ACD DCB DCE BCE DCB ∠=∠+∠∠=∠+∠,ACD BCE ∠∠∴=,∴≌ACD BCE ,故①正确;30EBD ∠=︒,在四边形BECD 中,36018030150BDE BED ∴∠+∠=︒-︒-︒=︒,60210180ADC BDE BDE BED ∴∠+∠=∠+∠+︒=︒≠︒,故②错误;270ADC CDE BDE BEC CDE BDE ∠+∠+∠=∠+∠+∠=︒,36090ADB ADC CDE BDE ∴∠=︒-∠-∠-∠=︒,222AD BD AB ∴+=,,AD BE AB BC ==,222BE BD BC ∴+=,故③正确;30EBD ∠=︒,150BDE BED ∴∠+∠=︒,BDE ∠不一定等于60︒,90BED ∴∠=︒不一定成立,故④错误;故答案是:①③.【点睛】本题考查了等边三角形的性质,三角形全等的判定定理、勾股定理、多边形内角和,解题的关键掌握等边三角形的性质,通过等量代换的思想进行求解.2、6【分析】由平行四边形ABCD的周长为20cm,根据平行四边形的性质,即可求得AB+BC=10cm,又由AB:BC=3:2,即可求得答案.【详解】解:∵平行四边形ABCD的周长为20cm,∴AB=CD,AD=BC,AB+BC+CD+AD=20cm,∴AB+BC=10cm,∵AB:BC=3:2,∴3=106cm32AB⨯=+.故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.3、360︒【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【详解】解:如图,∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360︒.【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.4、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45︒,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.5、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EDO =∠FBO ,∵点O 是▱ABCD 的对称中心,∴OB =OD ,在△DEO 与△BFO 中EDO FBO OD OBDOE BOF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△DEO ≌△BFO (ASA ),∴S △DEO =S △BFO ,∵S △ABD =S △CDB ,∴S 1=S 2.故答案为:=.【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题1、(1)见解析;(2)BG =【分析】(1)由正方形的性质可得BC DC =,BCG DCE ∠=∠,由E ∠的余角相等可得∠CBG =∠CDE ,进而证明△BCG ≌△DCE ,从而证明CG =CE ;(2)证明正方形的性质可得BC DC =,结合已知条件即可求得,CG BC ,进而勾股定理即可求得BG 的长【详解】(1)∵BF ⊥DE∴∠BFE =90°∵四边形ABCD 是正方形∴∠DCE =90°BC DC =,BCG DCE ∴∠=∠∴∠CBG +∠E =∠CDE+∠E ,∴∠CBG =∠CDE∴△BCG ≌△DCE∴CG =CE(2)∵BC DC =,且BE =DG =∴CE CG =∵CG =CE∴CG BC =在Rt BCG 中,BG ==【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.2、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得AB∥CD且AB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.(2)根据等边对等角证明FD=FC,进而证明BC DE,根据对角线相等的平行四边形是矩形即可证明【详解】(1)∵四边形ABCD为平行四边形,∴AB∥CD且AB=CD.∵BE=AB,∴BE∥CD且BE=CD.∴∠BEF=∠FDC,∠FBE=∠FCD,∴△BEF≌△CDF.(2)∵BE∥CD且BE=CD.∴四边形BECD为平行四边形,∴DF=12DE,CF=12BC,∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A, ∴∠FDC=∠FCD,∴FD=FC.又DF=12DE,CF=12BC,∴BC=DE,∴▱BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.3、(1)图形见解析;(2)135︒【分析】(1)利用尺规根据题意即可完成作图;(2)结合(1)根据等腰三角形的性质和三角形外角定理可得DFA∠的度数.【详解】(1)如图,点E和点F即为所求;(2)∵AE AB=,∠ABD=68°,∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,∴∠EAD=90°-44°=46°,∵AF平分∠DAE,∴∠FAE=1∠DAE=23°,2∴DFA ABD BAF∠=∠+∠ABD BAE EAF =∠+∠+∠684423=︒+︒+︒135=︒【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.4、(1)证明见解析;(2)EF=【分析】(1)由题意知BE DF ∥,OD OB =,通过BOE DOF ≌得到BE DF =,证明四边形BEDF 平行四边形.(2)四边形BEDF 为菱形,DB EF ⊥,DB =BE BF x ==,8CF AE x ==-;在Rt BCF 中用勾股定理,解出BF 的长,在Rt BOF 中用勾股定理,得到OF 的长,由2EF OF =得到EF 的值.【详解】(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点∴BE DF ∥,OD OB =OBE ODF ∴∠=∠ 在BOE △和DOF △中OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BOE DOF △△≌(ASA ) ∴BE DF =∴四边形BEDF 是平行四边形.(2)解:∵四边形BEDF 为菱形,又∵8AB =,4BC =∴BD ==BO =设BE BF x ==,则8CF AE x ==-在Rt BCF 中,()22248x x +-=∴5x =在Rt BOF 中,OE =∴2EF OE ==【点睛】本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC ,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB ==AC BC =得到△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴△ABC 是直角三角形;(2)如图所示,AB =AC BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ===== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.。
2019-2020年八年级数学下册 平面几何经典难题训练 沪科版
2019-2020年八年级数学下册 平面几何经典难题训练 沪科版1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC=200,求∠BED 的度数.经典难题解答:经典难题(一)1.如下图做GH ⊥AB,连接EO 。
沪科版八年级下册数学第19章 四边形含答案
沪科版八年级下册数学第19章四边形含答案一、单选题(共15题,共计45分)1、如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC2、在下列四组多边形地板砖中:①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,能密铺地面的是()A.①③④B.②③④C.①②③D.①②④3、如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cmB.8cmC.10cmD.12cm4、能判定四边形ABCD是平行四边形的题设是()A.AD=BC,AB∥CDB.∠A=∠B,∠C=∠DC.AB=BC,AD=DCD.AB ∥CD,CD=AB5、下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形6、下列命题中,错误的是A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形 C.等腰梯形的两条对角线相等 D.对角线互相垂直、平分且相等的四边形是正方形7、若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A.6B.7C.8D.98、下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直的梯形是等腰梯形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9、正十边形的每个外角等于()A.18B.36C.45D.6010、如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°11、如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆不正确C.甲正确,乙不正确D.甲不正确,乙正确12、如图,过▱ABCD的对角线AC的中点O任作两条互相垂直的直线,分别交AB,BC,CD,DA于E,F,G,H四点,连接EF,FG,GH,HE,有下面四个结论,①OH=OF;②∠HGE=∠FGE;③S四边形DHOG =S四边形BFOE;④△AHO≌△AEO,其中正确的是()A.①③B.①②③C.②④D.②③④13、如图,矩形的对角线,相交于点,,若的周长比的周长大10,则的长为().A. B. C.10 D.2014、小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是()A.互相平分B.相等C.互相垂直D.平分一组对角15、已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCAB.∠BAC=∠DACC.∠BAC=∠ABDD.∠BAC=∠ADB二、填空题(共10题,共计30分)16、如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y= (x>0)的图象经过AB的中点F和DE的中点G,则k的值为________.17、如图,口ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE 的周长为14,则口ABCD的周长为________.18、如图,已知点E为矩形ABCD内的点,若EB=EC,则EA________ED(填“>”、“<”或“=”)19、二次函数y=x2的图象如图,点A0位于坐标原点,点A1, A2, A3…An在y轴的正半轴上,点B1, B2, B3…Bn在二次函数位于第一象限的图象上,点C 1, C2, C3…∁n在二次函数位于第二象限的图象上,四边形AB1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAn∁n都是正方形,则正方形An﹣1BnAn∁n的周长为________.20、四边形ABCD中,已知∠A=∠B = ∠C = 90°,再添加一个条件,使得四边形ABCD为正方形,可添加的条件是________(答案不唯一,只添加一个即可).21、凸多边形的外角和等于________.22、如图,正方形ABCD的边CD在正方形ECGF边CE上,DG平分∠EGC,延长GD交BE于H,EG与FH交于点M,若DC= ,则GM=________.23、如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值________.24、如图一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD 的对称中心,则的值为________.25、如图,已知点是矩形的对角线上的一动点,正方形的顶点都在边上,若,则________.三、解答题(共5题,共计25分)26、如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.27、如图,四边形是平行四边形,,且分别交对角线于点,,连接.若,求证:四边形是菱形.28、如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.29、如图,菱形ABCD中,对角线AC、BD相交于点O,点E是AB的中点,已知AC=8cm,BD=6cm,求OE的长.30、如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、D5、C6、B7、B8、D9、B10、B11、A12、B13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
2022年精品解析沪科版八年级数学下册第19章 四边形专题攻克试题(含答案解析)
沪科版八年级数学下册第19章四边形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形2、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F 是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B.152C.8 D.93、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A .1个B .2个C .3个D .4个4、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,45、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( )A .9条B .8条C .7条D .6条6、下列图形中,内角和等于外角和的是( )A .B .C .D .7、将一张长方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ',若B AD ∠''=10°,则∠EAF 的度数为( )A .40°B .45°C .50°D .55°8、如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F .若AB =6,BC =8,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.49、下列命题正确的是( )A .若a b =,则33a b =B .四条边相等的四边形是正四边形C .有一组邻边相等的平行四边形是矩形D .如果2a ab =,则a b =10、下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是( )A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,有()3,4A ,()6,0B ,()0,0O 三点,以A ,B ,O 三点为顶点的平行四边形的另一个顶点D 的坐标为______.2、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是_____.3、已知□ABCD的周长是20cm,且AB:BC=3:2,则AB=_______cm.DC .在DC上找一点E,沿直线AE把AED折叠,使D点恰好落在4、如图,在长方形ABCD中,9BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.5、如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1______S2.(填“>”或“=”或“<”)三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形纸片OABC放入直角坐标系中,使,OA OC分别落在x轴,y轴的正半轴上,连接AC,且2==.AC OA CO(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形OABC的面积分为相等的两部分,则点M的坐标为________.2、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.∠MBN=12(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=1∠ABC,试探究线段MN、AM、CN的数量关系为.23、在四边形ABCD中,∠A=100°,∠D=140°.(1)如图①,若∠B=∠C,则∠B=度;(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.4、如图,AD//BE,AC平分BAD∠,且交BE于点C.(1)作ABE∠的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(1)中作图,连接CF,求证:四边形ABCF是菱形.5、综合与实践问题情境:数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相AD=.同),已知矩形纸片宽6动手实践:(1)如图1,腾飞小组将矩形纸片ABCD折叠,点A落在DC边上的点A'处,折痕为DE,连接A E',然后将纸片展平,得到四边形AEA D'.试判断四边形AEA D'的形状,并加以证明.(2)如图2,永攀小组在矩形纸片ABCD的边BC上取一点F,连接DF,使30CDF∠=︒,将CDF沿线段DF折叠,使点C正好落在AB边上的点G处.连接DG,GF,将纸片展平,①求DFG的面积;②连接CG,线段CG与线段DF交于点M,则CG=______.深度探究:DN A N'=,将(3)如图3,探究小组将图1的四边形AEA D'剪下,在边A D'上取一点N,使:1:2△,连接A D'',探究并直接写出A D''的长度.△沿线段AN折叠得到AND'AND-参考答案-一、单选题1、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,∴多边形的内角和是180度,∴这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.2、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90︒,D是边AB的中点,AB=6,AB=3,∴DE=12∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF 的长是解题的关键.3、C【分析】根据SAS 证△ABI ≌△ADC 即可得证①正确,过点B 作BM ⊥IA ,交IA 的延长线于点M ,根据边的关系得出S △ABI =12S 1,即可得出②正确,过点C 作CN ⊥DA 交DA 的延长线于点N ,证S 1=S 3即可得证③正确,利用勾股定理可得出S 1+S 2=S 3+S 4,即能判断④不正确.【详解】解:①∵四边形ACHI 和四边形ABED 都是正方形,∴AI =AC ,AB =AD ,∠IAC =∠BAD =90°,∴∠IAC +∠CAB =∠BAD +∠CAB ,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABI ≌△ADC (SAS ),∴BI =CD ,故①正确;②过点B 作BM ⊥IA ,交IA 的延长线于点M ,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=12AI•BM=12AI•AC=12AC2=12S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.4、C【分析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.5、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.6、B【分析】设n边形的内角和等于外角和,计算(n-2)×180°=360°即可得出答案;【详解】解:设n边形的内角和等于外角和(n-2)×180°=360°解得:n=4故答案选:B【点睛】本题考查了多边形内角和与外角和,熟练掌握多边形内角和计算公式是解题的关键.7、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8、C【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、A【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项.【详解】解:A 、若a b =,则33a b =,故此命题正确;B 、四条边相等的四边形是菱形,故原命题不正确;C 、有一组邻边相等的平行四边形是菱形,故原命题不正确;D 、如果2a ab =,a ≠0时,则a b =,若0a =时,此命题不正确,故选:A .【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法.10、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A 和∠C 是对角,∠B 和∠D 是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D 符合条件. 故选:D .【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.二、填空题1、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.2、①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF =60°,再利用角的等量代换,即可得出结论①正确;②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④延长OE至E',使OE'=OD,连接DE',通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE'运动到E',从而得出结论④正确;【详解】解:①设DB与EF的交点为G如图所示:∵∠DAC =60°,OD =OA ,∴△OAD 为等边三角形,∴∠DOA =∠DAO =∠ADO =60°,∵△DFE 为等边三角形,∴∠DEF =60°,∴∠DOA =∠DEF =60°,∴DGF BDE DEF =+∠∠∠,DGF EFC DOA =+∠∠∠∴BDE EFC ∠∠=故结论①正确;②如图,连接OE ,在△DAF 和△DOE 中,AD OD ADF ODE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△DAF ≌△DOE (SAS ),∴∠DOE =∠DAF =60°,∵∠COD =180°﹣∠AOD =120°,∴∠COE =∠COD ﹣∠DOE =120°﹣60°=60°,∴∠COE =∠DOE ,在△ODE 和△OCE 中,OD OC DOE COE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△ODE ≌△OCE (SAS ),∴ED =EC ,∠OCE =∠ODE ,故结论②正确;③∵∠ODE =∠ADF ,∴∠ADF =∠OCE ,即∠ADF =∠ECF ,故结论③正确;④如图,延长OE 至E ',使OE '=OD ,连接DE ',∵△DAF ≌△DOE ,∠DOE =60°,∴点F 在线段AO 上从点A 至点O 运动时,点E 从点O 沿线段OE '运动到E ',∵90906030BDA ADB =︒-=︒-︒=︒∠∠∴2DB AD =设DA x =,则2DB x =∴在Rt ADB 中,222AD AB DB +=即2226(2)x x +=解得:x =∴OE '=OD =AD =∴点E 运动的路程是故结论④正确;故答案为:①②③④.【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.3、6【分析】由平行四边形ABCD 的周长为20cm ,根据平行四边形的性质,即可求得AB +BC =10cm ,又由AB :BC =3:2,即可求得答案.【详解】解:∵平行四边形ABCD 的周长为20cm ,∴AB =CD ,AD =BC ,AB +BC +CD +AD =20cm ,∴AB +BC =10cm ,∵AB :BC =3:2, ∴3=106cm 32AB ⨯=+.故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.4、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD•AB•BF=54,∵12∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE 的面积=1122CF CE ⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.5、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EDO =∠FBO ,∵点O 是▱ABCD 的对称中心,∴OB =OD ,在△DEO 与△BFO 中EDO FBO OD OBDOE BOF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△DEO ≌△BFO (ASA ),∴S △DEO =S △BFO ,∵S △ABD =S △CDB ,∴S 1=S 2.故答案为:=.【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题1、(1)142y x=-+;(2)10;(3)(4,2).【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解AC所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在Rt△OCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.【详解】解:(1)∵OA=2CO,设OC=x,则OA=2x在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(2解得x=4(x=﹣4舍去)∴OC=4,OA=8∴A(8,0),C(0,4)设直线AC解析式为y=kx+b,∴804k bb+=⎧⎨=⎩,解得124kb⎧=-⎪⎨⎪=⎩,∴直线AC解析式为y=﹣12x+4;(2)由折叠得AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2解得y=5∴AE=CE=5在矩形OABC中,∵BC OA,∴∠CFE=∠AEF,由折叠得∠AEF=∠CEF,∴∠CFE=∠CEF∴CF=CE=5∴S△CEF=12CF•OC=12×5×4=10即重叠部分的面积为10;(3)∵矩形是一个中心对称图形,对称中心是对角线的交点,∴任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,∵A(8,0),C(0,4),∴M点坐标为(4,2).【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=1∠ABC,可得到2∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.由∠MBN=12【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∠ABC,∵∠MBN=12∴∠ABM+∠CBN=1∠ABC=∠MBN,2∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CB M',∴AM=C M',BM=B M',∠ABM=∠CB M',∴∠MA M'=∠ABC,∵∠MBN=12∠ABC,∴∠MBN=12∠MA M'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N=CN-C M',∴MN=CN-AM.故答案是:MN=CN-AM.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.3、(1)60;(2)40°.【分析】(1)根据四边形内角和为360°解决问题;(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;【详解】(1)∵∠A=100°,∠D=140°,∴∠B=∠C=3601001402︒︒︒--=60°,故答案为60;(2)∵CE//AD,∠DCE+∠D=180°,∴∠DCE=40°,∵CE平分∠BCD,∴∠BCD=80°,∴∠B=360°﹣(100°+140°+80°)=40°.【点睛】本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.4、(1)见解析(2)见解析【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明∠BAC=∠ACB,∠AFB=∠CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可.(1)解:如图,射线BF即为所求作的角平分线;(2)解:∵AC平分∠BAD,BF平分∠ABE,∴∠BAC=∠FAC,∠ABF=∠CBF,∵AD ∥BE ,∴∠ACB =∠FAC ,∠AFB =∠CBF ,∴∠BAC =∠ACB ,∠AFB =∠ABF ,∴A B =BC ,AB =AF ,∴BC =AF ,又AF ∥BC ,∴四边形ABCF 是平行四边形,又∵AB =BC ,∴四边形ABCF 是菱形.【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键.5、(1)四边形AEA D '是正方形;理由见详解;(2)①=S CG =(3)A D ''=. 【分析】(1)由正方形的判定定理进行证明,即可得到结论成立;(2)①由折叠的性质,则DC =DG ,求出∠ADG =30°,利用勾股定理得到AG =,DG =再求出4CF =,由面积公式即可求出面积;②求出60CDG ∠=︒,CD DG =,则△CDG 是等边三角形,即可求出CG 的长度;(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,先求出2DN =,4A N '=,设PD x '=,然后表示出6D Q x '=-,2AQ =,再利用勾股定理,求出65x =,然后利用勾股定理,即可求出答案.【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,由折叠的性质,则90DA E '∠=︒,AD DA '=,∴四边形AEA D '是正方形;(2)①如图,由折叠的性质,则DC =DG ,CF =FG ,∵30CDF ∠=︒,∴30GDF CDF ∠=∠=︒,∴90303030ADG ∠=︒-︒-︒=︒, ∴12AG DG =, ∴1122AG DC AB ==;由勾股定理,则222DG AG AD =+, ∴2221()62DG DG =+,∴DG =∴12AG =⨯在直角△BFG 中,由勾股定理,则 ∵BG AG ==66BF CF FG =-=-,∴222BG BF FG +=,∴222(6)FG FG +-=,∴4FG =,∴DFG 的面积为:11422S FG DG ==⨯⨯②由①可知,30GDF CDF ∠=∠=︒,DC =DG ,∴303060CDG ∠=︒+︒=︒,∴△CDG 是等边三角形, ∴CG DG ==故答案为:(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,如图所示,∴PQ ⊥A D ',PQ ⊥AE ,由(1)可知,四边形AEA D '是正方形,∴6AD A D AE A E ''====,由折叠的性质,则6AD AD '==,∵:1:2DN A N '=,∴2DN =,4A N '=,∴2D N DN '==,设PD x '=,则PN∴4A P '=6D Q x '=-,∴4QE A P '==∴6(42AQ =-=在直角AQD '∆中,由勾股定理,则222AD AQ QD ''=+∴22(2(6)36x +-=,整理化简得:812x -+,23x -+,∴2249124x x x -=-+, 解方程,得165x =,20x =(舍去); ∴65PD '=;∴85PN ==, ∴812455A N '=-=,∴A D ''==【点睛】本题考查了折叠的性质,正方形的判定和性质,矩形的性质,勾股定理,解一元二次方程,等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.本题涉及的知识点综合,应用能力强,难度大,学生需要仔细分析.。
难点详解沪科版八年级数学下册第19章 四边形章节练习练习题(含详解)
沪科版八年级数学下册第19章四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.102、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D3、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1404、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或175、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.26、平行四边形ABCD中,60∠=︒,则CA∠的度数是()A.30B.60︒C.90︒D.120︒∠+∠的度数是()7、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβA.180°B.220°C.240°D.260°8、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.109、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.4410、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.2、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.3、如图在正方形ABCD中,∠EAF的两边分别交CB、DC延长线于E、F点且∠EAF=45°,如果BE=1,DF=7,则EF=__.4、正方形的一条对角线长为4,则这个正方形面积是_________.5、如图,正方形ABCD内有一等边三角形BCE,直线DE交AB于点H,过点E作直线GF⊥DH交BC于点G,交AD于点F.以下结论:①∠CEG=15°;②AF=DF;③BH=3AH BE=HE+GE;正确的有_________.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,E、F是BC上的点,∠DAE=∠ADF.求证:BF=CE.2、如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F ,联结BF .(1)求证:四边形AFBD 是平行四边形;(2)当AB=AC 时,求证:四边形AFBD 是矩形.3、如图,ABCD 的对角线AC 与BD 相交于点O ,过点B 作BP ∥AC ,过点C 作CP ∥BD ,BP 与CP 相交于点P .(1)试判断四边形BPCO 的形状,并说明理由;(2)若将ABCD 改为矩形ABCD ,且6,8AB BC ==,其他条件不变,求四边形BPCO 的面积;(3)要得到矩形BPCO ,ABCD 应满足的条件是_________(填上一个即可).4、如图,矩形OABC 在平面直角坐标系中,OB ,OC 是x 2﹣12x +32=0的两根,OC >OA ,(1)求B 点的坐标.(2)把ABC 沿AC 对折,点B 落在点B '处,线段AB '与x 轴交于点D ,在平面上是否存在点P ,使D 、C 、B 、P 四点形成的四边形为平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.5、如图,四边形ABCD 中,AD BC ∥,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将△ABE 沿BE 折叠后得到△GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:四边形ABCD 是矩形;(2)求证:GF DF =;(3)若点6AB =,8BC =,求DF 的长.-参考答案-一、单选题1、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°, ∴正多边形的边数=36036=10. 故选:D .【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、D【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】 解:四边形OABC 是矩形,∴90OAB ∠=︒, 在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.3、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n,则(n-2)•180°=2340°,解得:n=15,①若截去一个角后边数增加1,则原多边形边数为14,②若截去一个角后边数不变,则原多边形边数为15,③若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16.故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.5、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、B【分析】根据平行四边形对角相等,即可求出C的度数.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴A C ∠=∠,∴60A ∠=︒,∴60C ∠=°.故:B .【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.7、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴3606060240αβ∠+∠=︒-︒-︒=︒;故选C .【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.8、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D .【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.9、B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】 解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE是直角三角形,是解答本题的关键.10、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键二、填空题1、10825或185或3【分析】过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:5AC,有三种情况:①当AB=BP=3时,如图1,过B作BM⊥AC于M,S△ABC=1122AB BC AC BM⋅=⋅,1134=5 22BM∴⨯⨯⨯⨯,解得:125 MB=,∵AB=BP=3,BM⊥AC,∴95 AM PM===,∴AP=AM+PM=185,∴△PAB的面积=111812108 225525 AP BM⋅=⨯⨯=;②当AB=AP=3时,如图2,∵BM=125,∴△PAB的面积S=11121832255 AP BM⋅=⨯⨯=;③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=13322=⨯,∵四边形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴122PN BC==,∴△PAB的面积11323 22S AB NP=⋅=⨯⨯=;即△PAB 的面积为10825或185或3. 故答案为:10825或185或3. 【点睛】 本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.2、2【分析】先根据矩形的性质证明△ABC 是等边三角形,得到10cm AO AB ==,则20cm AC =,然后根据勾股定理求出BC ==,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD 中,∠AOB =60°,10cm AB =,∵四边形ABCD 是矩形,∴∠ABC =90°,1122OB OA AC BD ===, ∴△ABC 是等边三角形,∴10cm AO AB ==,∴20cm AC =,∴BC ==,∴2=ABCD S AB BC ⋅=,故答案为:2.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.3、6【分析】根据题意把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE=7﹣1=6.【详解】解:如图,把△ABE绕点A逆时针旋转90°到DA,交CD于点G,由旋转的性质可知,AG=AE,DG=BE,∠DAG=∠BAE,∵∠EAF=45°,∴∠DAG+∠BAF=45°,又∵∠BAD=90°,∴∠GAF=45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE =1,DF =7,∴EF =GF =DF ﹣DG =DF ﹣BE =7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.4、8【分析】正方形边长相等设为a ,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为a ,对角线为4 24a =+28a ∴=故答案为:8.【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.5、①【分析】由正方形的性质和等边三角形的性质可得CD CE =,30ECD ∠=︒,可得75CED ∠=︒,可求15CEG ∠=︒,故①正确;由“SAS “可证ABE DCE ∆≅∆,可得AE DE =,可证EH ED =,由线段垂直平分线的性质可得HF FD AF =>,故②错误;设2AB BC BE a ===,由等边三角形的性质和三角形中位线定理分别求出AH ,BH 的长,可判断③,通过证明点B ,点G ,点E ,点H 四点共圆,可得45BHG BEG ∠=∠=︒,可证HG =,由三角形三边关系可判断④,即可求解.【详解】 解:四边形ABCD 是正方形,AB BC CD AD ∴===,90DAB ADC ABC BCD ∠=∠=∠=∠=︒,BCE ∆是等边三角形,BE CE BC ∴==,60BCE EBC ∠=︒=∠,CD CE ∴=,30ECD ∠=︒,75CED ∴∠=︒,15CEG ∴∠=︒,故①正确;如图,连接AE ,过点E 作直线MN AD ⊥于N ,交BC 于M ,连接EH ,30ABE ABC EBC ∠=∠-∠=︒,ABE DCE ∴∠=∠,又AB CD =,BE CE =,()ABE DCE SAS ∴∆≅∆,AE DE∴=,∴∠=∠,EAD EDA∴∠=∠,EAH EHA∴=,AE EH∴=,EH ED又FG DH⊥,∴=,FH FD>,FH AF∴>,故②错误;FD AF设2===,AB BC BE aMN AD⊥,90∠=∠=∠=∠=︒,DAB ADC ABC BCD∴四边形ABMN是矩形,⊥,∴=,2AN BM==,MN BCMN AB a⊥,∆是等边三角形,MN BCEBC∴==,EM,BM MC a==,2∴=,AN DN aEN a又EH HD=,AH EN a∴==-,24BH AB AH a∴=-=-,2∴≠,故③错误;BH AH3如图,连接HG,∠=︒,60CEG15∠=︒,BEC∴∠=︒,BEG45∠+∠=︒,180ABC GEH∴点B,点G,点E,点H四点共圆,BHG BEG∴∠=∠=︒,45∴∠=∠=︒,BGH BHG45∴=,BH BG∴=,HG+>,EH EG HG∴+,故④错误;EH EG故答案为:①.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,正方形的性质,勾股定理等知识,解题的关键是灵活运用这些性质解决问题.三、解答题1、见解析【分析】先证明=∠∠,然后证明△ABE≌△DCF,再根据全等三角形的性质得出结论.AEB DFC【详解】解:∵四边形ABCD 是矩形,∴AB CD =,90B C ∠=∠=︒,AD ∥BC ,∴∠ADF =∠CFD ,∠DAE =∠AEB ,∵=DAE ADF ∠∠,∴=AEB DFC ∠∠.在ABE △和DCF 中,=AEB DFC B CAB DC ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE DCF AAS △≌△,∴BE CF =,∴BE -FE =CF -EF ,即BF =CE .【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.2、(1)见解析(2)见解析【分析】(1)首先证明△AEF ≌△DEC (AAS ),得出AF =DC ,进而利用AF ∥B D 、AF =BD 得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【小题1】解:证明:(1)∵AF ∥BC ,∴∠AFC =∠FC D .在△AFE 和△DCE 中,AEF DEC AFE DCE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形;【小题2】∵AB =AC ,BD =DC ,∴AD ⊥B C .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.【点睛】此题主要考查了平行四边形的判定以及矩形的判定方法、全等三角形的判定与性质,正确掌握平行四边形的判定方法是解题关键.3、(1)平行四边形,理由见解析;(2)四边形BPCO的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形BPCO是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明AC BD即可得到矩形BPCO.【详解】解:(1)四边形BPCO是平行四边形,∵BP∥AC,CP∥BD,∴四边形BPCO是平行四边形.(2)连接OP.∵四边形ABCD是矩形,∴OB=12BD,OC=12AC,AC=BD,∠ABC=90°,∴OB=OC.又四边形BPCO是平行四边形,∴□BPCO是菱形.∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,∴四边形ABPO是平行四边形,∴OP=AB=6.∴S菱形BPCO=118624 22BC OP⨯=⨯⨯=.(3)AB=BC或AC⊥BD等(答案不唯一).当AB=BC时,ABCD为菱形,此时有:AC BD⊥,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO,当AC⊥BD时,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO.【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.4、(1)B(8,4);(2)存在,P1(3,4),P2(13,4),P3(3,-4)【分析】(1)x2﹣12x+32=0,解得x1=4,x2=8,OC>OA,故OA=4,OC=8,故B(8,4).(2)由对折可知,∠DAC=∠BAC,故∠DAC=∠ACO,AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=,解得x=5,故D点坐标为(3,0),由平行四边形性质可知P1(3,4),P2(13,OA OD AD4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【详解】(1)x2﹣12x+32=0,解得x1=4,x2=8,∵OC>OA,∴OA=4,OC=8,故B点坐标为(8,4)(2)由对折可知,∠DAC=∠BAC,又∵四边形OABC为矩形,∴AB//OC,∠BAC=∠ACO∴∠DAC=∠ACO,∴AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=有OA OD AD2224(8)x x+-=化简得22+-+=166416x x x解得x=5,故OD=8-5=3故D点坐标为(3,0)由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【点睛】本题考查了勾股定理,矩形的性质,平行四边形的性质,求出D点坐标,再根据平行四边形两对边分别平行且相等即可求得P点坐标.5、(1)证明见解析;(2)证明见解析;(3)83 DF【分析】(1)利用平行线的性质可得∠C=90°,再根据三个角是直角的四边形是矩形即可判定;(2)根据折叠的性质和中点的定义得出EG=ED,再用HL定理证明Rt△EGF≌Rt△EDF即可;(3)利用DF分别表示BF和FC,再在Rt△BCF中利用勾股定理求解即可.(1)证明:∵AD BC ∥,∴∠D +∠C =180°,∵90A D ∠=∠=︒,∴90C A D ∠=∠=∠=︒,∴四边形ABCD 为矩形;(2)证明:∵将△ABE 沿BE 折叠后得到△GBE ,∴△ABE ≌△GBE ,∴∠BGE =∠A ,AE =GE ,∵∠A =∠D =90°,∴∠EGF =∠D =90°,∵点E 是AD 的中点,∴EA =ED ,∴EG =ED ,在Rt △EGF 和Rt △EDF 中,EF EF EG ED=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL );∴GF DF =;(3)解:∵四边形ABCD 为矩形,△ABE ≌△GBE ,∴∠C =90°,BG =CD =AB =6,∵GF DF =;∴6BF BG GF DF =+=+,6CF DC DF DF =-=-,∴在Rt △BCF 中,根据勾股定理,222BF CF BC =+,即222(6)(6)8DF DF +=-+, 解得83DF =. 即83DF =.【点睛】本题考查矩形的性质和判定,全等三角形的判定定理,折叠的性质,勾股定理等.(1)掌握矩形的判定定理是解题关键;(2)能结合重点和折叠的性质得出EG =ED 是解题关键;(3)中能利用DF 正确表示Rt △BCF 中,BF 和CF 的长度是解题关键.。
难点详解沪科版八年级数学下册第19章 四边形章节训练试题(含答案及详细解析)
沪科版八年级数学下册第19章四边形章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个直角三角形的周长为31,则此直角三角形的面积为()A B C.3D.2、下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1404、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为∠''=10°,则∠EAF的度数为()B′、D',若B ADA.40°B.45°C.50°D.55°5、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A B.C.1cm D.2cm6、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形7、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3)B.(8,2)C.(3,7)D.(5,3)8、如图,直角三角形纸片ABC中,∠ACB=90°,∠A=50°,将其沿边AB上的中线CE折叠,使点A 落在点A'处,则∠A'EB的度数为()A.10°B.15°C.20°D.40°9、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.2410、下列四个命题中,正确的是()A.对角线相等的四边形是矩形B.有一个角是直角的四边形是矩形C.两组对边分别相等的四边形是矩形D.四个角都相等的四边形是矩形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在矩形ABCD中,点E在AD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为 _____.2、平行四边形ABCD中,∠BAD的平分线交BC边于点E,∠ADC的平分线交BC边于点F,AB=5,EF=1,则BC=______ .3、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若2OE ,则菱形的周长为__________.4、如图,四边形ABCD和四边形OMNP都是边长为4的正方形,点O是正方形ABCD对角线的交点,正方形OMNP绕点O旋转过程中分别交AB,BC于点E,F,则四边形OEBF的面积为______.5、如图,在正方形ABCD 中,AB =AC ,以点C 为圆心、AC 长为半径画弧,点E 在BC 的延长线上,则阴影部分的面积为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt△ABC 中,∠ACB =90°,D 为AB 中点,,BE CD CE AB ∥∥.(1)试判断四边形BDCE 的形状,并证明你的结论;(2)若∠ABC =30°,AB =4,则四边形BDCE 的面积为 .2、如图,正方形ABCD 的边长为4,连接对角线AC ,点E 为BC 边上一点,将线段AE 绕点A 逆时针旋转45°得到线段AF ,点E 的对应点F 恰好落在边CD 上,过F 作FM ⊥AC 于点M .(1)求证:BE =FM ;(2)求BE 的长度.3、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.4、阅读材料,回答下列问题:(材料提出)“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.(探索研究)探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为.(模型应用)应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A=(用含有α和β的代数式表示),∠P =.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD 的角平分线所在的直线相交于点P ,∠P = .(用含有α和β的代数式表示) (拓展延伸)拓展一:如图6,若设∠C =x ,∠B =y ,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 .(用x 、y 表示∠P )拓展二:如图7,AP 平分∠BAD ,CP 平分∠BCD 的邻补角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论 .5、Rt ABC ∆中,90ACB ∠=︒,点D 、E 分别为边AB 、BC 上的点,且CD CA =,DE AB ⊥,联结AE 交CD 与点F ,点M 是AE 的中点,联结CM 并延长与AB 交于点H .(1)点F 是CD 中点时,求证:AE CD ⊥;(2)求证:222+=MH HD AM-参考答案-一、单选题1、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为∴AB+BC等式两边平方得(AB+BC)2 2,即AB2+BC2+2AB•BC∵AB2+BC2=AC2=4,∴2AB•BC AB•BC即三角形的面积为12×AB •BC 故选:B .【点睛】 本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC •BC 的值是解此题的关键,值得学习应用.2、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A 不符合题意;B 、∵两组对边分别相等是平行四边形,∴选项B 不符合题意;C 、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C 不符合题意;D 、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D 符合题意;故选:D .【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.3、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.4、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB cm),∴BD=2OB=cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.6、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,∴多边形的内角和是180度,∴这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.7、A【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。
难点详解沪科版八年级数学下册第19章 四边形专题训练试题(无超纲)
沪科版八年级数学下册第19章四边形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形2、如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC 于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A .10B .9.6C .4.8D .2.43、如图,在矩形ABCD 中,2,1AD CD ==,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形11AB C C ,再连接1AC ,以对角线1AC 为边作矩形11AB C C 的相似矩形221AB C C ,…按此规律继续下去,则矩形1n n n AB C C 的周长为( )A .3n⨯⎝⎭B .13n -⨯⎝⎭C .6n⨯⎝⎭D .16n -⨯⎝⎭4、下列命题是真命题的是( ) A .有一个角为直角的四边形是矩形 B .对角线互相垂直的四边形是菱形C .一组对边平行,另一组对边相等的四边形是平行四边形D .有一组邻边相等的矩形是正方形5、如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E ,若∠1=40°,则∠2的度数为( )A .25°B .20°C .15°D .10°6、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,47、下列说法中,不正确的是( ) A .四个角都相等的四边形是矩形B .对角线互相平分且平分每一组对角的四边形是菱形C .正方形的对角线所在的直线是它的对称轴D .一组对边相等,另一组对边平行的四边形是平行四边形8、在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ;②AN :AB =AM :AC ;③BN =2AN ;④当∠ABC =60°时,MN ∥BC ,一定正确的有( )A.①②③B.②③④C.①②④D.①④9、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A B C D10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C.4.5 D.4.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方形ABCD的一条对角线长为______.2、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.3、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_________.5、若正n边形的每个内角都等于120°,则这个正n边形的边数为________.三、解答题(5小题,每小题10分,共计50分)1、正方形ABCD边长为6,点E在边AB上(点E与点A、B不重合),点F、G分别在边BC、AD上(点F与点B、C不重合),直线FG与DE相交于点H.(1)如图1,若∠GHD=90°,求证:GF=DE;(2)在(1)的条件下,平移直线FG,使点G与点A重合,如图2.联结DF、EF.设CF=x,△DEF 的面积为y,用含x的代数式表示y;(3)如图3,若∠GHD =45°,且BE =2AE ,求FG 的长.2、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上. 小强证明该定理的步骤如下:已知:如图1,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,且PD PE =. 求证:OC 是AOB ∠的平分线.证明:通过测量可得23AOC ∠=︒,23BOC ∠=︒. ∴AOC BOC ∠=∠.∴OC 是AOB ∠的平分线.(1)关于定理的证明,下面说法正确的是( ) A .小强用到了从特殊到一般的方法证明该定理.B .只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理.C .不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整.D .小强的方法可以用作猜想,但不属于严谨的推理证明. (2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形ABCDE 中,BC CD DE ==,80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,在五边形ABCDE 内有一点F ,使得BCFCDFDEFSSS==.直接写出CFD ∠的度数.3、(1)如图1,∠ADC =120°,∠BCD =140°,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB 的度数是 ;(2)如图2,若∠ADC =α,∠BCD =β,且180αβ+>︒,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB = (用含α,β的代数式表示);(3)如图3,∠ADC =α,∠BCD =β,当∠DAB 和∠CBE 的平分线AG ,BH 平行时,α,β应该满足怎样的数量关系?请说明理由;(4)如果将(2)中的条件180αβ+>︒改为180αβ+<︒,再分别作∠DAB 和∠CBE 的平分线,∠AFB 与α,β满足怎样的数量关系?请画出图形并直接写出结论.4、如图,在平行四边形ABCD 中,2BC AB =,点E 、F 分别是BC 、AD 的中点.(1)求证:C ABE DF ≌△△; (2)当AE CE =时,在不添加辅助线的情况下,直接写出图中等于B 的2倍的所有角.5、如图,AD//BE,AC平分BAD∠,且交BE于点C.(1)作ABE∠的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(1)中作图,连接CF,求证:四边形ABCF是菱形.-参考答案-一、单选题1、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键2、C【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 3、C 【分析】根据已知和矩形的性质可分别求得AC ,AC 1,AC 2的长,从而可发现规律,根据规律即可求得第n 个矩形的周长. 【详解】∵四边形ABCD 是矩形, ∴AD ⊥DC ,2,1AD CD ==∴AC =∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 2∴矩形AB 1C 1C 的周长和矩形ABCD 2, ∵矩形ABCD 的周长=(2+1)×2=6,∴矩形AB 1C 1C 的周长6,依此类推,矩形AB 2C 2C 1的周长和矩形AB 1C 1C 2∴矩形AB 2C 2C 1的周长=26⨯∴矩形AB 3C 3C 2的周长=36⨯ ……按此规律矩形1n n n AB C C 的周长为:6n 故选:C .【点睛】 本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.4、D【分析】根据矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,结合选项进行判断即可.【详解】A.有三个角是直角的四边形是矩形,故本选项为假命题;B.两条对角线互相垂直的平行四边形是菱形,故本选项为假命题;C.一组对边平行且相等的四边形是平行四边形,故本选项为假命题;D.有一组邻边相等的矩形是正方形,故本选项为真命题.故选:D .【点睛】考查矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,熟练掌握它们的判定方法是解题的关键.5、D【分析】根据矩形的性质,可得∠ABD =40°,∠DBC =50°,根据折叠可得∠DBC ′=∠DBC =50°,最后根据∠2=∠DB C ′−∠DBA 进行计算即可.【详解】解:∵四边形ABCD 是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DB C′=∠DBC=50°,∴∠2=∠DB C′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA 的度数.6、C【分析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.7、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.8、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN=故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.9、A【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°ADH∴∠=︒30=1,DH=∴AH=2×12∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=12DN 是解题的关键.10、A【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ==∴GH故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解:正方形ABCD的一条对角线长为123236,S2故答案为:6.【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.2、七【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则(n-2)•180°-2×360°=180°,解得n =7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键. 3、2.5.【分析】如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,然后分别求出AC ,BC 的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,∵圆柱形容器高为0.8m ,底面周长为4.8m 在容器内壁离底部0.1m 的点B 处有一只蚊子,此时一只壁虎正好在容器的顶部点A 处,∴0.8m AD =, 2.4m DE =,0.1m BE =,过点B 作BC ⊥AD 于C ,∴∠BCD =90°,∵四边形ADEF 是矩形,∴∠ADE =∠DEF =90°∴四边形BCDE 是矩形,∴ 2.4m BC DE ==,=0.1m CD BE =,∴=0.7m AC AD CD =-,∴ 2.5m AB ==,答:则壁虎捕捉蚊子的最短路程是2.5m .故答案为:2.5.【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB 的长即为所求.4【分析】根据正方形的对角线平分一组对角线可得∠OCD =∠ODB =45°,正方形的对角线互相垂直平分且相等可得∠COD =90°,OC =OD ,然后根据同角的余角相等求出∠COA =∠DOB ,再利用“ASA ”证明△COA 和△DOB 全等,根据全等三角形对应边相等可得OA =OB ,从而得到△AOB 是等腰直角三角形,再根据垂线段最短可得OA ⊥CD 时,OA 最小,然后求出OA 解答.【详解】解:如图,∵四边形CDEF 是正方形,45,90,OCD ODB COD OC OD ︒︒∴∠=∠=∠==,OA OB ⊥90AOB ︒∴∠=,90,90COA AOD AOD DOB ︒︒∴∠+∠=∠+∠=COA DOB ∴∠=∠,在ΔCOA 与ΔDOB 中,OCA ODB OC ODAOC DOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔCOA DOB ASA ∴≌,∴OA =OB ,∵∠AOB =90°,∴△AOB 是等腰直角三角形,由勾股定理得:AB = ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,OA ⊥CD 时,OA 最小,∵正方形CDEF ,∴FC ⊥CD ,OD =OF ,∴CA =DA ,∴OA =112CF =,∴AB【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB 是等腰直角三角形是解题的关键.5、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.三、解答题1、(1)见解析(2)y =12x 2-3x +18(0<x <6)(3)【分析】(1)如图1中,作CM ∥FG 交AD 于M ,CM 交DE 于点K .只要证明四边形CMGF 是平行四边形,△ADE ≌△DCM 即可解决问题;(2)根据S △DEF =S 梯形EBCD -S △DCF -S △EFB 计算即可解决问题;(3)如图3中,将△ADE 绕点D 逆时针旋转90°得到△DCM .作DN ∥GF 交BC 于点N ,连接EN .由△NDE ≌△NDM (SAS ),推出EN =NM ,由AB =6,BE =2AE ,推出AE =2,BE =4,设CN =x ,则BN =6-x ,EN =MN =2+x ,在Rt △ENB 中,根据EN 2=EB 2+BN 2,构建方程求出x ,再在Rt △DCN 中,求出DN 即可解决问题.(1)证明:如图1中,作CM∥FG交AD于M,CM交DE于点K.∵四边形ABCD是正方形,∴AD=CD,AD∥BC,∠A=∠ADC=90°,∵CM∥FG,DE⊥FG,∴四边形CMGF是平行四边形,CM⊥DE,∴CM=FG,∠CKD=90°∴∠CDE+∠DCM=90°,∠ADE+∠CDE=90°,∴∠ADE=∠DCM,∴△ADE≌△DCM(ASA),∴CM=DE,∴DE=FG.(2)如图2中,∵AF=DE,AD=AB,∠DAE=∠B=90°,∴△ADE≌△BAF(SAS),∴AE=BF,∵AB=BC,∴BE=CF=x,∴y=S△DEF=S梯形EBCD-S△DCF-S△EFB=1 2×(x+6)×6-12×6×x-12×x(6-x)=3x+18-3x+12x2-3x=12x2-3x+18(0<x<6).(3)如图3中,将△ADE绕点D逆时针旋转90°得到△DCM.作DN∥GF交BC于点N,连接EN.则四边形DGFN 是平行四边形,∴∠EDN =∠GHD =45°,∵∠ADC =90°,∴∠NDC +∠ADE =∠NDC +∠CDM =45°,∴∠NDE =∠NDM ,∵DN =DN ,DE =DM ,∴△NDE ≌△NDM (SAS ),∴EN =NM ,∵AB =6,BE =2AE ,∴AE =2,BE =4,设CN =x ,则BN =6-x ,EN =MN =2+x ,在Rt △ENB 中,∵EN 2=EB 2+BN 2,∴(x +2)2=(6-x )2+42,∴x =3,在Rt △DCN 中,DN,∴FG =DN =【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.2、(1)D ;(2)证明见详解;(3)55CFD ∠=︒.【分析】(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,即可得出选项;(2)根据直角三角形全等的特殊方法(直角边,斜边)得出Rt POD Rt POE ∆≅∆,然后由全等三角形的性质得出AOC BOC ∠=∠,即可证明角平分线;(3)过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,根据题意可得FG FH FK ==,运用角平分线的逆定理可得FC 平分BCD ∠,FD 平分CDE ∠,再由五边形内角和及题中已知条件可得250BCD CDE ∠+∠=︒,运用各角之间的数量关系可得125FCD FDC ∠+∠=︒,再由三角形内角和定理即可得出结果.【详解】解:(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,故选:D ;(2)在Rt POD ∆与Rt POE ∆中,PD PE OP OP=⎧⎨=⎩, ∴Rt POD Rt POE ∆≅∆,∴AOC BOC ∠=∠,∴OC 是AOB ∠的平分线;(3)如图所示,过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,∵BC CD DE ==,且FBC FCD FDE S S S ∆∆∆==,∴FG FH FK ==,∴FC 平分BCD ∠,FD 平分CDE ∠, ∴12BCF FCD BCD ∠=∠=∠,12FDC FDE CDE ∠=∠=∠ ∵80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,五边形内角和为:()52180540-⨯︒=︒,∴250BCD CDE ∠+∠=︒, ∴()111125222FCD FDC BCD CDE BCD CDE ∠+∠=∠+∠=∠+∠=︒, ∴()18055CFD FCD FDC ∠=︒-∠+∠=︒,故55CFD ∠=︒.【点睛】题目主要考查角平分线的判定和性质,三角形内角和定理,全等三角形的判定和性质,多边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.3、(1)40°;(2)119022αβ+-︒;(3)若AG ∥BH ,则α+β=180°,理由见解析;(4)121902αβ︒--,图见解析. 【分析】(1)利用四边形内角和定理得到∠DAB +∠ABC =360°-120°-140°=100°.再利用三角形的外角性质得到∠F =∠FBE -∠FAB ,通过计算即可求解;(2)同(1),通过计算即可求解;(3)由AG ∥BH ,推出∠GAB =∠HBE .再推出AD ∥BC ,再利用平行线的性质即可得到答案;(4)利用四边形内角和定理得到∠DAB +∠ABC =360°-∠D -BCD =360°-α-β.再利用三角形的外角性质得到∠F =∠MAB -∠ABF ,通过计算即可求解.【详解】解:(1)∵BF 平分∠CBE ,AF 平分∠DAB ,∴∠FBE=12∠CBE,∠FAB=12∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°-∠D-∠DCB =360°-120°-140°=100°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE-∠FAB=12∠CBE−12∠DAB=12(∠CBE−∠DAB)=12(180°−∠ABC−∠DAB)=12×(180°−100°)=40°.故答案为:40°;(2)由(1)得:∠AFB=12(180°−∠ABC−∠DAB),∠DAB+∠ABC=360°-∠D-∠DCB.∴∠AFB=12(180°−360°+∠D+∠DCB)=12∠D+12∠DCB−90°=12α+12β−90°.故答案为:119022αβ+-︒;(3)若AG∥BH,则α+β=180°.理由如下:若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE,∴∠DAB=∠CBE,∴AD∥BC,∴∠DAB+∠DCB=α+β=180°;(4)如图:∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=12∠DAB,∠NBE=12∠CBE,∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,∴∠DAB+180°-∠CBE=360°-α-β,∴∠DAB-∠CBE=180°-α-β,∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE,又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB-∠ABF,∴∠F=12∠DAB−∠NBE=12∠DAB −12∠CBE =12(∠DAB −∠CBE ) =12 (180°−α−β)=90°-12α−12β.【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.4、(1)证明见解析;(2),,,.BAD AFC AEC BCD【分析】(1)先证明,,,AB CD B D AD BC 再证明,BE DF =从而可得结论;(2)证明,ABE DCF 是等边三角形,再分别求解,B ∠ ,,,,BAD AFC AEC BCD 从而可得答案.【详解】证明(1) 平行四边形ABCD 中,,,,,AB CD B D AD BC点E 、F 分别是BC 、AD 的中点,,BE DF ∴=∴ C ABE DF ≌△△(2) 2BC AB =,,,AD BC AB DC,AB BE CE CD DF AF,AE CE = C ABE DF ≌△△,AB BE CE CD DF AF AE CF,ABE DCF是等边三角形,BAE BEA DFC DCF D B60,AEC AFC120,四边形ABCD是平行四边形,B D∥而60,AD BC,BAD BCD,120BAD AFC AEC BCD所以等于B的2倍的角有:,,,.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明ABE DCF是等边三角形”是解(2)的关键.“,5、(1)见解析(2)见解析【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明∠BAC=∠ACB,∠AFB=∠CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可.(1)解:如图,射线BF即为所求作的角平分线;(2)解:∵AC平分∠BAD,BF平分∠ABE,∴∠BAC=∠FAC,∠ABF=∠CBF,∵AD∥BE,∴∠ACB=∠FAC,∠AFB=∠CBF,∴∠BAC=∠ACB,∠AFB=∠ABF,∴A B=BC,AB=AF,∴BC=AF,又AF∥BC,∴四边形ABCF是平行四边形,又∵AB=BC,∴四边形ABCF是菱形.【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键.。
初二八年级数学下册《思想方法专题:矩形中的折叠问题》(附答案)【沪科版适用
思想方法专题: 矩形中的折叠问题——体会矩形折叠中的方程思想及数形结合思想◆类型一 矩形折叠问题中求角的度数1.如图,将矩形ABCD 沿AE 折叠,使点D 落在点D′处.若∠CED′=60°,则∠BAD′的大小是( )A .30°B .45°C .50°D .60°第1题图 第2题图2.如图,将矩形纸片ABCD 折叠,使顶点B 落在边AD 上的点E 处,折痕FG 交AB 于点F ,交BC 于点G ,连接BE.若∠AEF =20°,则∠FGB 的度数为( )A .25°B .30°C .35°D .40° ◆类型二 矩形折叠问题中求长度 3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点O.若AO =5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm第3题图 第4题图4.(2017·芜湖市期中)将矩形纸片ABCD 按如图折叠,得到菱形AECF.若AB =3,则BC 的长为( )A .2B .1C . 3D . 5 5.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是【方法18①】( )A .3B .245C .5D .8916第5题图 第6题图6.(2017·芜湖繁昌县期中)将矩形纸片ABCD 按如图折叠,AE 、EF 为折痕,∠BAE =30°,BE =1.折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则EC 的长为( )A . 3B .2C .3D .2 37.★(2017·安庆潜山县期末)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为________.第7题图第8题图◆类型三矩形折叠问题中求面积8.(2017·阜阳市期末)如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则△AEF的面积是()A.8 B.10 C.12 D.149.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.参考答案与解析1.A 2.C 3.C4.C 解析:∵四边形AECF 为菱形,∴AE =CE ,∠FCO =∠ECO .由折叠可得∠ECO =∠ECB .又∵∠FCO +∠ECO +∠ECB =90°,∴∠FCO =∠ECO =∠ECB =30°.∵四边形ABCD 是矩形,∴∠B =90°,∴CE =2BE ,∴AE =2BE .∵AB =AE +BE =3,∴BE =1,CE =AE =2,∴BC =CE 2-BE 2= 3.故选C.5.C 解析:四边形ABCD 是矩形,∴∠A =90°,AB =CD =6,AD =BC =8,∴BD =BC 2+CD 2=10.由折叠可得BF =AB =6,EF =AE ,∠BFE =∠A =90°,∴∠DFE =90°.设DE =x ,则EF =AE =8-x .在Rt △DEF 中,DE 2=EF 2+DF 2,即x 2=(8-x )2+(10-6)2,解得x =5.即DE =5.故选C.6.B 解析:∵四边形ABCD 是矩形,∴∠B =∠BAD =90°.∵∠BAE =30°,BE =1,∴AE =2BE =2×1=2,∠AEB =90°-∠BAE =90°-30°=60°,∠EAC 1=∠BAD -∠BAE =90°-30°=60°.由折叠可得∠AEB 1=∠AEB =60°.∴∠AC 1E =180°-∠EAC 1-∠AEB 1=60°,∴△AEC 1是等边三角形,∴EC 1=AE =2.由折叠可得EC =EC 1=2.故选B.7.185解析:如图,连接BF 交AE 于点H .∵BC =6,点E 为BC 的中点,∴BE =CE =12BC =3.由折叠可得BF ⊥AE ,BH =12BF .∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,∴BF =2BH =245.由折叠可得FE =BE ,∴FE=BE =CE ,∴∠EBF =∠BFE ,∠ECF =∠EFC .又∵∠EBF +∠BFE +∠EFC +∠ECF =180°,∴∠BFE +∠EFC =90°,即∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝⎛⎭⎫2452=185.8.B 解析:∵四边形ABCD 是矩形,∴∠D =90°,AD =BC =8,CD =AB =4.由折叠可得AG =CD =4,∠G =∠D =90°,DF =GF .设AF =x ,则GF =DF =8-x .在Rt △AGF 中,AF 2-GF 2=AG 2,即x 2-(8-x )2=42,解得x =5,即AF =5.∴S △AEF =12AF ·AB =12×5×4=10.故选B.9.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.由折叠可得∠F =∠B ,AF =AB ,∴AF =CD ,∠F =∠D .在△AFE 和△CDE 中,∵⎩⎪⎨⎪⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵四边形ABCD 是矩形,∴∠D =90°,CD =AB =4,AD =BC =8.由折叠可得CF =BC =8.由(1)可知△AFE ≌△CDE ,∴EF =DE .设EF =DE =x ,则CE =8-x .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即x 2+42=(8-x )2,解得x =3,∴DE =3,∴AE =AD -DE =5,∴S 阴影=12AE ·CD =12×5×4=10.。
沪科版八下数学 基础题卡31 矩形、菱形、正方形(6)
沪科版八下数学基础题卡31 矩形、菱形、正方形(6)
1.如图,四边形ABCD中,对角线AC,BD相等且互相平分,再添加一个条件,使得四边形ABCD是正方形,可添加的条件是.(写出一个条件即可)
2.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件时,四边形BEDF是正方形.
3.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AEB=∠CEB.求证:四
边形ABCD是正方形.
4.如图,在△ABC中,∠C=90∘,∠CAB,∠CBA的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.
答案
1. 【答案】AB=BC(答案不唯一)
2. 【答案】∠ABC=90∘(答案不唯一)
3. 【答案】在△ABE和△CBE中,
{∠BAE=∠BCE,∠AEB=∠CEB, BE=BE,
∴△ABE≌△CBE(AAS),
∴BA=BC,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形.
4. 【答案】如答图,过点D作DN⊥AB于点N.
∵∠C=90∘,DE⊥BC于点E,DF⊥AC于点F,
∴∠C=∠DEC=∠DFC=90∘,
∴四边形CFDE是矩形.
∵∠CAB,∠CBA的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F,DN⊥AB于点N,∴DE=DN,DN=DF,
∴DF=DE,
∴四边形CFDE是正方形.。
沪科版八年级数学下册19.3:四边形 专题训练(pdf版,无答案)
专题1中点问题之构造三角形中位线类型一连接两点构造三角形的中位线1.△ABC 的中线BD ,CE 相交于O ,F ,G 分别是BO ,CO 的中点,求证:EF ∥DG ,且EF=DG。
2.已知:如图,在△ABC 中,点D 在AB 上,BD=AC ,E ,F ,G 分别是BC ,AD ,CD 的中点,EF ,CA 的延长线相交于点H 。
求证:(1)∠CGE=∠ACD+∠CAD ;(2)AH=AF。
类型二用角平分线十垂直构造三角形的中位线3.如图,△ABC 中,AD 平分∠BAC ,AD ⊥BD ,E 为BC 的中点.(1)求证:DE ∥AC;(2)若AB=4,AC=6,求DE 的长.4.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别是F ,G ,连接FG.求证:()AC BC AB FG ++=21(提示:分别延长AF ,AG 与直线BC 相交)(2)如图2,若BD ,CE 分别是△ABC 的内角平分线,过点A 作AF ⊥BD ,AG ⊥CE ,垂足分别是F ,G ,连接FG.线段FG 与△ABC 的三边又有怎样的数量关系?写出你的猜想,并给予证明.类型三倍长法构造三角形的中位线5.如图,在△ABC 中,∠ABC=90°,AB=BC ,BD ⊥AC 于点D ,CE 平分∠ACB ,交AB 于点E ,交BD 于点F.求证:(1)△BEF 是等腰三角形;(2)()BF BC BD +=21类型四已知一边中点取另一边中点构造三角形的中位线6.如图,在△ABC 中,AD 是BC 边上的中线,点F 在AC 上,FC AF 21=,AD 与BF 交于点E.求证:点E 是AD 的中点.7.如图,在△ABC 中,D 为AC 上一点,AB=CD ,F 是AD 的中点,M 为BC 的中点,连接MF 并延长交BA 的延长线于点E ,G 为EF 的中点,求证:AG ⊥ME.专题2中点问题之构造斜边上的中线类型一利用直角三角形斜边上的中线求线段的长度1.已知,Rt △ABC 中,∠ACB=90°,AB=6cm ,D 为AB 中点,DE ⊥AC 于点E,∠A=30°,求BC ,CD 和AC 的长.类型二利用直角三角形斜边上的中线求角的度数2.如图,在Rt △ABC 中,∠BAC=90°,AD 是BC 边上的中线,ED ⊥BC 于点D ,交BA 延长线于点E ,若∠E=35°,求∠BDA 的度数.3.如图,在△ABC 中,∠ABC=90°,点D 是AC 中点,DE ⊥AC 于点D ,交BC 于点E,连接BD.求证:∠ABD=∠CED 。
数学沪科版八年级下册几何测试题
一 .判断题:( 1 分× 10=10 分) ××√ ××××××√
二 . 选择题:(每小题 3 分,共 30 分) CBBCA.DDCCB
三 .填空题 ( 每小题 3 分,共 30 分 )
1、 20cm
24cm 2.可构成 3 个三角形
3. 60.
4. 120 0 .
5. 41cm
6. 34
7、 360
号 考
号 学
---------------------------------------------------------------
名 姓
级 班
---------------------------------------------------线
-----------------------------------------------封
20
=
9
1 2, AE FC, DN BM
DE=BF ,DM =BN
DEM BFN
3 4, ME NF
ME // NF
EMFN 是平行四边形
证法二:
证 DEM BFN (同证法一)
ME =NF 同理可证
DEN
EN =FM
EMFN 是平行四边形。
BFM
3、证明:在正方形 ABCD 中, 1 2 45
∵AB =BC, BE=BE∴ ABE
3.如图,在一个正方体的两个面上画了两条对角线
等于
度。
AB ,AC ,那么这两条对角线的夹角
4. 时钟的时针和分针在 4 时所成的角度是 _____度 .
5.如图,长方体三条棱的长分别为 4 cm ,3 cm , 2 cm ,蚂蚁从 A1出发,沿长方体的表面爬到
精编沪科版八年级下册数学第19章 四边形含答案
沪科版八年级下册数学第19章四边形含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中存在菱形 ABCD ,点 A 的坐标为(2,2),点D 的坐标为(5,6),AB∥x轴,当函数的图象与菱形ABCD 有两个公共点, k的取值范围是()A. B. C. D.2、在菱形ABCD中,若∠ADC=120°,对角线AC=6,则菱形的周长是()A. B.24 C. D.3、如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17B.18C.19D.204、如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC =3,则梯形ABCD的周长是()A.26B.25C.21D.205、如图所示,∠1+∠2+∠3+∠4的度数为()A.100°B.180°C.360°D.无法确定6、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A. B. C.2 D.17、如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且.连接AE,将△ABE沿AE折叠,若点B的对应点B'落在矩形ABCD的边上,则a的值为( )A. B. C. 或 D. 或8、在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=().A.100°B.120°C.135°D.150°9、如图所示,四边形ABCD的对角线为AC,BD,且,则下列条件能判定四边形ABCD是矩形的是()A. B.AC,BD互相平分 C. D.10、如图,在▱ ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.211、如果一个多边形的每一个内角都是,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形12、下列命题是假命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形13、下列说法中,正确是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线互相垂直,且相等的四边形是正方形14、如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,则的值是()A. B. C. D.15、如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若▱ABCD的周长为20,则△CED的周长为( )A.5B.10C.15D.20二、填空题(共10题,共计30分)16、如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于________.17、在数学课上,老师提出问题:如图,将锐角三角形纸片经过两次折叠,得到边上的点,使得四边形恰好为菱形.小明给出的折叠方法:如图,① 边向边折叠,使边落在边上,得到折痕交于D;②C点向边折叠,使C点与D点重合,得到折痕交边于E,交边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是①________是平行四边形;②________是菱形.18、如图,将一条两边平行的纸带折叠,若∠2=80°,则∠1=________.19、如图,平行四边形的周长为,与交于点,于,交于点,则的周长为________ .20、如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________ .21、已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为________.22、如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(8,0),则点A的坐标为________23、如图,在中,,,,点是的中点,点在边上,将沿翻折,使点落在点处,当时,________.24、如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为________.25、如图,矩形的顶点分别在轴、轴的正半轴上,为的中点,反比例函数的图象经过点,且与交于点,连接,,,若的面积为3,则的值为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A PC D B A F G C EBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC=200,求∠BED的度数.经典难题解答:经典难题(一)1.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300 ,从而得出△PBC是正三角形3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典难题(二)1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。
3.作OF ⊥CD ,OG ⊥BE ,连接OP ,OA ,OF ,AF ,OG ,AG ,OQ 。
由于22AD AC CD FD FDAB AE BE BG BG====, 由此可得△ADF ≌△ABG ,从而可得∠AFC=∠AGE 。
又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ , ∠AOP=∠AOQ ,从而可得AP=AQ 。
4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EG FH+。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。
从而可得PQ=2AI BI += 2AB,从而得证。
经典难题(三)1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。
又∠EFC=∠DFA=450+300=750.可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。
tan∠BAP=tan∠EPF=XY=ZY X Z-+,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证。
经典难题(四)1.顺时针旋转△ABP 600,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DEDC,即AB•CD=DE•AC,②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
4.过D 作AQ ⊥AE ,AG ⊥CF ,由ADE S =2ABCDS =DFC S ,可得:2AE PQ =2AE PQ,由AE=FC 。
可得DQ=DG ,可得∠DPA =∠DPC (角平分线逆定理)。
经典难题(五)1.(1)顺时针旋转△BPC 600,可得△PBE 为等边三角形。
既得PA+PB+PC=AP++PE+EF 要使最小只要AP ,PE ,EF 在一条直线上,即如下图:可得最小L=(2)过P 点作BC 的平行线交AB,AC 与点D ,F 。
由于∠APD>∠ATP=∠ADP ,推出AD>AP ① 又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L <2 。
2.顺时针旋转△BPC 600,可得△PBE为等边三角形。
既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。
既得= 1)2。
3.顺时针旋转△ABP 900,可得如下图:既得正方形边长a a。
4.在AB上找一点F,使∠BCF=600,连接EF,DG,既得△BGC为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF ,得到BE=CF , FG=GE 。
推出:△FGE为等边三角形,可得∠AFE=800,既得:∠DFG=400①又BD=BC=BG ,既得∠BGD=800,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,从而推得:∠FED=∠BED=300。